A study of entropy transfers

in the Linux Random Number Generator

Th. Vuillemin, F. Goichon, G. Salagnac, C. Lauradoux

int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.

The need for random numbers

Computers are built to be fully deterministic...

@ Cryptography

@ Security

@ Randomized algorithms
@ Scheduling

@ Networking

Random numbers a an OS resource

LRBNG : Linux Random Number Generator

@ Service provided by the OS kernel

@ Shared among several (non-privileged) users

@ /dev/random and /dev/urandom

@ Essential for security-oriented software (SSH, SSL/TLS)

Depends on system entropy

@ Prone to entropy shortages = RNG stalls
@ May have negative impact on application performance

Motivating example

35

301
25
20
15f
10f
5l

O0 200 400 600 800 1000

Time

Request completion time (second)

Response time of /dev/random for 1000 one-byte requests.
Average 264 ms. Standard deviation 1.68 s.

Questions

@ What is entropy anyway ?
@ Why does the LRNG need it ?
@ How to explain such variability in response time ?

Inria Research Report 8060 http://hal.inria.fr/hal-00738638

http://hal.inria.fr/hal-00738638

@ !ntroduction

© Random Number Generation
© The Linux RNG

e Experiments

e Conclusion and perspectives

Desirable properties of “random” numbers

@ X, Y random variables e.g. the result of rolling a die
@ Q sample space e.g.{1,2,3,4,5,6}
@ X =P(Q) event space e.g. X € {2,4,6}

» {Pr(i)}icx probability law

Uniform distribution

1

V.

Statistical independence

Vx,y €Q Pr(X =x|Y =y) = Pr(X = x)

A\

Measuring randomness

Shannon Entropy
— Y Pr(X =i)log, Pr(X = i).

Viex

@ expresses the “amount of uncertainty” contained in X
» “how much information do | gain by looking at X”

4

Caveat Emptor

@ Other entropy measures exist (e.g. Kolmogorov complexity)
@ If we don’t know Pr, we cannot directly apply the formula
@ Entropy estimation is a very active research topic

Different types of generators

A Random Number Generator is a computer program imitating
the behaviour of a random variable

PRNG : Pseudo Random Number Generator

CSPRNG : Cryptographically Secure Random Number Gen.
HRNG : Hardware Random Number Generator
TRNG : True Random Number Generator

Deterministic generators

PRNG : Pseudo-Random Number Generator

@ finite-state machine

@ transition function : updates internal state
@ output function : produces actual numbers
@ seed : initial internal state

» (hopefully) good statistical properties

CSPRNG : Cryptographically Secure PRNG

» A PRNG with stronger statistical properties (periodicity...)

Security issues

Threat model

What if an attacker guesses the internal state ?
» they can predict every future output of the RNG !

@ choose the output function such that it's hard to reverse

@ ... or just don’t be deterministic

Non-deterministic generators

HRNG : Hardware Random Number Generator

Based on some physical phenomenon
@ really unpredictable, but often biased
@ limited by the througput of the entropy source

TRNG : True Random Number Generator
@ Pseudo-Random Number Generator

@ internal state reseeded with entropy sources

@ !ntroduction

© Random Number Generation
© The Linux RNG

e Experiments

e Conclusion and perspectives

The Linux RNG

@ Theodore Ts’o (1994—-2005, 2012—now)
@ Matt Mackall (2005-2012)

TRNG architecture

@ uses a CSPRNG to produce numbers

e internal state : 6Kb
e output function : a variant of md5

@ uses system events as entropy sources

@ opportunistic reseeding
e hypothesis : inter-event timing is unpredictable

@ tries to keep internal state hard to guess for an attacker
e tracks the entropy level of state over time

Architecture

| \

| Blocking Pool |
| i

Input Pool

-------------------- |

™~ Non-blocking

| T get_random_bytes()

/dev/urandom

Output interfaces

/dev/random
@ comsumes entropy
@ in case of shortage — requests put on hold

/dev/urandom
@ consumes entropy
@ in case of shortage — PRNG

| A

| \

get_random_bytes()
@ kernel function
@ consumes entropy
@ in case of shortage — PRNG

