
A study of entropy transfers
in the Linux Random Number Generator

Th. Vuillemin, F. Goichon, G. Salagnac, C. Lauradoux

1

The need for random numbers

Computers are built to be fully deterministic...

...but unpredictability is still required
Cryptography
Security
Randomized algorithms
Scheduling
Networking

2

Random numbers a an OS resource

LRNG : Linux Random Number Generator
Service provided by the OS kernel
Shared among several (non-privileged) users
/dev/random and /dev/urandom

Essential for security-oriented software (SSH, SSL/TLS)

Depends on system entropy
Prone to entropy shortages⇒ RNG stalls
May have negative impact on application performance

3

Motivating example

0 200 400 600 800 1000
Time

0

5

10

15

20

25

30

35

Re
qu

es
t c

om
pl

et
io

n
tim

e
(s

ec
on

d)

Response time of /dev/random for 1000 one-byte requests.
Average 264 ms. Standard deviation 1.68 s.

4

Questions

What is entropy anyway ?
Why does the LRNG need it ?
How to explain such variability in response time ?

Inria Research Report 8060 http://hal.inria.fr/hal-00738638
5

http://hal.inria.fr/hal-00738638

Agenda

1 Introduction

2 Random Number Generation

3 The Linux RNG

4 Experiments

5 Conclusion and perspectives

6

Desirable properties of “random” numbers

X ,Y random variables e.g. the result of rolling a die
Ω sample space e.g. {1,2,3,4,5,6}
X = P(Ω) event space e.g. X ∈ {2,4,6}

I {Pr(i)}i∈X probability law

Uniform distribution

∀x ∈ Ω Pr(X = x) =
1

card(Ω)

Statistical independence

∀x , y ∈ Ω Pr(X = x |Y = y) = Pr(X = x)

7

Measuring randomness

Shannon Entropy

H(X) = −
∑
∀i∈X

Pr(X = i) log2 Pr(X = i).

expresses the “amount of uncertainty” contained in X
I “how much information do I gain by looking at X ”

Caveat Emptor
Other entropy measures exist (e.g. Kolmogorov complexity)
If we don’t know Pr , we cannot directly apply the formula
Entropy estimation is a very active research topic

8

Different types of generators

A Random Number Generator is a computer program imitating
the behaviour of a random variable

PRNG : Pseudo Random Number Generator
CSPRNG : Cryptographically Secure Random Number Gen.

HRNG : Hardware Random Number Generator
TRNG : True Random Number Generator

9

Deterministic generators

PRNG : Pseudo-Random Number Generator
finite-state machine
transition function : updates internal state
output function : produces actual numbers
seed : initial internal state

I (hopefully) good statistical properties

CSPRNG : Cryptographically Secure PRNG

I A PRNG with stronger statistical properties (periodicity...)

10

Security issues

Threat model
What if an attacker guesses the internal state ?
I they can predict every future output of the RNG !

Solutions
choose the output function such that it’s hard to reverse

... or just don’t be deterministic

11

Non-deterministic generators

HRNG : Hardware Random Number Generator
Based on some physical phenomenon

really unpredictable, but often biased
limited by the througput of the entropy source

TRNG : True Random Number Generator
Pseudo-Random Number Generator
internal state reseeded with entropy sources

12

Agenda

1 Introduction

2 Random Number Generation

3 The Linux RNG

4 Experiments

5 Conclusion and perspectives

13

The Linux RNG

Authors
Theodore Ts’o (1994–2005, 2012–now)
Matt Mackall (2005–2012)

TRNG architecture
uses a CSPRNG to produce numbers

internal state : 6Kb
output function : a variant of md5

uses system events as entropy sources
opportunistic reseeding
hypothesis : inter-event timing is unpredictable

tries to keep internal state hard to guess for an attacker
tracks the entropy level of state over time

14

Architecture

Souris

Clavier

Disque dur

/dev/random

/dev/urandom

Input Pool

get_random_bytes()

Blocking Pool

Non-blocking
Pool

LRNG

15

Output interfaces

/dev/random

comsumes entropy
in case of shortage→ requests put on hold

/dev/urandom

consumes entropy
in case of shortage→ PRNG

get_random_bytes()

kernel function
consumes entropy
in case of shortage→ PRNG

16

Entropy pools (internal state of the PRNGs)

