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Abstract. Rijndael is a block cipher designed by V. Rijmen and J. Daemen
and it was chosen in its 128-bit block version as AES by the NIST in October
2000. Three key lengths - 128, 192 or 256 bits - are allowed. In the original
contribution describing Rijndael [4], two other versions have been described:
Rijndael-256 and Rijndael-192 that respectively use plaintext blocks of length
256 bits and 192 bits under the same key lengths and that have been discarded
by the NIST. This paper presents an efficient distinguisher between 4 inner
rounds of Rijndael-256 and a random permutation of the blocks space, by ex-
ploiting the existence of semi-bijective and Integral properties induced by the
cipher. We then present three attacks based upon the 4 rounds distinguisher
against 7, 8 and 9 rounds versions of Rijndael-256 using the extensions pro-
posed by N. ferguson et al. in [6]. The best cryptanalysis presented here works
against 9 rounds of Rijndael-256 under a 192-bit key and requires 2128 − 2119

chosen plaintexts and 2188 encryptions.
Keywords: block cipher, cryptanalysis, integral attacks, Rijndael-256.

1 Introduction

Rijndael [4] is an SPN block cipher designed by Vincent Rijmen and Joan
Daemen. It has been chosen as the new advanced encryption standard by the
NIST [7] with a 128-bit block size and a variable key length k, which can be
set to 128, 192 or 256 bits. It is a variant of the Square block cipher, due to
the same authors [3]. In its full version, the block length b is also variable and
is equal to 128, 192 or 256 bits as detailed in [5] and in [10]. We respectively
called those versions Rijndael-b. The recommended Nr number of rounds is
determined by b and k, and varies between 10 and 14.

Many cryptanalyses have been proposed against Rijndael for the different
block sizes and more particularly against the AES. The first attack against
all the versions of Rijndael-b is due to the algorithm designers themselves and
is based upon the integral (or saturation) property ([3], [4], [12]) that allows
to efficiently distinguish 3 Rijndael inner rounds from a random permutation.
This attack has been improved by Ferguson et al. in [6] allowing to cryptanal-
yse an 8 rounds version of Rijndael-b with a complexity equal to 2204 trial
encryptions and 2128 − 2119 plaintexts and a 9 rounds version using a related-
key attack. In [13], S. Lucks presented an other improvement of the Square
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Attack using a particular weakness of the key schedule against a 7 rounds
version of Rijndael-b where 2194 executions are required for a number of cho-
sen plaintexts equal to 232. H. Gilbert and M. Minier in [8] also presented
an attack against a 7 rounds version of Rijndael-b (known under the name of
“Bottleneck Attack”) using a stronger property on three inner rounds than
the one used in the Square Attack in order to mount an attack against a 7
rounds version of Rijndael requiring 2144 cipher executions with 232 chosen
plaintexts.

Many other attacks ([2], [14]) have been exhibited against the AES using
algebraic techniques exploiting the low algebraic degree of the AES S-box.
Other attacks that use related keys and rectangle cryptanalysis have been
proposed in [9] and in [11]. But none of these attacks exploits new intrinsic
structure of the transformations used in Rijndael-b.

This paper describes an efficient distinguisher between 4 Rijndael-256 in-
ner rounds and a random permutation based upon a particular integral (or
saturation) property due to a slow diffusion, presents the resulting 7 rounds
attacks on Rijndael-256 which are substantially faster than an exhaustive key
search for all the key lengths and the corresponding 8 and 9 rounds extension
of the previous attacks for k = 192 and k = 256.

This paper is organized as follows: Section 2 provides a brief outline of
Rijndael-b. Section 3 recalls the original Integral property on three inner
rounds, investigates the new four rounds property and describes the result-
ing distinguisher for 4 inner rounds. Section 4 presents 7, 8 and 9 rounds
attacks based on the 4 rounds distinguisher of Section 3. Section 5 concludes
this paper.

2 A brief outline of Rijndael-b

Rijndael-b is a symmetric block cipher that uses a parallel and byte-oriented
structure. The key length is variable and equal to 128, 192 or 256 bits whereas
the block length is equal to 128, 192 or 256 bits. The current block at the
input of the round r is represented by a 4 × (b/32) matrix of bytes A(r). We
give its representation for b = 256:
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The key schedule derives Nr + 1 b-bits round keys K0 to KNr from the
master key K of variable length.

