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Abstract. Rijndael is the new Advanced Encryption Standard designed
by V. Rijmen and J. Daemen and chosen as AES by the NIST in October
2000. Surprisingly, the number of cryptanalyses against this algorithm is
very low in depict of many efforts furnished to break it.

This paper presents a stronger property than the one used in the Bot-
tleneck Cryptanalysis [GM00]. Unfortunately, this property could not be
used to mount a more efficient cryptanalysis than the Bottleneck Attack
because it is not possible to improve the complexity of the four rounds
distinguisher used in this attack. So, the complexity of the Bottleneck
Attack (recalled in this paper) is always 2144 AES executions using 232

plaintexts.

1 Introduction

In the initial article describing Rijndael [DR98], V. Rijmen and J. Daemen wrote :
“For the different block lengths of Rijndael, no extensions to 7 rounds [of a known
attack] faster than an exhaustive key search have been found”. Of course, since
1998, some attacks reached this aim. In the case of key length equal to 192 or
256 bits, Ferguson et al., in [FKS+00], presented an improvement of the Square
Attack [DR98] permitting to cryptanalyse an eight-rounds version of Rijndael
with a complexity equal to 2204 executions and 2128 − 2119 plaintexts. S. Lucks
presented in [Luc01] an other improvement of the Square Attack using a par-
ticular weakness of the key schedule against a seven-rounds version of Rijndael
where 2194 executions are required for a number of chosen plaintexts equal to
232. H. Gilbert and M. Minier in [GM00] also presented an attack against a
seven-rounds version of Rijndael (known under the name of “Bottleneck At-
tack”) using a stronger property on three inner rounds than the one used in the
Square Attack in order to mount an attack against a seven-rounds version of
Rijndael requiring 2144 cipher executions with 232 chosen plaintexts. In the case
of a 128 bits key lenght, for a seven-rounds version of Rijndael, only two attacks
are known. The first is due to Ferguson et al. in [FKS+00] and requires 2120

cipher executions for a number of plaintexts equal to 2128 − 2119. The second
one, due to H. Gilbert and M. Minier in [GM00], is a marginal speed up of the
128-bits key search requiring 232 chosen plaintexts.
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During the two last years, some new results was published concerning essen-
tially the algebraic structure of the AES S-box. Those results use a potential
weakness of the AES : there is only one non-linear operation in the AES round
function, the inversion in the Galois Field GF (28). So, it is possible to derive
this inversion application into quadratic equations that are true with probability
one. In [CP02], N. Courtois and J. Pieprzyk presents the quadratic equations
given by the AES S-box on GF (2). The authors use those quadratic equations
to express all input/output bytes of each round and generate a huge system to
solve. They apply the XL and the XSL algorithms to obtain the solutions of the
system generated. An other article presented at Crypto’02 by S. Murphy and
M. Robshaw [MR02] also describe the algebraic structure of the AES S-box and
the quadratic equations of this one but on the field GF (256).

The aim of this paper is to present a ”new property” on three inner AES
rounds stronger than the one used in the Bottleneck Attack described in [GM00].
This ”new property” is very similar to the bottleneck property but as now does
not permit to improve any attack due to the same number of dependent bytes
implied in the four rounds distinguisher. This property is, however, stronger
because the number of deduced collisions is bigger.

This paper is organized as follow: Section 2 provides a brief outline of the
AES. Section 3 describes the 3-rounds property and the 4-rounds distinguisher
used in the Bottleneck Attack. Section 4 presents the ”new property”. Section 5
describes, one more time, the bottleneck attack on seven rounds of the AES for
a 128 bits block and a 192 or 256 bits key. Section 6 concludes this paper.

2 A Brief Outline of the AES

The AES is a symmetric block cipher using a parallel and byte-oriented structure.
The key length and the block length are variable and are equal to 128, 192 or
256 bits. The current block is represented by a matrix of bytes. We focus from
now on a 128-bits block represented by a 4 × 4 matrix of bytes :

B =

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

The number of rounds nr is also variable : 10, 12 or 14, depending on the
block length and on the key length. The key schedule derives nr + 1 128-bits
round keys k0 to knr from the master key k of variable length.

The round function, repeated nr − 1 times, is composed of four basic trans-
formations, all linear except the first one :

– SubBytes : a bytewise transformation that applies on each byte of the current
block an 8-bits to 8-bits non linear S-box (that we call S) composed by the
inversion in the Galois Field GF (256) and by an affine transformation.
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– ShiftRows: a linear mapping that rotates on the left all the rows of the
current matrix (0 for the first row, 1 for the second, 2 for the third and 3 for
the fourth)

– MixColumn: another linear mapping represented by a 4 × 4 matrix chosen
for its good properties of diffusion (see [DR02]). Each column of the input
matrix is multiplied by the MixColumns matrix in the Galois Field GF (256)
that provides the corresponding column of the output matrix. We denote by
ai,j for i and j from 0 to 3, the coefficients of the MixColumns matrix.

– AddRoundKey : a simple x-or operation between the input matrix and the
subkey of the current round denoted by ki.

Those nr − 1 rounds are surrounded at the top by an initial key addition
with the subkey k0 and at the bottom by a final transformation composed by a
call to a round function where the MixColumns operation is omitted.

