
Automatic Region-
Based Memory
Management for
Real-Time
Embedded Systems

Guillaume Salagnac∗

∗ VERIMAG, 2 avenue de Vignate 38610 Gieres France

ABSTRACT

This paper presents an efficient static analysis algorithm, combined with a region allocation policy
for real-time embedded Java applications. The goal of this work is to provide a static analysis
mechanism efficient enough to be integrated in an assisted-development environment, and to
implement region-based memory management primitives suited for resource-limited platforms
such as smart cards for instance.

KEYWORDS: Static Analysis, Memory Management

1 Motivation
Dynamic memory management is a serious challenge for real-time embedded systems based
on Java technology. Contrary to the standard Java paradigm, garbage collection is rarely
used in such real-time environments, since the temporal behavior of dynamic memory col-
lection (e.g. pause times) is usually difficult to predict and thus significantly complicates
the implementation of real-time scheduling policies. On resource-limited platforms, such
as smart cards, the implementation of efficient garbage collectors (GC) is furthermore hin-
dered by hardware limitations, and embedded systems manufacturers frequently omit them
completely (see the JavaCard2 platform for instance). Similarly, several GC algorithms have
been proposed for real-time applications [Baco03], but they typically require the program-
mer to provide a model of the dynamic memory management behaviour of his application,
such as the maximum allocation and mortality rates of objects for instance, a difficult task at
best (i.e. determine the maximum allocation is undecidable).

An appealing solution to the dynamic memory collection issue is to allocate objects in
regions [Toft97]. With region-based memory management, objects with similar lifetimes are
allocated in the same memory area, which can be deallocated as a whole when all the in-

1e-mail: Guillaume.Salagna@imag.fr
2http://java.sun.com/products/javacard/



cluded objects are no longer used. Thus, allocation and deallocation of objects can be per-
formed in a predictable time, at the cost that each object must be placed when allocated.
This scheme is advocated by the Real-Time Specification for Java (RTSJ)3, which allows the
programmer to specify that a given computation must run in the context of a pre-allocated
region. However, programming with RTSJ is usually deemed much more difficult than with
standard Java [Pizl04], especially since the sizes of the various memory regions must be
known when developing the application, and since the programmer must decide by himself
in which region to allocate his data structures. Moreover, current RTSJ implementations re-
quire way too much resources (in terms of memory space and processor time) to be used on
resource-constrained platforms.

Instead of requiring the programmer to decide by himself where to allocate objects, static
analysis can be performed on the application to resolve object placement issues. Then, the
program can be transparently transformed by replacing new bytecodes by calls to the alloca-
tor of the chosen region. This approach requires to compute the lifetime of dynamically allo-
cated objects, in order to insert calls to the deallocator of a region as soon as all the included
objects are no longer used, while guaranteeing that the deallocation of the region will not
create dangling references. Escape analysis [Blan03] is a well-known approach which com-
bines static analysis and code transformation. Its goal is to try and determine whether an
object allocated in a given method is referenced outside of it or if it can be deallocated with
the context of the method. Many escape analysis algorithms have been proposed for Java,
but they typically fail to produce results complete enough to suppress the need for a GC.

This failure highlights the limitations of automatic analysis tools and advocates the use of
semi-automatic mechanisms that provide hints to the programmer on where to place objects
allocations in his application. Providing a guided-development environment that can deter-
mine whether a given dynamic object creation can easily be replaced by region-based alloca-
tion/deallocation permits non-expert programmers to write their application without need-
ing to know precisely how memory management is implemented. However, this requires a
fast analysis algorithm so as to be able to provide hints to the programmer while he imple-
ments his application without slowing down software development. For instance, [Cher04]
presents a static analysis algorithm which permits to allocate most objects into regions and
which limits the use of the fail-safe GC. However, this algorithm is context-sensitive, which
makes it too slow to be integrated in an interactive development environment, especially for
complex applications.

This paper presents an efficient static analysis algorithm, combined with a region allo-
cation policy for real-time embedded Java applications. The goal of this work is to provide
a static analysis mechanism efficient enough to be integrated in an assisted-development
environment, and to implement region-based memory management primitives suited for
resource-limited platforms such as smart cards for instance.

2 Our approach
The weak generational hypothesis states that there is an inverse relationship between the age
of objects and their mortality. Accordingly, the approach presented in this paper proposes
to make the program automatically put each data structure (i.e. a set of connected objects)
in a distinct region. The idea is that most objects are either short-lived, and so they should
be placed in a short-lived region, or long-lived, because they are integrated in a large lasting

3http://java.sun.com/j2se/realtime/



structure, and they should be placed together with the rest of the structure. Bookkeeping is
thus very easy for the runtime system, since there is no more need for a GC to track pointers
between objects and regions can be destroyed as soon as they have no more direct incoming
pointers from the program roots.

This is why the analysis presented here is not designed to determine absolute lifetimes
(like escape analysis), but rather relations between objects lifetimes, so as to predict which
objects belong to the same data structure. For each method, the analysis builds a partition
of local variables, such that two related variables v∼v’ are guaranteed to point to objects in
the same region.