The round function, repeated Nr−1 times, involves four elementary map-
pings, all linear except the first one:
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– SubBytes: a bytewise transformation that applies on each byte of the cur-
rent block an 8-bit to 8-bit non linear S-box (that we call S) composed of
the inversion in the Galois Field GF (256) and of an affine transformation.

– ShiftRows: a linear mapping that rotates on the left all the rows of the
current matrix (0 for the first row, 1 for the second, 3 for the third and 4
for the fourth in the case of Rijndael-256 as described in [4]).

– MixColumns: another linear mapping represented by a 4×4 matrix chosen
for its good properties of diffusion (see [5]). Each column of the input
matrix is multiplied by the MixColumns matrix M in the Galois Field
GF (256) that provides the corresponding column of the output matrix. We
denote by Mi,j for i and j from 0 to 3, the coefficients of the MixColumns
matrix.

– AddRoundKey: a simple x-or operation between the current block and the
subkey of the round r denoted by Kr. We denote by K(i,j)

r the byte of Kr

at position (i, j).

Those Nr− 1 rounds are surrounded at the top by an initial key addition
with the subkey K0 and at the bottom by a final transformation composed by
a call to the round function where the MixColumns operation is omitted.

3 The integral properties

We describe in this section the three inner rounds property named Integral
property explained in the original proposal [4] and the new four rounds prop-
erty of Rijndael-256.

3.1 The Integral property of Rijndael-b

This particular property studied in [12] was first used to attack the Square
block cipher [3] and holds for the three size of blocks (128, 192 or 256 bits) of
the initial version of Rijndael-b. As previously mentioned, we denote by A(r)

the input of the round r.
Let us define the set Λ which contains 256 plaintext blocks (i.e. 256 matrices

of bytes of size 4× (b/32)) all distinct. Two blocks belong to the same set Λ if
they are equal everywhere except on a particular predefined byte (called the
active byte). This active byte takes all possible values between 0 and 255:

∀A(1), A′(1) ∈ Λ :

{
a

(1)
i,j 6= a

′(1)
i,j for a given i and a given j

a
(1)
i,j = a

′(1)
i,j elsewhere

for 0 ≤ i ≤ 3 and 0 ≤ j ≤ (b/32).
The Λ set contains then one active byte whereas the other bytes are passive.

Notice that this definition could be generalized to several active bytes as we
will see in the next subsections. In all the cases, the transformations SubBytes
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and AddRoundKey transform a set Λ into another set Λ with the positions of
the active bytes unchanged (see [1] and [12] for more details).

Now, if we look at the semi-bijective properties of the internal transfor-
mations of Rijndael-b on three rounds - especially the ones of the ShiftRows
and of the MixColumns operations -, we could observe the following results
(as shown in figure 1):

– The MixColumns of the first round transforms the active byte of the Λ set
into a complete column of active bytes.

– The ShiftRows of the second round diffuses this column on four distinct
columns whereas the MixColumns converts this to four columns of only
active bytes. This stays a Λ set until the input of MixColumns of the third
round.

– Until the input of the MixColumns of the third round, the implied trans-
formations constitute a bijection. Then, since the bytes of this Λ set, range
over all possible values and are balanced over this set, we have if we denote
by M (3) the active blocks belonging to the Λ set at the input of the third
MixColumns operation:⊕
A(4)=MC(M(3)),M(3)∈Λ

a
(4)
k,l =

⊕
M(3)∈Λ

(
2m(3)

k,l ⊕ 3m(3)
k+1,l ⊕m

(3)
k+2,l ⊕m

(3)
k+3,l

)
= 0 (1)

where MC represents the MixColumns of the third round and k and l
taking all possible values.

Fig. 1. The three rounds integral property in the case of Rijndael-256:
⊕

y∈Λ s = 0
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Then, we can easily deduce that each byte at the input of the fourth
round is balanced in order to construct an efficient distinguisher between three
Rijndael-b inner rounds and a random permutation testing if equality (1) oc-
curs and requiring 256 plaintexts belonging to a same Λ set. Notice also that
this property holds for all the possible positions of the active byte.

3.2 An improvement of the saturation property for 4 rounds of
Rijndael-256

In the case of Rijndael-256, we describe in this section a particular and stronger
property on three rounds of Rijndael-256 and how to extend this property to
four rounds for a particular Λ set with three active bytes.

