Physical layer modelling for future wireless networks

4- Interference in wireless networks
Interference

1- Basis of interference
- Definition
- Various kinds
- Collisions
- Example

2- Interference modelling
- Switched interference
- Real interference
- Additive interference
 - Gaussian approximation

3- multi-channel systems
- Interference in CDMA
- Interference in FDMA

4- Interference reduction
- Avoidance
- Mitigation

5- Applications
- MAC problems
- Throughput
- Connectivity
- Routing

6- Conclusion
1- Basis

Basis of interference

1) Definition
2) Various kinds
3) Collisions
4) Example
1) Definitions

- **Interference**: Interference is produced by other terminals or systems and affects the quality of a given radio link.
2) Various kinds of interference

- **CCI:**
 - Co-channel interference is produced by interfering signals located in the same frequency band.

- **ACI:**
 - Adjacent channel interference is produced by interfering signals located in adjacent bands.

- **ISI:**
 - Inter-symbol interference is due to multi-path of the signal. ISS represents an auto-interference.

- **MSI:**
 - Multiple system interference represents interference between different systems exploiting the same frequency band (e.g. WiFi – Bluetooth).

Wireless Network design and performance evaluation involve CCI and ACI essentially.
3) Collision

- Collisions are experienced at MAC level
 - Two transmitted packets are simultaneously transmitted
 - Collision models involve basic interference models.

A collision refers to a packet loss due to concurrent transmissions.

When does it occur?
 illustrations of different cases and corresponding interference levels.
4) Example

- jammed areas
Example (cont.)

– **Setup**

 - *AWGN channel*
 - *mod BPSK*
 - *White noise*
 - *Nb bits (200)*

 ➔ \(\text{PER} \sim \text{Nb.BER}\)
Example (cont.)

- Unique interferer in AWGN

\[\text{PER} = f\left(\frac{C}{N+I} \right) \]
Example (cont.)

– Unique interferer with RTS/CTS

Hyp : hidden node

PER

10^0
10^-1
10^-2
10^-3
10^-4
10^-5
10^-6
10^2
10^3
10^4

d

Pe=Pcts . Pint

Pe=Pcts . Pint

N

A

B

C

I

D

Basis
Example (cont.)

- Unique interferer with RTS/CTS on Rayleigh channel
Example (cont.)

– multiple interference (AWGN)

\[\text{PERtot} = f(\frac{C}{N + \Sigma I}) \]
2-Modelling

Interference modelling

1) Switched interference
2) Progressive interference
3) Additive Interference
 The gaussian model
1) Switched interference

- Switched interference is based on the idea of a jamming area:
 - It does not correspond to a realistic behavior
 - Details ...

\[
\frac{C}{N + I} \geq S_{th} \quad ???
\]

- Example on 2 BPSK signals received simultaneously
2) Progressive interference

- progressive interference refers to a unique interferer
 - A realistic behavior: which PER??
 - Caution: asynchronism is important to consider

- Example on 2 BPSK signals received simultaneously
3) Additive interference

- Interference are cumulative
 - The mean interfering received power is seen as a noise \(\Rightarrow \) AWGN in many practical applications
 - Fundamental equation:
 \[
 SINR(i, j) = \frac{A_{ij} \cdot P_j}{N_0 + \sum_{k \neq j} A_{ik} \cdot P_k}
 \]
 - Realistic model:
 \[
 BER(i, j) = f(SNR(i, j))
 \]
 - New disk range model:
 \[
 \overline{SINR(i, j)} > S_{th}
 \]
4) Shannon Capacity

• In an AWGN channel, the capacity is provided as:

\[
C(i, j) = W \cdot \log_2 \left(1 + \frac{dP_R}{\sigma^2}\right) \text{ bit/s}
\]

\[
C(i, j) = W \cdot \log_2 (1 + SINR(i, j))
\]
3-Multi-channel systems

Multi-channel systems

1) FDMA based systems
 Adjacent channels interference
 Example: 802.11b/g

2) CDMA based systems
 pseudo-orthogonal codes
 a general formulation under gaussian approximation
 Example: CDMA based ad hoc network
1) Multiplexing

