
Static Vulnerability Detection in Java Service-Oriented
Components

François Goichon · Guillaume Salagnac · Pierre Parrend ·
Stéphane Frénot

Abstract Extensible component-based platforms al-

low dynamic discovery, installation and execution of

components. Such platforms are service-oriented, as com-

ponents may directly interact with each other via the

services they provide. Even robust languages such as

Java were not designed to handle safe code interaction

between trusted and untrusted parties. Dynamic instal-

lation of code provided by different third parties leads

to several security issues. The different security layers

adopted by Java or component-based platforms cannot

fully address the problem of untrusted components try-

ing to tamper with other components via legitimate

interactions. A malicious component might even use

vulnerable ones to compromise the whole component-

based platform.

Our approach identifies vulnerable components in

order to prevent them from threatening services secu-

rity. We use static analysis to remain as exhaustive as

possible and to avoid the need for non-standard or in-

trusive environments. We show that a static analysis

through tainted object propagation is well suited to

detect vulnerabilities in Java service-oriented compo-

nents. We present STOP, a Service-oriented Tainted

Object Propagation tool, which applies this technique

to statically detect those security flaws. Finally, the au-

dit of several trusted Apache Felix bundles shows that

nowadays component-based platforms are not prepared

for malicious Java interactions.

University of Lyon, INRIA
INSA-Lyon, CITI

F. Goichon, G. Salagnac and S. Frénot
CITI Laboratory, INSA Lyon F-69621 Villeurbanne Tel.:
+33 4 7243 6415
Fax: +33 4 7243 6227
E-mail: francois.goichon@insa-lyon.fr · P. Parrend
Universit de Strasbourg
ECAM Strasbourg-Europe

Keywords OSGi Security, Tainted Object Prop-

agation, Vulnerability Detection, Static Analysis,

Java

1 Introduction

Component-based platforms manage components, in-

dependent pieces of software dedicated to unique ob-

jectives. They can discover those components at run-

time and dynamically install and execute them. The

most popular application of such platforms is the smart-

phone. Indeed, a smartphone is nothing but a set of

pluggable applications that can be downloaded and dy-

namically installed and executed. Third-party reposi-

tories or official repositories are priority targets for at-

tackers: Google recently assessed that several malicious

applications have been detected and removed from their

official Android application store [1]. In this paper, we

address the detection of vulnerabilities that can be ex-

ploited by malicious software to compromise the behav-

ior of a component-based application.

Examples of component-based platforms include OSGi

platforms [2], Java MIDP [3], Android1, or the Mi-

crosoft .Net platform2. We studied OSGi components,

as its specifications provide a framework that crosses

existing Java implementations. This allows developers

to ignore the differences between underlying frameworks,

while providing the dynamics and extensibility of other

component-based platforms.

Although components are designed to be indepen-

dent, they interact with other components via services

in order to achieve more complex tasks. For instance, a

component designed for data storage management pro-

vides facilities for other components to store and re-

1 http://code.google.com/android/
2 http://msdn.microsoft.com/netframework



2 François Goichon et al.

trieve data. Each component stays focused on its main

task, requiring others to achieve auxiliary tasks. A ser-

vice provider first registers its service to the manage-

ment platform. A consumer may ask the platform for

the provider’s service. The consumer may then call the

public methods of this service with its own parame-

ters. These parameters provided by the consumer may

have an influence over the provider’s code. On the other

hand, an object returned by the provider’s service is un-

trusted for the consumer.

These interactions can lead to several security is-

sues. Each component may be provided by different

sources and their installation and execution is highly

dynamic: it is possible for malicious components to get

installed on open platforms. As a component cannot

necessarily trust others, external data emanating from

other components can be considered untrusted and should

not be able to alter the behavior of the component. For

instance, it should continue to provide its services inde-

pendently from those influences. For the Java language,

Herzog et al. [4] pointed out the difficulties of securely

running untrusted services as Java threads. Our recent

work [5,6] classify the underlying vulnerability families

for Java components running and interacting with un-

trusted ones. Those vulnerabilities induce a new range

of possible exploits that malicious components can use

to leak sensitive data, escalate privileges or cause Denial

of Service to the platform or vulnerable components.

Protecting platforms and their components from such

malicious behaviors is an important issue, which has

not been fully addressed yet. The infinite possibilities

to exploit a single flaw considerably toughen up mali-

cious code detection. Our approach is to add an addi-

tional component isolation mechanism, which prevents

unsafe components from providing services and import-

ing packages. Unsafe components are the potentially

vulnerable ones. Only components signed as safe by a

trusted static analysis tool would be able to interact

with others.

Statically analyzing Java components brings up new

challenges, such as the fact that external code is not

known before deployment time. State of the art analyses

are not able to work on an isolated component as they

require a complete application with an unique entry

point to build analysis metadata. In this paper, we show

that those challenges can be systematically handled for

a security analysis with an adapted tainted object prop-

agation modelization. We implement this technique in

STOP, a Service-oriented Tainted Object Propagation

tool designed to track typical components vulnerabili-

ties. Our experimental results show that STOP is able

to successfully detect exploitable vulnerabilities in real-

life OSGi components in a matter of minutes.

Section 2 introduces our attacking model and vul-

nerabilities existing in Java components. Section 3 re-

views past work on vulnerability detection with a focus

on Java code interaction. Section 4 proposes an adapted

tainted object propagation technique to statically de-

tect components vulnerabilities. It takes advantage of

the Java programming language and the OSGi service-

oriented architecture to ease the static analysis. Section

5 presents STOP, an implementation of the proposed

technique to detect component-specific vulnerabilities

and shows experimental results evaluating STOP’s per-

formance and vulnerability detection efficiency.

2 Context

Java components are prone to a large set of vulnera-

bilities. Those can be used by malicious components to

alter other components or the behavior of the platform.

We introduce in this section the context of our vul-

nerability analysis: the attacker’s goals and Java code

interaction problems. We also provide a vulnerability

example we use throughout the paper.

2.1 Attacking model

In this work, we focus on a realistic attacking model

where the attacker has full control of one or more com-

ponents on the otherwise trusted platform. They can

export classes and import interfaces from vulnerable

components to use their services. Google Mobile Team’s

statement on the effective corruption of several applica-

tions in their Android store [1] is a good example of such

a scenario. In this case, a specific attack surface arises,

as the attacker can provide whole malicious objects to

its targets, which contain data as well as code. In this

paper, we focus on this attacking model, where the at-

tacker provides the targeted components with malicious

objects to alter or take advantage of their behavior.