Blocking pool

1Kb bitfield + entropy counter
supplies data for /dev/random

Non-blocking pool

1Kb bitfield + entropy counter
supplies data for /dev/urandom and get_random_bytes()

Input pool
4Kb bitfield + entropy counter
supplies data for the two other pools
refilled by opportunistically sampling entropy sources

17

Entropy sources

Callback functions exported by the LRNG to harvest entropy :

add_disk_randomness()

Hard drive events

add_input_randomness()

UI events : keyboard, mouse, trackpad

add_interrupt_randomness()

Other hardware events : USB, device drivers

add_network_randomness() removed, deemed too vulnerable

18

Architecture

Souris

Clavier

Disque dur

/dev/random

/dev/urandom

Input Pool

get_random_bytes()

Blocking Pool

Non-blocking
Pool

LRNG

19

The need for entropy estimation

What if an attacker controls all the callbacks ?
What if hardware events happen to be predictable ?

Not all system events carry uncertainty
Let’s try to assess randomness

I We need an entropy estimator !

20

The LRNG entropy estimator : detecting regularities

δi = ti − ti−1

δ2
i = δi − δi−1

δ3
i = δ2

i − δ2
i−1

∆i = min(|δi |, |δ2
i |, |δ3

i |)

Hi =


0 if ∆i < 2
11 if ∆i ≥ 212

blog2(∆i)c otherwise

21

Example

Time 1004 1012 1024 1025 1030 1041

1st diff 8 12 1 5 11

2nd diff 4 11 4 6

3rd diff 7 7 2

H(1041) = 1, H(1030) = 2, H(1025) = 0

22

Agenda

1 Introduction

2 Random Number Generation

3 The Linux RNG

4 Experiments

5 Conclusion and perspectives

23

Architecture

Souris

Clavier

Disque dur

/dev/random

/dev/urandom

Input Pool

get_random_bytes()

Blocking Pool

Non-blocking
Pool

LRNG

24

Experimental setup

Prototype
use a kernel debugger ?→ would kill timing
use printk() ?→ would generate disk events !

I instrument the LRNG itself (callbacks + output functions)
use the netpoll API to send out UDP packets

Studied scenarios
Desktop workstation : web surfing, word processing
File server : large file transfer
Computation : CPU-intensive program only

each experiment : one hour long

25

Entropy harvesting

28%

34%

2% 35%

disk
mouse
generic_input
keyboard

(a) Workstation

100%

(b) File server

100%

(c) Computation

26

Entropy extraction

52%

48% get_random_bytes()

/dev/urandom

(d) Workstation

80%

20%

(e) File server

100%

(f) Computation

27

Entropy consumers : Workstation

46%

26%

21%

2%
5%

[K] load_elf_binary()
[U] svn
[U] chromium-browse
[U] php5
Others

28

Entropy consumers : File server

72%

15%

5%
2%

6%

[K] load_elf_binary()
[U] php5
[K] inet_frag_secret_reb...
[U] apache2
Others

29

Entropy consumers : Computation

95%
5%

[K] load_elf_binary()
[K] inet_frag_secret_rebuild()

30

Entropy level in the input pool

31

Summary of experimental results

only major entropy source : the hard drive

/dev/random never used in practice
blocking read() considered too problematic by developers
doesn’t even exist in other kernels (BSD)
security-oriented applications have their own CSPRNG
people believe that « there will soon be entropy » (true ?)

major entropy consumer : the kernel itself
via get_random_bytes()

mostly for load_elf_binary() (i.e. ASLR)

32

Conclusions and perspectives

Summary
Study of the architecture of the LRNG
Measures of entropy transfers
Study of entropy consumers
see [Inria RR 8060] http://hal.inria.fr/hal-00738638

Perspectives
Port experiments to diskless devices

Android phone, set-top box, SSD-based laptop
Entropy will be scarce

Come up with new sources of entropy in the system
portability ?
availability ?

33

http://hal.inria.fr/hal-00738638

	Introduction
	Random Number Generation
	The Linux RNG
	Experiments
	Conclusion and perspectives

