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int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.




The need for random numbers

Computers are built to be fully deterministic...

@ Cryptography

@ Security

@ Randomized algorithms
@ Scheduling

@ Networking




Random numbers a an OS resource

LRBNG : Linux Random Number Generator

@ Service provided by the OS kernel

@ Shared among several (non-privileged) users

@ /dev/random and /dev/urandom

@ Essential for security-oriented software (SSH, SSL/TLS)

Depends on system entropy

@ Prone to entropy shortages = RNG stalls
@ May have negative impact on application performance




Motivating example

35

301
25
20
15f
10f
5l

O0 200 400 600 800 1000

Time

Request completion time (second)

Response time of /dev/random for 1000 one-byte requests.
Average 264 ms. Standard deviation 1.68 s.



Questions

@ What is entropy anyway ?
@ Why does the LRNG need it ?
@ How to explain such variability in response time ?
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Desirable properties of “random” numbers

@ X, Y random variables e.g. the result of rolling a die
@ Q sample space e.g.{1,2,3,4,5,6}
@ X =P(Q) event space e.g. X € {2,4,6}

» {Pr(i)}icx probability law

Uniform distribution
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V.

Statistical independence

Vx,y €Q Pr(X =x|Y =y) = Pr(X = x)

A\




Measuring randomness

Shannon Entropy
— Y Pr(X =i)log, Pr(X = i).

Viex

@ expresses the “amount of uncertainty” contained in X
» “how much information do | gain by looking at X”
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Caveat Emptor

@ Other entropy measures exist (e.g. Kolmogorov complexity)
@ If we don’t know Pr, we cannot directly apply the formula
@ Entropy estimation is a very active research topic




Different types of generators

A Random Number Generator is a computer program imitating
the behaviour of a random variable

PRNG : Pseudo Random Number Generator

CSPRNG : Cryptographically Secure Random Number Gen.
HRNG : Hardware Random Number Generator
TRNG : True Random Number Generator



Deterministic generators

PRNG : Pseudo-Random Number Generator

@ finite-state machine

@ transition function : updates internal state
@ output function : produces actual numbers
@ seed : initial internal state

» (hopefully) good statistical properties

CSPRNG : Cryptographically Secure PRNG

» A PRNG with stronger statistical properties (periodicity...)




Security issues

Threat model

What if an attacker guesses the internal state ?
» they can predict every future output of the RNG !

@ choose the output function such that it's hard to reverse

@ ... or just don’t be deterministic




Non-deterministic generators

HRNG : Hardware Random Number Generator

Based on some physical phenomenon
@ really unpredictable, but often biased
@ limited by the througput of the entropy source

TRNG : True Random Number Generator
@ Pseudo-Random Number Generator

@ internal state reseeded with entropy sources




@ !ntroduction

© Random Number Generation
© The Linux RNG

e Experiments

e Conclusion and perspectives



The Linux RNG

@ Theodore Ts’o (1994—-2005, 2012—now)
@ Matt Mackall (2005-2012)

TRNG architecture

@ uses a CSPRNG to produce numbers

e internal state : 6Kb
e output function : a variant of md5

@ uses system events as entropy sources

@ opportunistic reseeding
e hypothesis : inter-event timing is unpredictable

@ tries to keep internal state hard to guess for an attacker
e tracks the entropy level of state over time
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Output interfaces

/dev/random
@ comsumes entropy
@ in case of shortage — requests put on hold

/dev/urandom
@ consumes entropy
@ in case of shortage — PRNG

| A

| \

get_random_bytes()
@ kernel function
@ consumes entropy
@ in case of shortage — PRNG




Entropy pools (internal state of the PRNGs)

Blocking pool

@ 1Kb bitfield + entropy counter
@ supplies data for /dev/random

<

Non-blocking pool

@ 1Kb bitfield + entropy counter
@ supplies data for /dev/urandom and get_random_bytes ()

Input pool

@ 4Kb bitfield + entropy counter
@ supplies data for the two other pools
@ refilled by opportunistically sampling entropy sources




Entropy sources

Callback functions exported by the LRNG to harvest entropy :

add_disk_randomness ()
Hard drive events

add_input_randomness()
Ul events : keyboard, mouse, trackpad

add_interrupt_randomness ()

Other hardware events : USB, device drivers

add_network_randomness () removed, deemed too vulnerable
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The need for entropy estimation

What if an attacker controls all the callbacks ?
What if hardware events happen to be predictable ?

Not all system events carry uncertainty

@ Let’s try to assess randomness
» We need an entropy estimator!
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The LRNG entropy estimator : detecting regularities

op = fi—tiy
62 = 6 —diq
§ = 7t

A = min(|6], 57, 1571)

0 ifA; <2
Hi={ 11 if A; > 212

| loga(A;) ] otherwise
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Time 1004 1012 1024 1025 1030 1041
1st diff 8 12 1 5 11

2nd diff 4 11 4 6

3rd diff 7 7 2

H(1041) = 1, H(1030) = 2, H(1025) = 0
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Experimental setup

@ use-akernel-debugger—? — would Kill timing

@ useprintkO—? — would generate disk events !

» instrument the LRNG itself (callbacks + output functions)
@ use the netpoll API to send out UDP packets

V.

Studied scenarios

@ Desktop workstation : web surfing, word processing
@ File server : large file transfer

@ Computation : CPU-intensive program only

each experiment : one hour long
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Entropy harvesting

M disk
‘ @ mouse
= [ generic_input
- @ O keyboard

(a) Workstation

(b) File server (c) Computation
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Entropy extraction

W get_random_bytes()
O /dev/urandom

(d) Workstation

(e) File server (f) Computation
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Entropy consumers : Workstation

@

W [K] load_elf_binary()
O [U] svn

O [U] chromium-browse
O [U] php5

E Others
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Entropy consumers : File server

W [K] load_elf_binary()

@ [U] php5

O [K] inet_frag_secret_reb. ..
O [U] apache2

B Others
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Entropy consumers : Computation

W [K] load_elf_binary()
O [K] inet_frag_secret_rebuild()
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Entropy level in the input pool

Input pool entropy level (bits)
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Summary of experimental results

@ only major entropy source : the hard drive

@ /dev/random never used in practice

blocking read () considered too problematic by developers
doesn’t even exist in other kernels (BSD)
security-oriented applications have their own CSPRNG
people believe that « there will soon be entropy » (true ?)

@ major entropy consumer : the kernel itself

@ via get_random_bytes()
e mostly for load_elf_binary() (i.e. ASLR)
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Conclusions and perspectives

@ Study of the architecture of the LRNG
@ Measures of entropy transfers
@ Study of entropy consumers

@ see [Inria RR 8060] http://hal.inria.fr/hal-00738638

@ Port experiments to diskless devices
e Android phone, set-top box, SSD-based laptop
e Entropy will be scarce
@ Come up with new sources of entropy in the system
e portability ?
o availability ?
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