2.2 Java Code Interactions Flaws

Java provides implicit mechanisms for memory manage-

ment and bytecode verification that make applications

more robust against classical application-level vulnera-

bilities. However, like most programs, Java applications

are prone to classical language-independent flaws, such

as SQL injections [7] or information disclosure. Most

work related to security analysis in Java applications

focuses on those vulnerabilities [8–11], which are not

specific to the Java programming language.



Static Vulnerability Detection in Java Service-Oriented Components 3

There exist however other Java-specific vulnerabil-

ities, critical when considering Java code interaction.

Many basic Java interactions can threaten encapsula-

tion and execution safety. Reflection, subclassing, se-

rialization, synchronization or access to system APIs

allow malicious code to alter trusted objects or modify

the expected execution flow [6]. Throughout this paper,

we use the synchronized denial of service, to illustrate

how such vulnerabilities work in general.

Vulnerability Example: Synchronized Denial

of Service. The Java programming language provides

a mutual exclusion idiom: synchronization. It is widely

used to avoid concurrent I/O operations and ensure

consistency of stored and retrieved data. When an in-

struction block is synchronized, it is protected against

concurrent access as no more than one caller at a time

is able to execute the code. If any method or statement

blocks the execution within the synchronized block, a

deadlock occurs, preventing further calls to any syn-

chronized method from the affected class. If such a

deadlock occurs during a service call, any further ac-

cess to the service will be denied [5].

1 public class DataStorage{

2 public void synchronized storeList(ArrayList list){

3 Iterator it = list.iterator();

4 while (it.hasNext()){ store(it.next()); }

5 }

6 }

Alg. 1: DataStorage class containing a vulnerable ser-

vice prone to Denial of Service

The listing in Alg. 1, inspired by Parrend et al.’s

vulnerability examples [5], is an illustration of such vul-

nerabilities. It contains the service class DataStorage.

The main service method is storeList, which takes an

ArrayList as its only parameter (line 2). It gets its Iter-

ator (line 3) and takes each object in the array to store

it. The sample exploit in Alg. 2 shows a crafted exten-

sion of ArrayList. When the ArrayList iterator method

is called, the thread indefinitely loops, denying any fur-

ther call to the DataStorage service. Multiple exploita-

tions are possible, as another crafted ArrayList exten-

sion could provide a malicious Iterator extension that

blocks within the hasNext and next methods.

public class MaliciousArrayList extends ArrayList{ 1

public Iterator iterator(){ 2

while(true); 3

return null; 4

} 5

} 6

Alg. 2: Malicious ArrayList implementation

2.3 Mitigation based on Security Layers

To mitigate possibilities to compromise other objects,

the Java Standard Edition [12] and the OSGi specifica-

tions [2] provide additional security layers. They allow

an administrator to control access to sensible operations

such as reflection or object replacement during serial-

ization. However, several flaws in its access control de-

sign can allow untrusted code to exploit vulnerabilities

in trusted code and bypass those restrictions [6].

Those vulnerabilities have a huge impact on Java

Applets or application servers but are less common in

the OSGi world, where security layers are rarely used

at all. Security layers actually induce an average over-

head of 100% for Java applications [13] and bring a lot

of constraints opposed to the fundamental concepts of

generic and dynamic programming. Even when there is

a Security Manager, it may be hard to tell which com-

ponents may be trusted and which ones may not. It is

even harder to tell which permissions should be granted

to trusted or untrusted components. In this case, com-

ponents have an uncontrolled access to the platform

anyway.

Basic Java interactions induce theoretical vulnera-

bilities in Java applications interacting with untrusted

code. Open component-based platforms turn those vul-

nerabilities into real threats and even bring new vul-

nerabilities to the fore [5]. With those new vulnerability

exposures emerging comes the necessity to either detect

those vulnerabilities or prevent their exploitation. The

next section goes through software vulnerability detec-

tion techniques and their application on Java compo-

nents.

3 Related Work

This section reviews past work on vulnerability detec-

tion for Java applications. We focus on static analysis

to ensure a better detection coverage for such complex

vulnerabilities. We present the different techniques and

expose the lack of past work on advanced static anal-

ysis to detect Java code interaction vulnerabilities and

component-based vulnerabilities. We also give further



4 François Goichon et al.

details on the tainted object propagation technique that

can be used to follow untrusted data in an application.

3.1 Static vs. Dynamic Vulnerability Detection.

In computer security and penetration testing, vulner-

abilities can be detected and/or inhibited either stat-

ically or dynamically. On the first hand, a static vul-

nerability analysis tries to find vulnerabilities within a

program without having to run it. The analysis is often

performed from source files or compiled bytecode. On

the other hand, a dynamic analysis runs the program to

either find vulnerabilities or prevent their exploitation.

Static analyses can access all necessary data from

source code or bytecode. However, they often need large

amounts of memory and time to analyze a program,

especially on large programs. Dynamic detection ad-

dresses this problem, by analyzing an application in

a black-box fashion, only observing the system’s reac-

tion to specific queries and inputs. Dynamic detection

cannot spot most vulnerabilities triggered by uncom-

mon combinations of internals and is therefore non-

exhaustive. Moreover, they often use non-standard, in-

trusive execution environments to monitor the target’s

execution. If the application is to be migrated back in a

standard environment, it is not protected anymore. We

focused on static analysis techniques, to remain non-

intrusive, more precise and with a better coverage.

3.2 Static Analysis Techniques for Vulnerability

Prevention.

Syntactic and lexical analyses. The simplest way

to statically detect vulnerabilities is to perform syntac-

tic and lexical analyses. A lexical analysis uses simple

matches against simple signatures. For instance, search-

ing for synchronized methods or public fields of a class.

Simple pattern matching is highly efficient but can-

not handle more elaborated signatures depending on

instruction sequences. However, syntax trees can han-

dle simple instruction sequences. The analysis builds

a tree containing ordered operations and instructions.

This tree is then matched against some predefined vul-

nerability signature tree.

Code transformations. Another way to prevent

vulnerabilities is to transform the vulnerable source code

into a safe version without changing the semantics. An

example of such techniques is the cookie check intro-

duced in the Visual Studio compiler [14] to prevent

buffer overflow exploitation on exposed methods. There

is also the possibility to simply annotate the code and

let the compiler or runtime perform necessary checks.