– Orthogonal multiplexing
 = interference avoidance
 – Number of channels \times Unitary\ through\ throughput = total through\ throughput
 – Selection / assignment of channels
 – Near the maximal capacity if fine synchronisation
 – Ideal case: no interferences

– Pseudo-orthogonal multiplexing
 = interference cancellation or mitigation
 – Number of channels \times Unitary\ through\ throughput > total through\ throughput
 – Adaptative (random?) channel selection
 – Interference-limited systems
2) Time Division

– interference avoidance
 • Synchronized ➔ TDMA
 – Need synchronization

 • Carrier sense / random access
 ➔ CSMA/CA
 – Carrier sensing, collisions ➔ access rules
2) Frequency division

– Interference avoidance
 - OFDMA (interference avoidance)
 – Need synchronization, but near optimal use.
 - FDMA
 – Channel allocation, no synchronization
 – Adjacent carrier interference should be managed!!
3) Code division

 – Interference avoidance
 • orthogonal codes
 – Neads Synchronization
 – Codes allocation policy ?
 • pseudo-orthogonal codes
 – No synchronization
 – Large codes’ family ➔ random selection possible
 – Interference limited systems
 + possible interference mitigation
4) Overall throughput

- Link throughput with either time, frequency, coding (constant energy)

\[Th(k) = C(k) \cdot T(k) = q(k) \cdot W \cdot T \cdot \log_2 \left(1 + \frac{A_{kk} \cdot dP(k)}{q(k)} \right) \cdot \frac{1}{\sigma^2} \]

- Rem 1: \(\sum_k q(k) \leq 1 \)

- Rem 2: if regular division, \(q(k)=1/K \), and the maximal channel number is K.

- Rem 3: link capacity increases in \(\log(1+a.K) \) ... but energy as K !!!!
4) Overall throughput (cont.)

\[Th(k) = q(k) \cdot W \cdot T \cdot \log_2 \left(1 + \frac{A_{kk} \cdot dP(k)}{q(k) \cdot \sigma^2 + \sum_{i \neq k} \alpha_{ki} \cdot A_{ki} \cdot P_0} \right) \]

Inter-channel correlation

Example: CDMA: \(q(k) = 1/G \); \(\alpha = 1/G \)
5) Resource sharing

- Finding:
 - Max throughput
 - Fairness (min-max)
 - Delay
 - Min Energy

- Find $q(k)$ and α_{ki} such as maximizing the capacity.
 - NP complete problem
 (classical FAP + distributed algorithms)

\[
TH = \sum_{k} q(k) \cdot W \cdot T \cdot \log_{2} \left(1 + \frac{A_{kk} \cdot dP(k)}{q(k) \cdot \sigma^{2} + \sum_{i \neq k} \alpha_{ki} \cdot A_{ki} \cdot P_{0}} \right)
\]
Interference reduction

1) Interference avoidance
 Contention based medium access
 Time division / Frequency division
 Throughput/interference trade-off

2) Interference mitigation
 Linear suppression of interference
 Multi-user detection: MLSE of interfering signals
 SIC/PIC algorithms
Applications in sensor nets

1) Throughput
 Why interference reduces throughput?

2) Connectivity
 How connectivity is affected by interference?

3) Routing / multi-hop
 Take care of interference for packet retransmission policies
6- conclusion

1- the throughput in Wireless LAN is limited by interference.

2- Interference is additive and progressive. It affects the packet error probability and leads to collisions.

3- Interference reduction can be done at the PHY layer (mitigation),
but can be managed at the MAC layer (avoidance).

4- Interference and collisions reflects the same fundamental problem in wireless networks:
 Resource sharing
More readings

Books

Papers
- M. Haenggi; “on routing in random Rayleigh fading networks”, IEEE transactions on Wireless Communications, July 2005
- H.R. Karimi et al; “the impact of interference cancellation on the uplink throughput of WLAN with CSMA/CA”. In IEEE GLOBECOM 2005