

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

centre de recherche RENNES - BRETAGNE ATLANTIQUE

Impact of transmitters desynchronization on the performance of cooperative MIMO systems

Tuan-Duc Nguyen, Olivier Berder and Olivier Sentieys

IRISA/INRIA, University of Rennes 1 – France <u>berder@irisa.fr</u>

Context

- Wireless Sensor Networks (WSN)
 - Energy consumption constraint
- Targeted applications
 - Monitoring (agriculture, health, ...)
 - Military applications (zone surveillance, intrusion detection)
 - Intelligent Transportation System
- Cooperative MIMO technique in WSN
 - Energy efficient communications
 - Wide coverage

Presentation plan

- 1. Introduction of cooperative MIMO technique
- 2. Impact of transmission synchronization error and cooperative reception techniques
- 3. New reception technique
- 4. Simulation results
- 5. Conclusion

Cooperative MIMO using STC for WSN

- MIMO space-time coding => Diversity gain
 - Reduces the error rate or transmission energy
- In WSN: Limited size or limited cost of each wireless sensor node
 - Each node can support only one antenna
- => Direct application of MIMO transmission technique is not practical

Cooperative MIMO technique

- Three phases of cooperative MIMO communications
 - Phase 1: Local data exchange
 - Phase 2: Cooperative MIMO transmission
 - Phase 3: Cooperative reception

 $d_m << d$

 $d_m = 1..10 m$

Energy consumption of cooperative MIMO

 Cooperative MIMO technique is more energy efficient than SISO and multi-hop SISO techniques for long distance transmission [1,2]

[1] S. Cui, A. J. Goldsmith, and A. Bahai, "Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks," IEEE Jour. On Selected Areas in Communications, vol. 22, no. 6, pp. 1089 – 1098, August 2004.
[2] T. Nguyen, O. Berder, and O. Sentieys, "Cooperative MIMO schemes optimal selection for wireless sensor networks," IEEE 65th Vehicular Technology Conference, VTC-Spring, pp. 85–89, 2007.

Cooperative MIMO disadvantages

- Transmission synchronization error
 - ISI, non-orthogonal space-time combination
- Additional noise of cooperative reception nodes
 - More noise in the final signal at the destination node

Reduces the energy efficiency of cooperative MIMO over SISO

Transmitters desynchronization effect

Cooperative techniques in WSN, GDR ISIS, June 08

I S A

Transmitters desynchronization effect

 $BER = 10^{-4}, \ \varDelta T_{syn} = 0.5T_s$ => 3dB and 4dB of loss

- Degradation depends on the number of transmission nodes and desynchronization range.
- Cooperative performance is tolerant for small range of synchronization error
- Performance degradation is significant when the error range ΔT_{syn} is greater than $0.5T_s$

[3] T. Nguyen, O. Berder, and O. Sentieys, "Impact of transmission synchronization error and cooperative reception techniques on the performance of cooperative MIMO systems", ICC 2008, Beijing, China

Non orthogonal space-time combination

- Two cooperative transmission nodes using Alamouti space time codes
- s_1 and s_2 are two symbols in one Alamouti block
- p(t): raised cosine pulse shape

$$\begin{split} \tilde{s_1} &= \alpha_1^* r_1[1] + \alpha_2 r_1^*[2] = (||\alpha_1||^2 + ||\alpha_2||^2 p(-\delta_2)) s_1 \\ &+ \alpha_1^* \alpha_2 (1 - p(-\delta_2)) s_2 + \alpha_1^* (ISI_1^1 + n_1) + \alpha_2 (ISI_2^1 + n_2)^* \\ \tilde{s_2} &= \alpha_2^* r_1[1] - \alpha_1 r_1^*[2] = (||\alpha_1||^2 + ||\alpha_2||^2 p(-\delta_2)) s_2 \\ &+ \alpha_1 \alpha_2^* (1 - p(-\delta_2)) s_1 + \alpha_2^* (ISI_1^1 + n_1) - \alpha_1 (ISI_2^1 + n_2)^* (\mathbf{1}) \end{split}$$

- Decrease of the desired symbol amplitude
- Interferences between s₁ and s₂
 - Non-orthogonal space time combination
 - -> Performance degradation

Quantization Reception Technique

- Cooperative nodes retransmit their signals sequentially to the destination node for space-time combination
- -> More additional noise from cooperative reception nodes in the final signal at the destination node.
- -> Performance degradation
- Cooperative reception technique [1][2] -> "Symbol to bit quantization" and bits retransmission -> non efficient in transmission delay and in energy consumption

Forward reception techniques

- 2 proposed techniques employ "Amplify and forward"
 - Forward and Combine
 - Combine and Forward
- 1. Forward and combine

Additional noise of reception techniques

Forward and combine

$$\tilde{s_1} = \sum_{j=1}^{N_r} (||\alpha_{j,1}||^2 + ||\alpha_{j,2}||^2) s_1 + \sum_{j=1}^{N_r} (\alpha_{j,1}^* n_{1eff}^j + \alpha_{j,2} n_{2eff}^{j*})$$

$$\tilde{s_2} = \sum_{j=1}^{N_r} (||\alpha_{j,1}||^2 + ||\alpha_{j,2}||^2) s_2 + \sum_{j=1}^{N_r} (\alpha_{j,2}^* n_{1eff}^j - \alpha_{j,1} n_{2eff}^{j*})$$

$$n_{ieff}^j = n_i^j + n_i'^j / K_1 \text{ with } i = 1, 2$$

$$(2)$$

Combine and forward

$$\tilde{s}_{1} = \sum_{j=1}^{N_{r}} (||\alpha_{j,1}||^{2} + ||\alpha_{j,2}||^{2}) s_{1} + \sum_{j=1}^{N_{r}} (\alpha_{j,1}^{*} n_{1}^{j} + \alpha_{j,2} n_{2}^{j*} + n_{1}^{\prime j} / K_{2}),$$

$$\tilde{s}_{2} = \sum_{j=1}^{N_{r}} (||\alpha_{j,1}||^{2} + ||\alpha_{j,2}||^{2}) s_{2} + \sum_{j=1}^{N_{r}} (\alpha_{j,2}^{*} n_{1}^{j} - \alpha_{j,1} n_{2}^{j*} + n_{2}^{\prime j} / K_{2}), \quad (3)$$