For example, Haldar et al. [15] integrate static analysis

in SQL Injection detection by transforming the class

files to perform security checks at runtime.

Tainted Object Propagation. Tainted object prop-

agation is a kind of dataflow analysis [16]. Dataflow

analysis is designed to handle complex application be-

haviors, including interprocedural behaviors or deter-

mining the range of possible values. Tainted object prop-

agation is the main dataflow analysis applied to secu-

rity: the analysis starts from an entry point where a re-

markable value is assigned to a variable. It then builds a

control-flow graph, which denotes all the possible paths

in the studied part of the application. Following those

different paths, the analysis follows the special variables

to study the propagation of their values throughout

the program. Tainted object propagation addresses two

main issues: integrity and confidentiality [16]. In the

case of integrity checks, the aim of the analysis is to

verify that untrusted data cannot influence important

variables that should not get corrupted. Confidential-

ity analysis, on the other hand, studies the reverse flow,

by following important data that should not be leaked

and verifying whether it exists a path from this data to

known untrusted disclosure APIs, like serialization or

unencrypted writes.

Generic
Java In-

teractions
Security
Layers

Syntactic /
Lexical

AMNESIA [11] WCA [17] No

Transformation Haldar et al. [15] No No

Tainted
Object

Propagation

Livshits et al. [8]
TAJ [9]

Liu et al. [10]
Avvenuti et

al. [18]

No No

Table 1: Java Application Vulnerabilities and Applied

Static Vulnerability Detection Techniques

Table 1 summarizes the most relevant past efforts

on static vulnerability detection for Java applications.

It illustrates that past work mostly focuses on com-

mon software vulnerabilities and data leakage. Livshits

et al. [8] perform a static dataflow analysis on Java

Web applications to detect SQL injections. They follow

untrusted inputs, such as parameters of a Java servlet,

and track their possible propagation to Java SQL APIs.

Liu et al. [10] and Avvenuti et al. [18] apply reverse

tainted object propagation to detect whether inputs

with a high security level can be disclosed to lower se-

curity level outputs. The runtime monitoring tool of



Static Vulnerability Detection in Java Service-Oriented Components 5

Haldar et al. [15] annotates and transforms class files

to perform checks at runtime or remove vulnerabilities.

Table 1 clearly highlights the lack of work on vul-

nerabilities specific to Java code interactions. Only Par-

rend et al. [17]’s tool, WCA, is designed to statically

find potential security vulnerabilities in OSGi compo-

nents. It uses simple pattern matching to analyze reach-

able code from OSGi service calls. For example, WCA

issues a warning if a synchronized method is accessible,

but cannot assess whether the code can indeed lead to a

denial of service. WCA illustrates well the limitations of

syntactic and lexical analyses when applied to compo-

nents vulnerabilities. Transforming class files to prevent

such vulnerabilities seems a hard task, as even for sim-

ple examples such as the code in Alg. 1, it is not possible

to decide what instructions should or should not stay

synchronized without altering the service semantics.

Tainted object propagation is a very powerful tech-

nique that has not yet been explored in the context

of Java components. Moreover, Livshits et al. work on

SQL injection detection [8] can easily be projected to

the case of component interaction. They consider un-

trusted data flowing into an application via a servlet

HTTP parameters. A servlet is no less than a service in-

stance providing HTTP methods. We further explored

the possibilities to apply tainted object propagation to

the detection of component vulnerabilities. In the next

paragraph, we detail a key to perform such analysis:

context sensitivity.

3.3 Tainted Object Propagation and Context

Sensitivity.

Tainted object propagation detects possible spreading

of untrusted data, coming from so-called taint sources,

to critical parts of the programs, the sinks. Tainted

data has propagation vectors, the taint propagators.

Sinks and taint sources are variables of the program

and taint propagators are software instructions. There-

fore, the first step is to perform a points-to analysis,

to extract variables relationships. A points-to analy-

sis computes a points-to set for each relevant variable,

which contains all other variables connected by taint

propagators.

The points-to analysis has to track relevant vari-

ables for the propagation throughout all execution paths,

as untrusted data can influence critical variables through

numerous subcalls. A single local variable in a method

should not reference the same variable when the method

is called in different contexts. An analysis that differ-

entiates same variables used in different calling con-

texts is called context-sensitive. Representing explicitly

all possible calling contexts requires lots of time and

memory and is not practicable at the time being with

medium-sized Java programs, even when skipping re-

cursive cycles [19]. However, context-sensitivity is the

key to precise points-to information computation for

programs written in Java [20]. Several techniques have

been developed to simplify those analyses. We present

the three most important techniques in the next para-

graph, which focus on different key points: the amount

of code to analyze and the amount of data to keep for

the analysis.

Summary-based analysis is the most traditional

way to perform an interprocedural context-sensitive anal-

ysis. The first pass computes a summary for each method

in the possible call paths. It contains all relevant infor-

mation for the requested analysis. The second pass pro-

cesses the call paths and computes information from the

summaries for each method encountered. When sum-

maries cannot be made compact enough, the analysis

needs huge amounts of memory and fails to scale to

medium-size programs [21]. However, summary-based

analyses can be very efficient when summaries are com-

pact enough [22].

Refinement-based analysis, proposed by Sridha-

ran et al. [23], is designed to eliminate as much irrel-

evant code to analyze as possible. They perform suc-

cessive refinements of points-to sets, to determine at

each step if an assignment path actually exists between

two variables, until either the path proves to be bro-

ken or the whole points-to set path proves to be right.

Refinement-based analyses are demand-driven: they are

specific to the client analysis needs, since they must

know beforehand what are the objectives in terms of

points-to computation to make the successive refine-

ments towards those objectives. Sridharan et al. results

show that refinement-based techniques are very pre-

cise and use significantly less memory than a classical

context-sensitive analysis for large program.

BDD Cloning-based analysis, proposed by Wha-

ley et al. [24], is an efficient way to process context-

sensitive analyses that leverages the fact that differ-

ent contexts used for a single method have a lot of

redundant data. It uses Binary Decision Diagrams to

efficiently store this data in a database-like structure.

Their technique scales to complex programs, up to 1014

different contexts. However, the analysis still has to pro-

cess the whole program and the amount of data to store

is still huge for recent JDK versions.