A stronger three rounds property. Suppose now that the same Λ set than
the previous one with one active byte, say y at byte position (i, j), is defined.
Let us see how this set crosses three Rijndael-256 inner rounds:

– The MixColumns of the first round transforms the active byte of the Λ set
into a complete column of active bytes (called z0, · · · , z3 in figure 2).

– The ShiftRows of the second round diffuses this column on four among
eight distinct columns whereas the MixColumns converts this to four columns
among eight of only active bytes.

– The ShiftRows of the third round diffuses those four columns into the
eight columns of the current block but the (j + 2 mod 8)-th and the
(j + 6 mod 8)-th columns only depend on one byte each, say a

(2)
i+2 mod 4,j

and a
(2)
i+1 mod 4,j . Using the notations of figure 2, we could say that at the

end of the third round, the third and the seventh columns only depend re-
spectively on the byte a(2)

2,0 = z2 and a(2)
1,0 = z1; thus, the bytes of those two

columns bijectively depend on the y value and each of those two columns
represent a Λ set.

So, we have demonstrated that two particular columns stay two different
Λ sets at the output of the third round.

How to exploit this property ? Because two complete Λ sets remain for
two particular columns at the end of the third round, we want to find a way
to exploit this particular property on four rounds of Rijndael-256 by adding
one round at the end of the three previous rounds. We always consider here
that the input of the four rounds is a Λ set with one active byte y.
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Fig. 2. The three rounds property in the case of Rijndael-256: the bytes s0, · · · , s3 only
depend on z2 and the bytes r0, · · · , r3 only depend on z1

Fig. 3. The fourth round added after the three previous ones

Using the notation of figure 3, we could write the output bytes s and w at
the end of the fourth round according to the output bytes of the third round,
noticing that t0, v3, v0 and t3 belongs to two Λ sets:

s = 2 · S(t0)⊕ 3 · S(t1)⊕ S(t2)⊕ S(t3)⊕K(0,2)
4

w = 2 · S(v0)⊕ 3 · S(v1)⊕ S(v2)⊕ S(v3)⊕K(0,6)
4

More formally, we obtain:

a
(5)
0,j+2 mod 8 = 2S(a(4)

0,j+2 mod 8)⊕ 3S(a(4)
1,j+3 mod 8)

⊕S(a(4)
2,j+5 mod 4)⊕ S(a(4)

3,j+6 mod 4)⊕K(0,2)
4 (2)

a
(5)
0,j+6 mod 8 = 2S(a(4)

0,j+6 mod 8)⊕ 3S(a(4)
1,j+7 mod 8)

⊕S(a(4)
2,j+1 mod 8)⊕ S(a(4)

3,j+2 mod 8)⊕K(0,6)
4

If we use the notations of figure 3 and if we consider as in the previous
subsection that the input of the four rounds is a Λ set with one active byte,
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say y, then we have:
⊕

y∈Λ 2S(t0) = 0 and
⊕

y∈Λ S(t3) = 0 because t0 and t3
belongs to the same Λ set at the end of the third round. Thus, we could write:⊕

y∈Λ
s =

⊕
y∈Λ

(2S(t0)⊕ 3S(t1)⊕ S(t2)⊕ S(t3)) (3)

= 2
⊕
y∈Λ

S(t0)⊕ 3
⊕
y∈Λ

S(t1)⊕
⊕
y∈Λ

S(t2)⊕
⊕
y∈Λ

S(t3)

= 0⊕ 3
⊕
y∈Λ

S(t1)⊕
⊕
y∈Λ

S(t2)⊕ 0

The same property holds for w.
So, we want to find a way to obtain

3
⊕
y∈Λ

S(t1)⊕
⊕
y∈Λ

S(t2) = 0 (4)

considering that t1 depends on z1 and on z3 and that t2 depends on z2 and
on z0. Thus, more input blocks are required to satisfy this equality. A good
solution to produce such equality is to take (256)2 Λ sets to completely satu-
rated the values of z1 and z3 for t1 and of z0 and z2 for t2. To produce a such
number of plaintexts, let us define the following Λ set with three active bytes
- say y, n, p as denoted in figure 4 - at the positions (i, j), (i + 1 mod 4, j)
and (i+ 2 mod 4, j). More formally, we could write this new Λ set as follows:

∀A(1), A′(1) ∈ Λ :


a

(1)
i,j 6= a

′(1)
i,j , a

(1)
i+1 mod 4,j 6= a

′(1)
i+1 mod 4,jand

a
(1)
i+2 mod 4,j 6= a

′(1)
i+2 mod 4,j

for a given i and a given j

a
(1)
i,j = a

′(1)
i,j elsewhere

Using such a Λ set with 224 elements generated from three different active
bytes (say y, n and p) belonging to a same input column, at the end of the
fourth round, equality (4) is verified and we then could write using equality
(3),

⊕
y,n,p∈Λ s = 0 and

⊕
y,n,p∈Λw = 0. More formally, we have:⊕
y,n,p∈Λ

a
(5)
i,j+2 mod 8 = 0 (5)

⊕
y,n,p∈Λ

a
(5)
i,j+6 mod 8 = 0 (6)

for all i ∈ {0..3}.

We performed some computer experiments which confirm the existence of
those properties for arbitrarily chosen key values. The complete property is
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Fig. 4. The four Rijndael-256 rounds property

represented on figure 4. Notice also that when only two bytes - say y and n - at
position (i, j) and (i+1 mod 4, j) are saturated, the corresponding properties
are less strong and could be written as partial sums:

⊕
y,n∈Λ

a
(5)
0,j+2 mod 8 =

⊕
y,n∈Λ

a
(5)
3,j+2 mod 8⊕

y,n∈Λ
a

(5)
0,j+6 mod 8 =

⊕
y,n∈Λ

a
(5)
3,j+6 mod 8

3.3 The 4 rounds Distinguisher

Then, we can easily use equality (5) or equality (6) at the input of the fifth
round in order to construct an efficient distinguisher between four Rijndael-256
inner rounds and a random permutation testing if equality (5) or (6) occurs
and requiring 224 plaintexts belonging to a same Λ set with three active bytes
at positions (i, j), (i+ 1 mod 4, j) and (i+ 2 mod 4, j).

The existence of such property for Rijndael-256 is not really surprising even
if it has never been observed before. This property is due to a slower diffusion
in Rijndael-256 than in Rijndael-128 (the AES) and in Rijndael-192. Note also
that this particular property doe not work for the AES and Rijndael-192: there
is no particular output byte after the third round that only depends on one
particular byte of the corresponding input and we do not find such a property
for the AES and Rijndael-192.
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4 The proposed attacks

We could use the properties previously described on four Rijndael-256 inner
rounds to mount elementary attacks against 7, 8 and 9 rounds versions of
Rijndael-256. To attack 7 rounds of Rijndael-256, we use first the extension
by one round at the beginning proposed in [6] and the partial sums technique
described in [6] with equality (5) to add two rounds at the end of our four
rounds distinguisher. To extend this 7 rounds attack by one round at the
end and/or by one round at the beginning, we directly apply the techniques
proposed in [6] and the weakness of the Rijndael key-schedule proposed in [13].

4.1 The 7 rounds attack

Extension at the Beginning. Usually and as done in [4] and in [13], to
extend the distinguisher that use equality (1) by one round at the beginning,
the authors first choose a set of 232 plaintexts that results in a Λ set at the
output of the first round with a single active byte (see figure 5). This set is
such that one column of bytes at the input of the first MixColumns range over
all possible values and all other bytes are constant. Then, under an assumption
of the four well-positioned key bytes of K0, a set of 256 plaintexts that result
in a Λ set at the input of the second round is selected from the 232 available
plaintexts.

Fig. 5. The extension by one round at the beginning.

Instead of guessing four bytes of the first subkey K0, the authors of [6]
simply use all the 232 plaintexts that represents in our case 28 Λ sets with
three active bytes (28 groups of 224 encryptions that vary only in three bytes
of A(1)). Then, for some partial guesses of the key bytes at the end of the
cipher, do a partial decryption to a single byte of A(5), sum this value over all
the 232 encryptions and check for a zero result.

This first improvement save a factor 232 corresponding with 4 exhaustive
key bytes of K0 compared to the attack proposed in [4] using always 232

plaintexts/ciphertexts.
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Note also, as done in [10], that we could see this extension as a distinguisher
with one more round implying a Λ set with 4 active bytes that results after
the first round into an other Λ set with a complete column of active bytes.