The algorithm, called pointer interference analysis works in two phases. During a first intra-
procedural pass, it looks for all variables which syntactically interfere, and marks them as
part of the same equivalence class: v=u , v=u.f or v.f=u imply v∼u. We assume that com-
plex expressions have been decomposed earlier by the java compiler when generating the
bytecode, and that the only pointer-related statements are these ones.

During a second phase, inter-procedural pointer interference is modelled, using the static
call graph, as follows: wherever a method m() may call a method m’() with arguments
...p1←v1,..., p2←v2... the algorithm ensures that p1∼p2 in m’() implies v1∼v2 in m() .

This static analysis was implemented using the Soot4 framework. On similar bench-
marks, it is 3 to 4 times faster than [Cher04], partly because it is far simpler by design but also
because [Cher04] is context-sensitive. This makes their algorithm exponential while ours is
almost linear.

The allocation policy associated with the analysis is also quite simple: at runtime, for
each allocation v=new C in method m() , look for other local variables u of m() related to
v , and place the new object in the same region as u. This ensures that each data structure
is contained in its own region. Regions are then created and destroyed according to local
variables that point in them, and freed as soon as possible. We have proven that this scheme
is safe (i.e. that it does not create dangling pointers).

3 Experimental results
After having statically analysed the program, the obtained results must be used at runtime
to carry out the proposed allocation policy. The environment chosen to conduct the exper-
iments presented here is the JITS architecture5. JITS is a software framework dedicated to
assist the customized generation and deployment of low-footprint embedded Java operat-
ing systems and applications. JITS provides a J2SE compliant Java API and virtual machine,
and tools designed to help the developer build a fully-customized and low-footprint em-
bedded operating system.

The region allocator, which is implemented in the memory management subsystem of
JITS, replaces its stop-the-world mark and sweep GC. The class loader was also modified
to take into account the metadata computed by the static analysis. The JOlden benchmark
suite6 was used to test the implemented prototype. The memory occupancy obtained during
two executions, the first one with the GC and the second one with regions, were compared
in order to evaluate the impact of the regions on the behavior of the programs.

4http://www.sable.mcgill.ca/soot/
5http://www.lifl.fr/RD2P/JITS
6http://www-ali.cs.umass.edu/DaCapo/benchmarks.html



0 1x107 2x107 3x107 4x107 5x107

VMTime (cycles)

400000

500000

600000

700000

800000

900000

1x106

H
e

a
p

 S
iz

e
 (

b
y
te

s
)

Garbage Collector

Regions

Figure 1: Memory occupancy for the benchmark program BiSort

On several benchmarks (e.g. Power , BiSort , etc.), the short lifetimes of the regions en-
able the application to run in a nearly constant memory space. This is illustrated on Fig. 1:
the GC only version of the program (the dotted line) frequently exhausts memory, and thus
requires several collections of the heap. With regions (the solid line), the program deallocates
unused memory immetiately, and does not need any collection.
On some other benchmarks (e.g. Em3d, MST, etc.), the application data structures are alive
throughout most of the execution, with nearly no garbage generated, so both versions of the
program behave in a similar way. Regions thus do not lead to memory gains, but they do
not harm the program performances either.

4 Conclusions and future work
In this paper, we have presented a scheme for dynamic memory allocation in real-time em-
bedded systems dedicated to run on resource-limited platforms. The static analysis algo-
rithm we proposed is efficient enough to be integrated in an interactive assisted-development
environment.

We are currently working on improving the precision of our static analysis tool. On some
benchmarks, including the BHprogram, our algorithm fails to reclaim memory as fast as it is
allocated, thus generating a memory leak which can lead to a memory shortage. This is due
to a lack of precision of the pointer interference mechanism which wrongly places garbage
generated by long-lived objects in the same region, thus preventing its early deallocation.
Human intervention can be invaluable for this kind of precise analysis, which advocates for
a semi-automatic tool providing hints to the application programer to optimize the place-
ment of object creations.

References
[Baco03] D. BACON, P. CHENG, AND V. RAJAN. A real-time garbage collector with low overhead

and consistent utilization. In POPL’03. ACM Press, 2003.

[Blan03] B. BLANCHET. Escape analysis for JavaTM : Theory and practice. ACM Trans. on Program-
ming Languages and Systems, 25(6), 2003.

[Cher04] S. CHEREM AND R. RUGINA. Region Analysis and Transformation for Java Programs. In
ISMM’04. ACM Press, 2004.

[Pizl04] F. PIZLO, J. FOX, D. HOLMES, AND J. VITEK. Real-Time Java Scoped Memory: Design
Patterns and Semantics. In ISORC’2004. IEEE Computer Society, 2004.

[Toft97] M. TOFTE AND J. TALPIN. Region-Based Memory Management. Information and Compu-
tation, Februari 1997.


	Motivation
	Our approach
	Experimental results
	Conclusions and future work