Even with recent improvements in context-sensitive

analysis such as BDD cloning- or refinement-based anal-

yses, we decided to use a summary-based approach for

our tainted object propagation. Indeed, we want our

analysis to be compatible with common hardware con-

figurations, whereas our experiments show that cloning-



6 François Goichon et al.

based techniques require several gigabytes for small pro-

grams with recent versions of the Java library. A refinement-

based analysis is not applicable to our vulnerabilities in

the general case, as we do not know the whole list of

taint sources and sinks beforehand and still have to an-

alyze irrelevant code to search for them.

Past work did not focus yet on applying tainted ob-

ject propagation to Java code interactions vulnerabili-

ties. We propose in the next section a service-oriented

tainted object propagation technique that uses the speci-

ficities of the Java language and Service-Oriented Pro-

gramming platforms to identify specific vulnerabilities

that could damage a component or its platform.

4 Service-oriented Tainted Object Propagation

for Java

Historically, tainted object propagation has been mostly

used in dynamic monitoring. However, some past work

bring up the idea to use tainted object propagation in

static software analysis for Java, such as Livshits et

al.’s [8] web-based vulnerability detection on Java ap-

plications.

Statically analyzing Java components to find vulner-

abilities related to code interaction, such as the simple

fact that external code is not available at analysis time,

brings up new challenges that have never been studied

to the best of our knowledge. We describe how those

specificities and paradigms from service-oriented com-

ponents and Java can be handled to provide an easy and

efficient static analysis through tainted object propaga-

tion. As stated in section 1, we studied the particular

case of OSGi platforms, as OSGi provides a service-

oriented platform whose behavior is independent from

the virtual machine’s.

4.1 Static Security Analysis for Service-oriented

Components

In Java Service-oriented components, there are several

ways for untrusted components to corrupt objects used

by targeted components or to get code executed in the

context of the targeted component. Components are

designed to be independent but several means of in-

teraction exist: registered services allow a component

to execute code from another component with its own

parameters, whereas package importation and exporta-

tion mechanisms in OSGi allow components to dynami-

cally provide exported classes to other components and

to retrieve classes imported by others. Service calls are

executed in any order and there may be distributed use

and modification of critical objects. Those specificities

of service-oriented architectures constitute unexplored

challenges for static security audits that we discuss in

this section.

4.1.1 Static Analysis of a Standalone Component

The static analysis of a standalone component without

its actual dependencies brings new challenges. We show

that specificities from standalone component analysis

allow to easily distinguish potentially malicious data

from harmless data, and that external data does not

have to be analyzed.

Some objects inside components are exposed

to external modifications. A component-based ap-

plication has to be viewed as a single stand-alone ap-

plication with multiple modules that can be plugged in

and out. The modifications made by a single component

can have repercussions on others. For instance, shared

static fields can be modified by any component. Even if

the field is private, it is possible to get an object serial-

ized with crafted fields. It is even possible to modify the

fields by subclassing when the targeted class is not final.

In component-based platforms, each component uses a

different ClassLoader that knows only classes from the

JDK, from the component and from imported packages.

Therefore, a malicious component can only modify the

static fields from packages exported by other compo-

nents. From a static analysis point of view, all static

fields from exported packages should be considered as

corruptible.

All objects from third-party components are

untrusted. As other components can be malicious, ob-

jects provided by external sources are untrusted. All im-

ported packages but JDK and framework packages are

provided by other components and are therefore un-

trusted. Moreover, parameters coming from registered

services are forged and instantiated by others and can

be crafted to alter the behavior of the component. Any

of those objects that can be injected by external com-

ponents has to be considered as untrusted.

Moreover, the component-based programming model

approach brings a significant difference with past work

on vulnerability detection for Java applications, as it

is possible to execute unknown code, provided by un-

trusted or unknown components. For example, when

Livshits et al. [8] detect potential SQL injections, they

follow the propagation of corrupted Strings throughout

a sample program. In Java, Strings are final objects,

therefore their methods cannot get modified. At the op-

posite, we are considering potentially non-final objects

forged by malicious components on the same platform.

When analyzing a single component, those refer-

ences to third-party objects and code cannot be an-



Static Vulnerability Detection in Java Service-Oriented Components 7

alyzed. This does not compromise static analysis but

rather simplifies it. Indeed, if untrusted code gets exe-

cuted, it can only influence its parameters and the re-

turn value. As Java passes parameters by value and as

any object is a pointer, modifying an entire parameter

does not have any repercussion in the calling context.

However, there are several ways to modify the fields of

a parameter within a method: subclassing, cast, or de-

serialization [6]. The return value and the fields of the

parameters can therefore always be considered as un-

trusted when calling an untrusted method. Therefore,

while analyzing a component, any untrusted reference

can be treated the same way, and a worst case assumed.

4.1.2 Security Analysis Concerns

The security analysis of a service-oriented application

brings new challenges to be addressed: the order of ser-

vice calls and the existence of mitigation techniques.

Service calls are subject to race conditions.

A particular problem of service-oriented architectures is

the existence of race conditions. In our case, race condi-

tions happen when an untrusted object is introduced in

a particular service call, stored as a field in any object

and used as a sink in another service call. Race con-

ditions can therefore miss tainted sinks if service calls

are analyzed independently. Our approach to solve race

conditions is to keep track of which method has been

analyzed in which particular taint context. The taint

context means the effective taint of the parameters and

any related field accessed within the method. Each ser-

vice call is analyzed independently, while keeping track

of the taint context for each method call. Then, each

service call is reanalyzed if the taint context is different

from the original context in the first analysis.

Object-oriented sanitization is irrelevant. With

any security analysis comes the problem of sanitiza-

tion. Sanitizations are runtime checks within the com-

ponents performed to ensure the safety of a particular

object. If the object is unsafe, it is sanitized and gets

a default, harmless value to protect the execution. Se-

curity analyses have to detect such code to avoid re-

porting false positives. Most sanitization cases do not

differ from classical range value analyses. However, our

particular analysis needs to keep track of whole objects

controlled by the attacker. Therefore, a relevant real-

time sanitization would suppose that the programmer

checks for the actual class of the object and perform

special actions for irrelevant classes.

We label such sanitizations as object-oriented and

give an example in Alg. 3. In this algorithm, the method

doCheck returns true if the list passed as a parameter

is an instance of java.util.ArrayList, or false otherwise.

public boolean doCheck(ArrayList list){ 1

String toCheck = list.getClass(); 2

String expect = "java.util.ArrayList" ; 3

4

return toCheck.equals(expect); 5

} 6

Alg. 3: Sanitization of an ArrayList Object

If this list is a crafted extension of ArrayList, the

check fails. However, this kind of code is clearly not in

line with Java ideology. A good Java programmer would

provide its own final extension of the ArrayList class

and use only instances of this new class whose methods

can be trusted. Therefore, object-oriented sanitization

seems an irrelevant effort and does not need particular

attention.