Partial sums technique. Using the method of [6], we could use the equality
(5) to attack a 7 rounds version of Rijndael-256 by adding one round at the
beginning using the technique previously described and adding two rounds at
the end using the two rounds extension proposed in [6] and described in figure
6. We describe here the original attack and then directly apply it in our case.

Fig. 6. The extension by two rounds at the end proposed in [6], considering that the last
round does not contain a MixColumns operation.

This extension works in the original paper on a 6 rounds version of Rijndael
and looks at a particular byte of A(5) that verifies (1) and how it relates
to the ciphertext. First, the authors rewrite the cipher slightly by putting
the AddRoundKey before the MixColumns in round 5. Instead of applying
MixColumns and then adding K5, they first add in K ′5, which is a linear
combination of four bytes of K5, and then apply MixColumns. Under this
assumption, it is easy to see that any byte of A(5) depends on the ciphertext,
on four bytes of K6 and one byte of K ′5 considering that the sixth round is the
last one and does not contain a MixColumns operation. Then, only the five
key bytes of the two last rounds remain unknowns.

Moreover, the authors improve the complexity of their attack using a tech-
nique called “partial sums” to sequentially decipher the two last rounds (the
last not containing the MixColumns operation) according the values of the five
unknown key bytes. To use the three rounds distinguisher given by equation
(1), they compute from the i-th ciphertext ci:

∑
i

S−1 [S0 [ci,0 ⊕ k0]⊕ S1 [ci,1 ⊕ k1]⊕ S2 [ci,2 ⊕ k2]⊕ S3 [ci,3 ⊕ k3]⊕ k4] (7)
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where S0, S1, S2, S3 represent the inverse of the S-box S multiplied by a
component of InvMixColumns, ci,j the byte number j of ci; k0, · · · , k3 the
four bytes of K6 and k4 the implied byte of K ′5.

To improve the general complexity of the attack, they associate the follow-
ing partial sums to each ciphertext c:

xk :=
k∑
j=0

Sj [cj ⊕ kj ]

for k from 0 to 3. They use the transformation (c0, c1, c2, c3) → (xk, ck+1

, · · · , c3) to sequentially determine the different values of kk and to share the
global computation into 4 steps of key bytes search (always testing if equation
(1 happens) with 248 operations for each one corresponding with 250 S-box
lookups for each set of 232 ciphertexts, corresponding with 224 particular Λ sets
of plaintexts with one active byte (see [6] for the details of the complexities).
To discard false alarms (i.e. bad keys that pass the test), they need to repeat
this process on 6 different Λ sets. Then, the general complexity of the partial
sums attacks against a 6 rounds version of Rijndael-b is about 244 encryptions
(considering that 28 S-box applications are roughly equivalent with one trial
encryption) using 6 · 232 plaintexts.

The corresponding 7 rounds attacks Applying the first extension at the
beginning and the partial sums technique, we could directly mount an attack
against 7 rounds of Rijndael-256 using the equality (5) and the corresponding
four Rijndael-256 rounds distinguisher: we test if equality (5) holds for A(6)

by summing on the 232 values of the partial decryptions corresponding with
the 232 plaintexts that represent in our case 28 Λ sets with three active bytes.
Then, we exploit the partial sums technique on the four corresponding bytes
of K7 and the implied byte of K ′6. For a set of 232 ciphertexts, the cost of the
four steps of the deciphering process is exactly the same than in the previous
attack and is about 250 S-box lookups. We need to repeat the process using
around 6 different sets of 232 ciphertexts to detect false alarms as in [6]. Then,
the total number of S-box lookups is 252 corresponding with 244 encryptions,
always considering that 28 S-box applications is roughly equivalent with one
trial encryption.