Cooperative techniques in WSN, GDR ISIS, June 08

SA

Impact of reception techniques

coop R1 sqrt(4) -> Forward and Combine technique with amplification factor K1 = 2

coop R2 sqrt(8) -> Combine and Forward technique with amplification factor $K2 = 2\sqrt{2}$

- Performance degradation depends on number of cooperative reception nodes and amplification factor K
- Forward and Combine technique is better than Combine and Forward technique

New space-time combination technique

- Two delayed sampling processes
- Space-time combination from two sampled sequences

I S A

15

New space-time combination technique

$$\tilde{s}_{1} = \alpha_{1}^{*} r_{1}[1] + \alpha_{2} r_{2}^{*}[2] = ||\alpha_{1}||^{2} s_{1} + \alpha_{1}^{*} \alpha_{2} s_{2} p(-\delta_{2}) + \alpha_{1}^{*}(ISI_{1}^{1} + n_{1}^{1}) - \alpha_{1}^{*} \alpha_{2} s_{2} p(\delta_{2}) + ||\alpha_{2}||^{2} s_{1} + \alpha_{2}(ISI_{2}^{2} + n_{2}^{2})^{*} = (||\alpha_{1}||^{2} + ||\alpha_{2}||^{2}) s_{1} + \alpha_{1}^{*}(ISI_{1}^{1} + n_{1}^{1}) + \alpha_{2}(ISI_{2}^{2} + n_{2}^{2})^{*} \tilde{s}_{2} = \alpha_{2}^{*} r_{2}[1] - \alpha_{1} r_{1}^{*}[2] = \alpha_{1} \alpha_{2}^{*} s_{1} p(-\delta_{2}) + \alpha_{2}^{*}(ISI_{1}^{2} + n_{1}^{2}) + ||\alpha_{2}||^{2} s_{2} + ||\alpha_{1}||^{2} s_{2} - \alpha_{1} \alpha_{2}^{*} s_{1} p(\delta_{2}) - \alpha_{1}(ISI_{1}^{2} + n_{1}^{2})^{*} = (||\alpha_{1}||^{2} + ||\alpha_{2}||^{2}) s_{2} + \alpha_{2}^{*}(ISI_{1}^{2} + n_{1}^{2}) - \alpha_{1}(ISI_{2}^{1} + n_{2}^{1})^{*}$$

Advantages of new combination technique

- The amplitude of the desired symbols does not decrease
- Reconstructs the space-time orthogonal combination

Simulation results

- MISO (2-1) using Alamouti space-time codes
- Rayleigh flat fading channel (independent fading between 2 frames of 120 symbols QPSK)
- ECC is not included
- Transmission synchronization error is uniformly distributed in $\left[-\Delta T_{syn}/2, +\Delta T_{syn}/2\right]$ with the error range ΔT_{syn}

[4] T. Nguyen, O. Berder, and O. Sentieys, "Efficient space time combination technique for unsynchronized cooperative MISO transmission", IEEE 67th Vehicular Technology Conference, VTC-Spring 2008, Singapore

Effect of transmitters desynchronization

• Performance degradation is significant when the error range ΔT_{syn} is greater than $0.5T_s$

BER performance

 $BER = 10^{-5}, \Delta T_{syn} = 0.5T_{s}$ 1 dB gain

 $BER = 10^{-4}, \ \Delta T_{syn} = 0.6T_s$ 4dB gain

 New proposed combination technique has a better performance than the traditional combination in the presence of transmission synchronization errors

Cooperative techniques in WSN, GDR ISIS, June 08

19

Conclusion and future works

- Impact of transmission synchronization error
 - Degradation depends on synchronization error range
 - Cooperative MIMO system is tolerant for small synchronization error range
- Impact of cooperative reception technique
 - Degradation depends on number of cooperative nodes
 - The combine-forward and forward-combine techniques are more efficient than the quantization technique
- New efficient space-time combination
 - Simple combination algorithm
 - Better performance than the traditional combination technique
 - Demands less precise synchronization process
- Future works
 - Optimize amplifying factors for cooperative reception techniques
 - Derive for 3 and 4 cooperative transmission nodes
 - Compare to relay techniques and delay-tolerant space-time block codes

Thanks for your attention !!!

 The proposed cooperative reception techniques (coop R1 and coop R2) are better than the previous cooperative reception technique (quantization) in energy consumption

Cooperative techniques in WSN, GDR ISIS, June 08

RISA

Simulation results

- Cooperative MIMO systems using Alamouti (2 transmission nodes) and Tarokh (3,4 transmission nodes) space-time codes.
- Rayleigh flat fading channel (independent fading between 2 frames of 120 QPSK symbols)
- AWGN channel for local cooperative transmission (phase 1 and 3)
- ECC is not included
- Transmission synchronization error is uniformly distributed in $\left[-\Delta T_{syn}/2, +\Delta T_{syn}/2\right]$ with the error range ΔT_{syn}
- Inter-symbol interference from 4 nearest symbols