Entropy pools (internal state of the PRNGs)

Blocking pool

@ 1Kb bitfield + entropy counter
@ supplies data for /dev/random

<

Non-blocking pool

@ 1Kb bitfield + entropy counter
@ supplies data for /dev/urandom and get_random_bytes ()

Input pool

@ 4Kb bitfield + entropy counter
@ supplies data for the two other pools
@ refilled by opportunistically sampling entropy sources

Entropy sources

Callback functions exported by the LRNG to harvest entropy :

add_disk_randomness ()
Hard drive events

add_input_randomness()
Ul events : keyboard, mouse, trackpad

add_interrupt_randomness ()

Other hardware events : USB, device drivers

add_network_randomness () removed, deemed too vulnerable

Architecture

|

Input Pool

\

Blocking Pool

/dev/random

/dev/urandom

™~ Non-blocking

Pool

get_random_bytes()

The need for entropy estimation

What if an attacker controls all the callbacks ?
What if hardware events happen to be predictable ?

Not all system events carry uncertainty

@ Let’s try to assess randomness
» We need an entropy estimator!

20

The LRNG entropy estimator : detecting regularities

op = fi—tiy
62 = 6 —diq
§ = 7t

A = min(|6], 57, 1571)

0 ifA; <2
Hi={ 11 if A; > 212

| loga(A;)] otherwise

21

Time 1004 1012 1024 1025 1030 1041
1st diff 8 12 1 5 11

2nd diff 4 11 4 6

3rd diff 7 7 2

H(1041) = 1, H(1030) = 2, H(1025) = 0

29

@ !ntroduction

© Random Number Generation
© The Linux RNG

e Experiments

e Conclusion and perspectives

29

Architecture

|

Input Pool

\

Blocking Pool

/dev/random

/dev/urandom

™~ Non-blocking

Pool

get_random_bytes()

24

Experimental setup

@ use-akernel-debugger—? — would Kill timing

@ useprintkO—? — would generate disk events !

» instrument the LRNG itself (callbacks + output functions)
@ use the netpoll API to send out UDP packets

V.

Studied scenarios

@ Desktop workstation : web surfing, word processing
@ File server : large file transfer

@ Computation : CPU-intensive program only

each experiment : one hour long

28

Entropy harvesting

M disk
‘ @ mouse
= [generic_input
- @ O keyboard

(a) Workstation

(b) File server (c) Computation

24

Entropy extraction

W get_random_bytes()
O /dev/urandom

(d) Workstation

(e) File server (f) Computation

27

Entropy consumers : Workstation

@

W [K] load_elf_binary()
O [U] svn

O [U] chromium-browse
O [U] php5

E Others

28

Entropy consumers : File server

W [K] load_elf_binary()

@ [U] php5

O [K] inet_frag_secret_reb. ..
O [U] apache2

B Others

29

Entropy consumers : Computation

W [K] load_elf_binary()
O [K] inet_frag_secret_rebuild()

20

Entropy level in the input pool

Input pool entropy level (bits)

4000
3500
3000
2500
2000
1500
1000

500

4000
3500
3000
2500
2000
1500
1000

500

lell

lel0

Time (CPU cycles)

1

Summary of experimental results

@ only major entropy source : the hard drive

@ /dev/random never used in practice

blocking read () considered too problematic by developers
doesn’t even exist in other kernels (BSD)
security-oriented applications have their own CSPRNG
people believe that « there will soon be entropy » (true ?)

@ major entropy consumer : the kernel itself

@ via get_random_bytes()
e mostly for load_elf_binary() (i.e. ASLR)

92

Conclusions and perspectives

@ Study of the architecture of the LRNG
@ Measures of entropy transfers
@ Study of entropy consumers

@ see [Inria RR 8060] http://hal.inria.fr/hal-00738638

@ Port experiments to diskless devices
e Android phone, set-top box, SSD-based laptop
e Entropy will be scarce
@ Come up with new sources of entropy in the system
e portability ?
o availability ?

23

http://hal.inria.fr/hal-00738638

	Introduction
	Random Number Generation
	The Linux RNG
	Experiments
	Conclusion and perspectives