In a service-oriented architecture, untrusted code

and objects are easily identified. Moreover, missing code

and objects do not need to be analyzed, as they are al-

ways untrusted and therefore the worst case can always

be assumed in terms of security. It is also possible to

handle race conditions between service calls by keeping

and updating the actual trust level of shared objects.

Finally, one may note that vulnerability mitigation by

object sanitization is very unlikely and not conform to

Java principles.

4.2 Tainted Object Propagation for Service-oriented

Components

Specificities from the Java programming language and

service-oriented architectures reduce the attack surface

and limit the ways corrupted data propagates through-

out a program. In terms of tainted object propagation,

they provide generic and precise taint sources and taint

propagators for Java service-oriented components. Only

sinks have to be specified differently for each vulnera-

bility family.

4.2.1 A Generic Taint Sources Definition

As stated in 4.1.1, the component isolation in OSGi

does not allow access to the private, non-exported classes

of other components. Exported classed are however at

risk. If a component exports a package, public static

fields can be directly modified by any component im-

porting this package. Moreover, private static fields can

also be modified via malicious subclassing, deserializa-

tion or cast. Objects declared or controlled by untrusted

imported packages constitute a threat, as their inter-

nal state and the associated methods are controlled by



8 François Goichon et al.

the untrusted package provider. With the addition of

service parameters that can be provided by untrusted

components, we have the list of taint sources for one

specific component, which are all objects that can be

directly modified by untrusted third-party code:

– registered services parameters

– objects from untrusted imported packages

– static fields from exported packages

For most OSGi components, we consider every pack-

age of the framework and classical JDK packages as

trusted, which is the case with Java application servers

or Java applets. We do not consider the additional taint

sources represented by the trusted system resources that

can be manipulated by malicious components, such as

files. While those third-party resources can actually in-

ject tainted values in code, they cannot inject tainted

objects with arbitrary methods. However, if a weak

component uses tainted data such as a filename to ma-

nipulate third-party resources, the resulting object is

accordingly tainted.

4.2.2 A Generic Taint Propagators Specification

The Java language greatly reduces the taint propaga-

tion vectors, as it does not allow explicit memory man-

agement. Only three operations can propagate the taint

from one object to another. Those propagators are il-

lustrated in Alg. 4.

– execution of untrusted code (lines 4 and 9)

– assignments (lines 7 and 8)

– arithmetics (lines 12 and 13)

1 import untrustedpackage.Untrusted;

2

3 class A(){

4 void method(Trusted trusted1, int iUntrusted){

5 Untrusted untrusted = new Untrusted();

6 Trusted trusted2 = new Trusted();

7 trusted1 = untrusted;

8 trusted1 = untrusted.field;

9 trusted1 = untrusted.uMethod(trusted2);

10

11 int iTrusted;

12 iTrusted = 1 + iUntrusted;

13 iTrusted = -iUntrusted;

14 }

15 }

Alg. 4: Taint Propagators examples

In instructions at lines 4, 7, 8, 9, 12 and 13, a tainted

value is propagated. If a class from an imported package

is instantiated, then its fields and associated methods

are controlled by untrusted code. Of course, assignment

instructions propagate the taint of a value and the fields

of an untrusted object are untrusted. The execution

of untrusted code also propagates the taint. If an un-

trusted method is executed, the fields of all parameters

may be replaced and are therefore tainted. Moreover,

the returned object is also controlled by the attacker.

4.2.3 A Specific Sink Specification

Therefore, a service-oriented tainted object propagation

on Java components just have to specify the sinks for

each single vulnerability class. Finding the right set of

sinks is a human expert task and we therefore did not

aim at providing the best sinks specifications for the

targeted vulnerabilities. The most important part for us

is to have reliable sinks that can assess the vulnerability

detection of a specific vulnerability. Nevertheless, we

describe in this section the method we used to find sinks

for a sample vulnerability: the synchronized denial of

service.

General Method. First of all, the expert has to

identify the specificities that distinguish vulnerable and

regular code. All possible ways for a developer to bring

these specificities into its code are the exploitation vec-

tors. Those exploitation vectors can come from different

layers in the OSGi model:

– The Java language, restricted to its regular set of

bytecode instructions.

– The standard Java library, which includes features

common to all code running on the platform. This

set is restricted to the packages loaded by the initial

ClassLoader such as packages from java.lang.

– The OSGi Framework, which manages components

and provides facilities to register and use services.

– Third-party code, which includes other components,

or packages exported by these components. This

third-party code is likely to be untrusted and to

constitute a threat source.

The analyst has to look whether one of these lay-

ers can bring one or more exploitation vectors that can

be used by untrusted code to exploit the vulnerabil-

ity. When these particular methods or instructions are

found, the last step is to determine which objects linked

to each of those exploitation vectors must be corrupted

for the exploitation to be possible. Those objects will

constitute the sinks set.

Application to the Synchronized Denial of

Service Case. In the case of the synchronized denial of

service vulnerability, the specificity of vulnerable code

is simple to determine: it is the fact that any code called



Static Vulnerability Detection in Java Service-Oriented Components 9

in synchronized context never returns to the caller. We

then go through the different layers of code that can

be used in the component, to find which exploitation

vectors could never return to the caller:

– The Java language. Loops can never return back to

the caller. In Alg. 1, if the hasNext method always

returns true, the while condition is always true and

indefinitely loops.

– The standard Java library. A method that throws

InterruptedException can block on I/O operations

and never return back to the caller. Moreover, the

Java standard library brings reflection, that can be

used to call any method. This method can be a

blocking one, or an ill-coded method that never re-

turn to the caller.

– The OSGi Framework. The OSGi framework does

not bring any exploitation vector.

– Third-party code. Any untrusted method call from

third-party code can block or never return to the

caller, as shown in Alg. 2.