4.2 The 8 rounds attack

The naive approach. As done in [6] and in [13], we could directly improve
the previous 7 rounds attack by adding one round at the end. To express a
single byte of A(6) in the key and the ciphertext, we could extend equation
(5) to three levels at the end with 16 ciphertexts bytes and 21 key bytes.
However, the partial sums technique is only helpful during the last part of the
computation.
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For a 192-bit master key, we first guess the required 112 bits of the last
round 256-bit subkey. The two last bytes of this subkey required for the compu-
tations could be directly deduced from the other 112 bits due to the weakness
of the key schedule described in [13]: if we know some bytes of the subkey at
position i and i− 1,we directly deduce those at position i−Nk with Nk = 6
for a 192-bit master key. (Note that this property is only true for some par-
ticular positions of the byte a(6)

i,j , for example if i = 0 and j = 2.) Thus after
guessing the 14 required bytes of this subkey, we could directly use the partial
sums technique requiring about 250 S-box lookups. Thus, the total cost for a
structure of 232 ciphertexts is about 2162 S-box lookups. As noticed in [6], we
need to process three structures of 232 ciphertexts before we start eliminating
guesses for the last round key, so the overall cost of this 8-rounds attack is on
the order of 2164 S-box lookups or about 2156 trial encryptions.

For a 256-bit master key, the alignment in the key schedule is different and
guessing the eighth round subkey does not give any information about round
keys of round 7 and of round 6. So, we could not improve the general complex-
ity of the attack. Working in a similar fashion as before, we first guess the 128
bits of the last round key and using the partial sums technique, compute the
four bytes of K7 and the byte of K ′6 for each of the 232 ciphertexts belonging
to a same structure. Thus, the complete cost of this attack is about 2178 S-box
lookups for one structure. As noticed in [6], we need to process five structures
of 232 ciphertexts before we start eliminating guesses for the last round key, so
the overall cost of this 8-rounds attack is on the order of 2180 S-box lookups
or about 2172 trial encryptions.

The herd technique. In [6], the authors develop a technique to improve
their 6 rounds attack by adding one round at the beginning. This new attack
require naively the entire codebook of 2128 known plaintexts that could be
divided into 296 packs of 232 plaintexts/ciphertexts that represent 224 Λ sets
with one active byte after this first round. But this property could not be
directly exploited because in this case even the wrong keys pass the test at
the end of the fifth round since equality (1) holds on for the 2120 Λ sets.

Instead, they use a particular byte at the end of the first round, say a
(2)
a,b

different from the four bytes of the Λ set with a fixed value x (see figure 7).
With a

(2)
a,b = x, they obtain a set of 2120 possible encryptions composed of 288

packs, where each pack contains 224 groups of Λ sets. They call this structure
with 2120 elements a herd. If they sum up equality (1) on a herd, then the
property is only preserved for the correct key.

Thus, they notice that this particular byte a(2)
a,b depends on only four bytes

of plaintext, say (p4, · · · , p7) and on four bytes of the key K0. As done for the
partial sums technique, they could share the key exhaustive search on the four
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Fig. 7. The herd technique: adding one more round at the beginning.

key bytes of K0 required to entirely determine the value of a(1)
a,b in a three-phase

attack using 264 counters my for the first phase, 232 counters nz for the second
whereas the third phase filters information for key guesses.

The attack works as follows: in the first phase, the counter my is incre-
mented at bit level according the 64-bit value y = (c0, · · · , c3, p4, · · · , p7); in
the second phase, the four bytes of K0 are guessed to compute a(2)

a,b and to
share the counters into herds; then select a single herd and update nz by
adding z = (c0, · · · , c3) for each y that is in the good herd; in the third phase,
guess the five key bytes of K7 and of K ′6 to decrypt each z to a single byte of
A(6), sum this byte over all the 232 values of z (with multiplicities) and check
for zero. This last phase must be repeated for each initial guess of the four
bytes of K0.

The first phase requires about 2120 trial encryptions and the rest of the
attack has a negligible complexity compared to it (see [6] for some details
about the attack complexity). Then, the total complexity of this attack is 2120

trial encryptions and 264 bits of memory using 2128 chosen plaintexts. The
authors provide another improvement of their attack remarking that the four
plaintext bytes (p4, · · · , p7) and the four guessed key bytes of K0 define four
bytes of A(1). So they can create 224 smaller herds with 2104 elements by fixing
three more bytes of A(1) to reduce the plaintext requirements to 2128 − 2119

texts.
So, we could directly apply this attack to an 8 rounds version of Rijndael-

