Maximizing the Probability of Delivery of MPR in Wireless Ad Hoc Networks with a Realistic Physical Layer

François Ingelrest David Simplot-Ryl
{Francois.Ingelrest, David.Simplot} @lifl.fr
Introduction

Overview of Ad Hoc Networks and Broadcasting

Physical Layer Models
- The Unit Disc Graph Model
- The Log-Normal Shadowing Model
- Comparison

MPR and the LNS Model
- The Multipoint Relay Protocol
- Performance of MPR with the LNS Model

New Heuristics for MPR
- Heuristics 1: Straightforward Approach
- Heuristics 2: Clever Approach
- Heuristics 3: Robustness Approach
- Energy Consumption

Conclusion
Ad Hoc Networks

- Composed by mobile devices
- Wireless communications, limited radius
- No infrastructure, no centralized information

They are represented by a graph $G = (V, E)$

- V is the set of vertices (mobile devices)
- E is the set of edges (available communications)
A good broadcasting algorithm must be:

- **Energy wise** - Energy is a very important resource
- **Reliable** - The target is a coverage of at least 95%
- **Fast** - The topology is not static
1 Introduction
 • Overview of Ad Hoc Networks and Broadcasting

2 Physical Layer Models
 • The Unit Disc Graph Model
 • The Log-Normal Shadowing Model
 • Comparison

3 MPR and the LNS Model
 • The Multipoint Relay Protocol
 • Performance of MPR with the LNS Model

4 New Heuristics for MPR
 • Heuristics 1: Straightforward Approach
 • Heuristics 2: Clever Approach
 • Heuristics 3: Robustness Approach
 • Energy Consumption

5 Conclusion
The *Unit Disc Graph* (UDG) is the most spread physical model

Definition

Two nodes \(u \) and \(v \) can communicate together if the distance \(d(u, v) \) is not greater than the communication radius \(R \).
The *Log-Normal Shadowing* (LNS) Model

The probability of correct reception depends on many parameters, but an approximated function $P(x)$ can be used:

$$P(x) = \begin{cases} 1 - \frac{(\frac{x}{R})^{2\beta}}{2} & \text{if } x < R \\ \frac{(\frac{2R-x}{R})^{2\beta}}{2} & \text{otherwise} \end{cases}$$
The UDG model
- It is very easy to simulate
- It cannot be considered as realistic!

The LNS model
- It takes into account signal strength fluctuations
- We only add a weight (probability) on edges
- It is much more suited to simulations

For clarity, we use \(p(u, v) \) instead of \(p(d(u, v)) \)
Introduction

Overview of Ad Hoc Networks and Broadcasting

Physical Layer Models

The Unit Disc Graph Model

The Log-Normal Shadowing Model

Comparison

MPR and the LNS Model

The Multipoint Relay Protocol

Performance of MPR with the LNS Model

New Heuristics for MPR

Heuristics 1: Straightforward Approach

Heuristics 2: Clever Approach

Heuristics 3: Robustness Approach

Energy Consumption

Conclusion
The Multipoint Relay Protocol (MPR) [Qayyum et al., 2002]

Algorithm for selecting relays

1. Mandatory 1-hop neighbors are chosen
2. 1-hop neighbors that cover the highest number of uncovered 2-hop neighbors are repeatedly chosen

Choices are forwarded within the broadcast packet
Only at most 70% of nodes are reached with LNS model!
Average distance between a node and its relays (R = 75)

The chosen relays are the **furthest** neighbors!
Introduction
- Overview of Ad Hoc Networks and Broadcasting

Physical Layer Models
- The Unit Disc Graph Model
- The Log-Normal Shadowing Model
- Comparison

MPR and the LNS Model
- The Multipoint Relay Protocol
- Performance of MPR with the LNS Model

New Heuristics for MPR
- Heuristics 1: Straightforward Approach
- Heuristics 2: Clever Approach
- Heuristics 3: Robustness Approach
- Energy Consumption

Conclusion
Straightforward approach

- Replace the value used to choose relays at each iteration
- For a neighbor v of a node u, compute a score $S(v)$ based on:
 - The probability $p(u, v)$
 - The coverage offered by the node v

$$S(v_1) = p(u, v_1) \times 3$$
$$S(v_2) = p(u, v_2) \times 1$$
Network coverage with LNS model

![Network coverage with LNS model](image-url)
Clever approach

- The distance between relays and the nodes they cover is not considered!
- For a neighbor \(v \) of a node \(u \), compute a score \(S(v) \) based on:
 - The probability \(p(u, v) \)
 - The average ‘coverage probability’ provided by the node \(v \)

\[
S(v_1) = p(u, v_1) \times \frac{p(v_1, w_1) + p(v_1, w_2) + p(v_1, w_3)}{3}
\]

\[
S(v_2) = p(u, v_2) \times p(v_2, w_3)
\]
Network coverage with LNS model
Robustness approach

- The broadcast can be stopped by one bad reception!
- We introduce the concept of ‘coverage level’: 2-hop neighbors are removed only when the probability to cover them is high enough.

\[CL(w_3) = 1 - (p(v_1, w_3) \times p(v_2, w_3)) \]

Under the UDG model, all these heuristics give the same results.
Network coverage with LNS model
Percentage of transmitters with LNS model (1)

![Graph showing percentage of transmitters with LNS model]

Only receivers are taken into account!
With only a few redundant transmitters, a far better coverage is achieved!
1 Introduction
 • Overview of Ad Hoc Networks and Broadcasting

2 Physical Layer Models
 • The Unit Disc Graph Model
 • The Log-Normal Shadowing Model
 • Comparison

3 MPR and the LNS Model
 • The Multipoint Relay Protocol
 • Performance of MPR with the LNS Model

4 New Heuristics for MPR
 • Heuristics 1: Straightforward Approach
 • Heuristics 2: Clever Approach
 • Heuristics 3: Robustness Approach
 • Energy Consumption

5 Conclusion
Conclusion

- The MPR original heuristics does not suit to LNS model
- It can be replaced by a better one which:
 - Chooses almost the same quantity of relays
 - Greatly improves the coverage of the network

Future work

- Analyze the impact on OLSR?
- Analyze other protocols under the LNS model
- Improve them?
Maximizing the Probability of Delivery of MPR in Wireless Ad Hoc Networks with a Realistic Physical Layer

François Ingelrest David Simplot-Ryl
{Francois.Ingelrest, David.Simplot} @lifl.fr