We then list how an attacker could influence the ob-

jects associated with each of the exploitation vectors to

find the sinks list. The loops can block if their condi-

tion variable is controlled by the attacker. Therefore,

the goto conditions in Java Bytecode should not get

corrupted and are sinks. Methods that throw Interrupt-

edException are known to block - most I/O operations

throw this exception. A precise sink specification would

have to determine, for each of these methods, which pa-

rameters can influence the blocking operations. We con-

sidered here that each parameter of these methods are
dangerous and are therefore sinks. Corrupted reflection

calls are always an issue in Java. If the attacker con-

trols the parameters of a call to a reflection API, it can

execute any method and hijack the execution flow. Exe-

cuting untrusted code in synchronized context is a risk,

as untrusted code may block itself. Therefore, any ob-

ject executing an untrusted method is a sink. Untrusted

methods are either calls to external untrusted packages,

or calls to methods from trusted packages that can be

overridden.

Here is the list of sinks to follow for this particular

vulnerability:

– The Java language. goto conditions when the code

can loop.

– The standard Java library. Parameters from meth-

ods that throw InterruptedException and parame-

ters from reflection calls.

– The OSGi Framework. The OSGi framework does

not bring any sink.

– Third-party code. Any object executing a method

from an untrusted package or a non-final method

from a non-final class from a trusted package.

We defined sinks for each vulnerability to detect in

the same fashion. Those specifications represent simple

predicates on variables and objects and can easily be

identified by a static analysis tool. We provide more

details on the underlying implementation of sink spec-

ification in section 5.1.

5 STOP

STOP is a Service-oriented Tainted Object Propagation

tool, which implements the analysis technique described

in the previous section. STOP performs a summary-

based points-to analysis to extract points-to relations

and propagates the taint on-the-fly. It has been evalu-

ated on several proof of concept components and com-

ponents from the open-source OSGi project Apache Fe-

lix3.

5.1 STOP Overview

Fig. 5: STOP Overview

STOP is a vulnerability detection tool of roughly

4,000 lines of code that searches an OSGi bundle for one

or several vulnerability types. STOP is implemented on

top of Soot, a popular extensible framework to perform

and implement various analyses and optimizations on

Java code. It transforms Java source files or Java Byte-

code to much simpler representations that keep the se-

mantics while restricting the set of instructions. The

most used representation within Soot is Jimple [25], a

3 http://felix.apache.org/



10 François Goichon et al.

simple 3-adresses register-based ISA which uses only

15 instructions, instead of the more than 200 in normal

Java Bytecode. In STOP, Soot transforms class files to

Jimple and performs a class hierarchy analysis.

Fig. 5 provides an overview of the application ar-

chitecture. The Method Analysis Manager is STOP’s

core as it keeps track of context sensitivity and control

flow, and orchestrates the other modules. STOP injects

a crafted main class containing subcalls to each of the

public service method in the component. This dummy

main class serves as an entry point for the analysis.

In the next paragraphs, we explain in further depth

two modules, specific to our summary-based, service-

oriented tainted object propagation.

The SinkRetriever. The SinkRetriever maintains

a list of sink analyzers. Each sink analyzer is the im-

plementation of a particular sink specification. Alg. 6 is

the formal definition of sink analyzers.

1 public interface ISinkAnalyzer{

2 Set<Sink> analyzeStatement(Unit statement);

3 void enterMethod(SootMethod method);

4 void exitMethod(SootMethod method);

5 }

Alg. 6: Sink analyzer formal definition

The callbacks enterMethod and exitMethod provide

relevant information about the method and the cur-

rent stack trace. The actual sink detection happens in

the method analyzeStatement, which returns any sink

found in a particular statement. Simple checks can be

performed to detect whether a variable in the statement

matches a sink definition. Sink analyzers are currently

hardcoded for each vulnerability family but could be de-

scribed in a specific descriptive language like PQL [26].

Sink analyzers can be activated or deactivated depend-

ing on the targeted vulnerabilities.

The Summarizer. STOP provides a summary-based

context-sensitivity. The summary-based technique adapts

well to analyses needing to keep only a small amount

of data from each different method. In STOP, the Sum-

marizer reduces the information stored for one method

to the minimum needed for further evaluation of the ac-

tual objects taint. The summary produced keeps track

of relationships between input variables, from which

the taint may flow into the method, to output vari-

ables, such as sinks and variables used in other meth-

ods. Therefore, STOP easily deduces the actual taint

of a method’s output variables from its summary and

the initial taint of input variables.

Fortunately, relevant input and output variables are

quite limited. For any method, the input variables are

the fields of the instance if the method is not static,

the output variables of subcalls and the internal taint

sources if any. Output variables are the fields of the

instance object if the method is not static, the param-

eters’ fields, the returned values and the internal sinks

if any.

Keeping only relationships between those variables

considerably reduces the amount of data needed in mem-

ory compared to analyses needing the whole pointer as-

signment graph. To optimize its analysis, STOP skips

methods that don’t have any tainted value within their

input variables. This particular heuristic can generate

false negatives as a very deep taint source, such as a cor-

rupted static field, could be missed. However, as STOP

is highly configurable, this mode can be disabled and

one can force a full analysis. Our practical experiments

showed that disabling this heuristic divides the analysis

time by a coefficient between 3 and 5. On the several

real life components we tested, no such false positives

were found. Therefore, this heuristic allows a fast anal-

ysis while ensuring a good threat coverage.

5.2 Experimental Results

5.2.1 Benchmark Evaluation

The benchmark suite used to validate STOP contains

four vulnerable proof of concept bundles, as well as 3

different OSGi bundles coming from the Apache Felix

project.

The proof of concept bundles provide basic vulnera-

bilities implementations. Those bundles are lightweight

but can assess that simple vulnerability implementa-

tions are indeed detected. The lifecycle violation a very

common vulnerability which happens when trusted code

allows internal untrusted code execution. Synchronized

vulnerabilities detailed in section 2.2 are a subset of

lifecycle violations. Restricted APIs gateway happens

when a privileged bundle elevates its privileges to ac-

cess restricted APIs with untrusted data. Privileged De-

serialization is an uncommon yet critical vulnerability

that happens when untrusted objects are deserialized

in privileged context. Those vulnerabilities allow un-

trusted code to respectively prevent vulnerable com-

ponents uninstallation, deny vulnerable services, try to

exploit access to native APIs or escalate privileges, dis-

regarding the actual security policy [6]. We also pick

three interesting bundles from the Apache Felix project,

since each of them has a special characteristic that can

make it complex to analyze. The Apache Felix Bundle



Static Vulnerability Detection in Java Service-Oriented Components 11

Bundle
Lines

of
Code

Attack
Surface -

Public Service
Methods

Complexity -
Internal

Method Calls

1
Life Cycle

Bundle
70 1 126,655

2
Restricted

APIs
Bundle

145 3 123,105

3
Synchronized
DoS Bundle

109 3 108,925

4
Privileged

Deserializer
201 1 104,351

5

Apache
Felix
Web

Console
3.1.8

10,482 14 375,981

6

Apache
Felix

Bundle
Repository

1.6.4

5,735 25 493,786

7
Apache

Felix Shell
1.4.2

2,782 87 234,786

Table 2: Benchmark information

Repository relies on a lot of external libraries which im-

plies a high complexity, as shown by the number of calls

encountered by a sample STOP analysis. The Apache

Felix Web Console has more than 11,000 lines of code,

which is a lot for a single component. The Apache Fe-

lix Shell has a lot of registered services and therefore a

high attack surface to cover.