256 using the particular equality (5) by adding two rounds at the beginning
and two rounds at the end using 2128 − 2119 plaintexts that will be separated
into herds during the second phase of the attack. However, in the previous
case, they consider that all the codebook is known due to the huge amount of
plaintexts required. So, they do not take into account the ciphering process.
This is not our case and we first need to cipher 2128 − 2119 chosen plaintexts
among the 2256 possible values with four active columns that lead to 224 herds
with 2104 elements at the end of the first round. Then, the complexity of the
attack itself is the same but the total cost is dominated by the 2128−2119 trial
encryptions. Notice that the same problem remains for Rijndael-192.
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4.3 The 9 rounds attack

As done in [6], we could use the herd technique (with 223 undamaged herds)
combined with the partial sums technique to mount an attack against a 9
rounds version of Rijndael-256. In this case, we guess four bytes of K0 and the
21 subkey bytes - 16 bytes of K9, 4 bytes of K8 and one byte of K ′7 - required to
add three rounds at the end of the 4 rounds distinguisher. We always consider
that this distinguisher is extended with one round at the beginning summing
on sets with 232 elements. The attack then works as follows: first, construct
223 undamaged herds of 2104 elements using 2128 − 2119 plaintexts; guess the
four key bytes of K0 to determine a particular herd; then apply the partial
sums technique to this set to compute each xk and to obtain a single byte of
A(7) depending on 16 bytes of the ciphertext and 21 subkey bytes; then use the
fact that summing the 2104 values on a single byte of A(7) will yield zero (from
equality (5)) for the good key. The required storage is about 2104 bits and the
total complexity of this attack is about 232 · 2170 = 2202 trial encryptions for
one herd and a 256-bit key (see [6] for the details of the complexity of the
attack). We need to test four herds before discarding the first bad keys and
at least 26 herds to get exactly the good key (with a decreasing complexity).
Then, the total complexity of this attack is about 2204 trial encryptions.

This attack could only work for a 256-bit key. However, in the case of a
192-bit key, using the weakness of the key-schedule described in section 4.2, we
know that we could preserve 2 bytes of the exhaustive search of K9 that are
directly determined by the 14 others. Then, we could save a 216 factor from
the previous attack and we obtain a complexity of about 2204−16 = 2188 trial
encryptions for the same number of plaintexts and the same required storage.

5 Conclusion

In this paper, we have presented a new particular property on four rounds of
Rijndael-256 that relies on semi-bijective properties of internal foldings. Then
we have built the best known attack against a 9 rounds version of Rijndael-256
requiring for a 192-bit keys 2188 trial encryptions with 2128 − 2119 plaintexts.
We have summed up in table 1 all known results concerning the attacks against
Rijndael-b.

In [6], the authors also present a related key attack against a 9 rounds
version of the AES. Moreover, in [9] and in [11], two related key rectangle
attacks have been proposed against the AES under keys of length 192 and 256
bits. We do not find a way to extend the attacks that use related keys against
Rijndael-256. The main problem in this case comes from the higher number
of 32-bit key words that must be generated to construct 256-bit subkeys: we
do not find a key pattern that sufficiently preserves an integral property.
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Cipher nb Key Data Time source
rounds size Complexity

AES 6 (all) 232 CP 272 [4] (Integral)
7 (all) 2128 − 2119 CP 2120 [6] (Part. Sum)
8 (192) 2128 − 2119 CP 2188 [6] (Part. Sum)
8 (256) 2128 − 2119 CP 2204 [6] (Part. Sum)
9 (256) 285 RK-CP 2224 [6] (Related-key)
10 (192) 2125 RK-CP 2182 [11] (Rectangle)

Rijndael-192 6 (all) 232 CP 272 [4] (Integral)
7 (all) 2128 − 2119 CP 2128 − 2119 [6] (Part. Sum)
8 (192) 2128 − 2119 CP 2188 [6] (Part. Sum)
8 (256) 2128 − 2119 CP 2204 [6] (Part. Sum)

Rijndael-256 6 (all) 232 CP 272 [4] (Integral)
7 (all) 2128 − 2119 CP 2128 − 2119 [6] (Part. Sum)
7 (all) 6× 232 CP 244 this paper
8 (all) 2128 − 2119 CP 2128 − 2119 this paper
9 (192) 2128 − 2119 CP 2188 this paper
9 (256) 2128 − 2119 CP 2204 this paper

Table 1. Summary of Attacks on Rijndael-b - CP: Chosen plaintexts, RK: Related-key
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