Table 2 provides more information on those bundles.

STOP has been tested on a computer having a 2.10 GHz

processor and 4 GB of memory, with Soot 2.4.0 and Sun

JDK 1.6.0 23.

5.2.2 Performance

Memory usage and time spent while analyzing are the

keys to evaluate a static analysis tool. We evaluated

STOP’s performance on the different bundles presented

in table 2. Fig. 7 contains the results of this study.

Each bundle has been analyzed for all 4 vulnerabilities,

with the analyzer considering that a Security Manager

is used in the application environment and therefore

tracking for each call whether the context is privileged

or not.

The time needed to analyze components is a mat-

ter of minutes, even for complex components such as

the Apache Felix Bundle Repository which has been

analyzed in 160 seconds. We can also observe a lin-

ear relationship between the number of method calls

(a) Analysis Time and Subcalls Correlation

(b) Memory Usage and Summaries Creation Correla-
tion

Fig. 7: Relations between Analysis Time and Memory

Usage with Components Complexity

encountered during the analysis and the analysis du-

ration. This observation is supported by Fig. 7a that

shows an acceptable linear regression with a correlation

coefficient of 0.96. We therefore assume that the time

spent in the analysis does not explode with the com-

plexity of the component, as it seems to follow a linear

relationship of the number of subcalls to analyze.

We observe in Fig. 7b that the number of sum-

maries created does not vary heavily from one compo-

nent to another, even if the size and complexity of the

studied components are very different. This is mainly

because the classes of the Java Standard Library are

strongly connected. When analyzing one method, lots of

other classes and methods have to be processed as well.

Therefore, summarizing methods seems a good option

as it levels the memory usage needed for the different

components.

We see that the maximum memory usage for the

most complex component is approximately 360 MB,

which is quite low compared to the nowadays com-

mon hardware configurations. From our experimenta-

tions, the cloning-based context-sensitive technique de-

veloped by Whaley et al. [24] requires several GB of

memory with recent JDKs. The refinement-based tech-

nique [23] requires around ten times less memory than



12 François Goichon et al.

Bundle
Lifecycle

Viola-
tions

Restricted
APIs

Gateway

Synchronized
DoS

Privileged
Deserializa-

tion
1-4 1 1 1 1
5 5 0 2 0
6 13 1 10 0
7 41 0 18 0

Table 3: Vulnerabilities Found

our approach but does not seem a valid option as we

do not know where sinks are located before the analysis

starts. Fig. 7b supports that the memory usage evolves

roughly with the number of summaries needed, which

seems normal as summaries are the biggest data struc-

ture maintained in STOP.

5.2.3 Vulnerability Detection

STOP implements a default vulnerability specification

for the 4 vulnerabilities of the proof of concept bundles.

Table 3 shows the results of the vulnerability detection

for each studied bundle. The proof of concept bundles

have only been audited for their related vulnerability.

For each pair studied bundle/detected vulnerability, we

report the number of different instances found.

We first observe that the vulnerability detection for

the proof of concept bundles works, as each time the

sample vulnerability injected is indeed detected. We

successfully verified that the highlighted sinks were in-

deed signatures of the vulnerabilities introduced on pur-

pose. Vulnerabilities can also be found in all Apache

Felix bundles. We manually assessed the correctness

of the detection and found no false positives. We were

however not able to assess whether the analysis missed

vulnerabilities, as the whole JDK should be reviewed.

As expected, table 3 demonstrates that vulnerabilities

allowing to bypass security layers, such as the privileged

deserialization and the uncontrolled access, do not seem

to represent a common exposure of real life components.

Unfortunately, the lack of past work on component-

related vulnerabilities does not allow us to compare

the accuracy of our vulnerability detection with oth-

ers techniques, in terms of false negatives essentially.

The only relevant tool, WCA [17], is not able to find

our targeted vulnerabilities, as it uses simple pattern

matching.

We noted that, even if the vulnerabilities signatures

are different, most vulnerabilities break the same set of

high-level best practices for components security. For

example, all components execute methods from untrusted

objects that can alter their life cycle and quality of ser-

vice. It is not surprising to find instances of such vulner-

abilities, as safe code interaction is not a prerequisite in

Java and service-oriented ideologies. For example, any

component can always call System.exit(0) to exit the

whole platform.

From those vulnerability reports, we developed proof

of concept bundles that can successfully exploit vul-

nerabilities in these Apache Felix bundles. For further

details, the reader may refer to our recent technical re-

port [6] containing exploit examples in each Apache Fe-

lix bundle analyzed.

6 Conclusion

The emergence of extensible component-based platforms

brings up new security challenges, mainly due to com-

ponents interactions via services. These issues that al-

ready existed in classical Java applications are empha-

sized by the platforms dynamics and the fact that un-

trusted code can be automatically installed. Recent ac-

knowledgment from the Google Mobile Team that ma-

licious software could be downloaded from their offi-

cial Android Market [1] proves that in such environ-

ments, components have to protect themselves from an

untrusted environment. To protect those components

and automatically detect components vulnerabilities,

a static analysis through tainted object propagation

seems a promising approach.

We proposed a service-oriented tainted object prop-

agation mechanism, that takes advantage of the design

of service-oriented platforms and the specificities of the

Java programming language to detect those vulnera-

bilities. We also evaluated the most promising tech-

niques to perform a points-to analysis as a basis of our

tainted object propagation. We found that a summary-

based implementation is a good basis to build a service-

oriented tainted object propagation.

We specified some core vulnerabilities in terms of

tainted object propagation and were able to detect vul-

nerabilities on several Apache Felix components. The

fact that we found vulnerabilities in those components

is not surprising but rather illustrates the tradeoff be-

tween tight control and dynamics in programs. Java

service-oriented components try to use generic and dy-

namic code at its maximum potential and necessarily

give up essential controls in terms of security. Writing

a secure Java component is still feasible, but brings too

many constraints for most developers.

We were not able to study the existence of missed

vulnerabilities, as manually auditing the whole JDK

is very time-consuming. This would allow to complete

our observation regarding the accuracy and the lim-

its of such a vulnerability specification. Further work



Static Vulnerability Detection in Java Service-Oriented Components 13

on STOP should also focus on currently missing fea-

tures such as reflection calls, uncommon native methods

and untrusted data from the filesystem and databases.

We also observed that most vulnerabilities have a lot

of sinks in common. Therefore, studying programming

best practices that prevent component vulnerabilities,

and performing tainted object propagation to spot bad

practices, can be a promising approach.

Acknowledgments

We would like to thank the anonymous reviewers for

their detailed discussions, Yvan Royon from Alcatel Lu-

cent for his knowledge and accurate criticism, Cédric

Lauradoux for his constructive and complete reviews

and the whole Amazones team for providing us a con-

vivial and productive working environment. This arti-

cle is granted by the LISE (Liability Issues in Software

Engineering) project, funded by the ANR (Agence Na-

tionale de la Recherche) under the SeSur 2007 program

(ANR-07-SESU-007).

References

1. Google Mobile Team. An update on Android Market
security.

2. O.S.G.i. Alliance. OSGi service platform core specifica-
tions.

3. JSR 118 Expert Group. MIDP 2.0, Sun specification, 2002.
4. Almut Herzog and Nahid Shahmehri. Problems running

untrusted services as Java threads. In Certification and

Security in Inter-Organizational E-Services, volume 177,
pages 19–32. Springer Boston, 2005.

5. Pierre Parrend and Stéphane Frénot. More vulnerabili-
ties in the Java/OSGi platform: a focus on bundle inter-
actions. Research Report RR-6649, INRIA, 2008.

6. François Goichon and Stéphane Frénot. Exploiting Java
code interactions. Technical Report RT-0419, INRIA,
2011.

7. Rain Forest Puppy. NT web technology vulnerabilities.
Phrack, 54, 1998.

8. V. Benjamin Livshits and Monica S. Lam. Finding secu-
rity vulnerabilities in Java applications with static anal-
ysis. In SSYM’05: Proceedings of the 14th conference on
USENIX Security Symposium, pages 18–18, Berkeley, CA,
USA, 2005. USENIX Association.

9. Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Srid-
haran, and Omri Weisman. TAJ: effective taint analy-
sis of web applications. In PLDI ’09: Proceedings of the
2009 ACM SIGPLAN conference on Programming language
design and implementation, pages 87–97, New York, NY,
USA, 2009. ACM.

10. Liu Yin and Milanova Ana. Static information flow anal-
ysis for Java. Technical report, Rensselaer Polytechnic
Institute, 2008.

11. William G. J. Halfond and Alessandro Orso. AMNESIA:
analysis and monitoring for neutralizing SQL-injection
attacks. In ASE ’05: Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineer-
ing, pages 174–183, New York, NY, USA, 2005. ACM.

12. Sun Microsystems Inc. Java Security Architecture Specifi-
cations, 2002.

13. Almut Herzog. Performance of the Java security man-
ager. Computers & Security, 24(3):192–207, 2005.

14. Ollie Whitehouse. Analysis of GS protections in Mi-
crosoft Windows Vista. Technical report, Symantec Ad-
vanced Threat Research, 2006.

15. Vivek Haldar, Deepak Chandra, and Michael Franz. Dy-
namic taint propagation for Java. In ACSAC ’05: Pro-
ceedings of the 21st Annual Computer Security Applications

Conference, pages 303–311, Washington, DC, USA, 2005.
IEEE Computer Society.

16. M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav. A
survey of static analysis methods for identifying secu-
rity vulnerabilities in software systems. IBM Syst. J.,
46(2):265–288, 2007.

17. Pierre Parrend. Enhancing automated detection of vul-
nerabilities in Java components. In AReS ’09: Fourth In-
ternational Conference on Availability, Reliability and Se-

curity, Fukuoka, Japan, 2009.
18. Marco Avvenuti, Cinzia Bernardeschi, and Nicoletta

De Francesco. Java bytecode verification for secure in-
formation flow. SIGPLAN Not., 38(12):20–27, 2003.

19. Monica S. Lam, John Whaley, V. Benjamin Livshits,
Michael C. Martin, Dzintars Avots, Michael Carbin, and
Christopher Unkel. Context-sensitive program analy-
sis as database queries. In PODS ’05: Proceedings of

the twenty-fourth ACM SIGMOD-SIGACT-SIGART sym-

posium on Principles of database systems, pages 1–12, New
York, NY, USA, 2005. ACM.

20. Ondřej Lhoták and Laurie Hendren. Context-sensitive
points-to analysis: is it worth it? Technical report, McGill
University, Sable Research Group, 2005.

21. John Whaley and Martin Rinard. Compositional pointer
and escape analysis for Java programs. SIGPLAN Not.,
34(10):187–206, 1999.

22. Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise
interprocedural dataflow analysis via graph reachability.
In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-

SIGACT symposium on Principles of programming lan-
guages, pages 49–61, New York, NY, USA, 1995. ACM.

23. Manu Sridharan and Rastislav Bod́ık. Refinement-based
context-sensitive points-to analysis for Java. SIGPLAN
Not., 41(6):387–400, 2006.

24. John Whaley and Monica S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary deci-
sion diagrams. SIGPLAN Not., 39(6):131–144, 2004.

25. Ondřej Lhoták and Laurie Hendren. Scaling Java points-
to analysis using Spark. In CC ’03: Proceedings of the
12th International Conference on Compiler Construction,
volume 2622 of LNCS, pages 153–169, Warsaw, Poland,
April 2003. Springer.

26. Michael Martin, Benjamin Livshits, and Monica S. Lam.
Finding application errors and security flaws using PQL:
a program query language. In OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications,
pages 365–383, New York, NY, USA, 2005. ACM.


	Introduction
	Context
	Related Work
	Service-oriented Tainted Object Propagation for Java
	STOP
	Conclusion