3 The Three-Rounds Property and the Four-Rounds
Distinguisher

We now describe the three inner rounds property used in [GM00] and the four
inner rounds distinguisher deduced.

3.1 The Three-Rounds Property

We note Y, Z, R and S the different intermediate input/output states of three
consecutive inner rounds as noticed in figure 1.

We focus from now on an input block Y with its three left columns fixed.
The most at right column, marked on figure 1, is composed by one active byte
y which takes all possible values between 0 and 255 and by a triplet c equal to
(c0, c1, c2) of constant bytes which will represent a parameter. More formally, we
note Y0,3 = y, Y1,3 = c0, Y2,3 = c1 and Y3,3 = c2.

In the same way, we use the following notations for some particular bytes
marked on figure 1. So, we denote Z0,3 = z0, Z1,3 = z1, Z2,3 = z2, Z3,3 = z3,
R0,3 = r0, R1,0 = r1, R2,1 = r2, R3,2 = r3 and S0,3 = s.

So, let us analyze how the Z, R and S particular bytes z0 to z3, r0 to r3 and
s can be seen as c-dependent and key-dependent functions of the y input byte.

– After the first round, the y → zc
0[y] one to one function is independent from

the value of the c triplet and is entirely determined by one key byte, due
to the effect of the ShiftRows operation. The same property holds for z1, z2

and z3. So, the quartet of bytes (z0, z1, z2, z3) is a function of the y values
entirely determined by four key-dependent bytes. More formally, there exists
4 key-dependent constants k1,i,0 for i = 0..3 such that

zi = ai,0 · S(y) + k1,i,0 , i = 0..3

where S represents the AES S-box.
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Fig. 1. The Three Inner Rounds Property

– After the second round, each of the four bytes ri[y], i = 0..3 is a one to one
function of the corresponding zi[y] byte entirely determined by one single
unknown byte that is entirely determined by c and the key. The quartet of
bytes (r0, r1, r2, r3) of R marked on figure 1 is a function of (z0, z1, z2, z3)
entirely determined by four key-dependent and c-dependent bytes.

– After the third round, the s byte marked on figure 1 can be expressed as
a function of the (r0, r1, r2, r3) quartet of bytes entirely determined by one
key-dependent byte depending on the subkey of the round.

In summary, the s byte depends on only 5 key-dependent bytes and 4 c-dependent
bytes. More formally, the partial function sc[y] is entirely determined by a re-
duced number of unknown bytes. We can exploit this restricted dependency by
constructing collisions on all the y values for distinct values of the c triplet. In
other words :

Property 1. There exists c′ and c′′ two triplets of constants such as for all y
values between 0 and 255, we have : sc′ [y] = sc′′ [y]. In this case, we say that we
have a collision.
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In fact, the number of obtained collisions is 256, one for each y value.
Under the heuristic assumption that the unknown constants depending on

the key and on the c triplet behave as random functions, then, by the birthday
paradox, if we take a C set of 216 c triplets, the probability to obtain a collision
is non negligible.

This property can be extended to mount an efficient four-rounds distinguisher
by adding a fourth round at the bottom of the three previous rounds.

3.2 The Four-Rounds Distinguisher

We consider the deciphering of the fourth round in the following way (see
figure 2) :

S

s

t0
t1
t2
t3

ShiftRowsSubBytes

MixColumnsAddRoundKey

−1

−1

−1

−1

τ+δ

T

Fig. 2. The Extension to a Fourth Round

We denote by T the output block after the fourth round and we denote by
(t0, t1, t2, t3) the last column of T marked on the figure 2. We can express the
byte s as s = S−1[(0E · t0 + 0B · t1 + 0D · t2 + 09 · t3) + δ] where S represents
the AES S-box and δ a constant depending on the subkey of the fourth round.
We have the following property :

Property 2. There exists a collision between sc′ [y] and sc′′ [y] if and only if for
all y values between 0 and 255, we have :

0E · tc′0 + 0B · tc′1 + 0D · tc′2 + 09 · tc′3 = 0E · tc′′0 + 0B · tc′′1 + 0D · tc′′2 + 09 · tc′′3 .

To simplify the notations we denote 0E · tc0 + 0B · tc1 + 0D · tc2 + 09 · tc3 by τ c[y].
τ c[y] is a function of y entirely determined by 6 unknown bytes depending on
the key and by 4 additional unknown bytes depending on both the key and the
c values.

The following four inner rounds distinguisher is tested on a limited number
of y values, a set Λ of 16 values is sufficient, the number of false alarms being
negligible in this case.
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– Select a C set of about 216 c triplet values and a subset of {0 · · · 255}, say
for instance a Λ subset of 16 y values.

– For each c triplet value, compute the Lc = (0E ·tc0+0B·tc1+0D·tc2+09·tc3)y∈Λ.
– Check wether two of the above lists, Lc′ and Lc′′ are equal.

The computations made at the secund step of this distinguisher (16 linear
combinations of the outputs) represent substantially less than one single AES
execution.

This four-rounds distinguisher requires about 220 chosen inputs Y, and since
the collision detection computations (based on the analysis of the corresponding
T values) require less operations than the 220 4-inner rounds computations, the
complexity of the distinguisher is less than 220 AES encryptions for a probability
of success equal to 1/2 (due to the birthday paradox).

4 The ”New Three-Rounds Property”

We describe, in this section, a ”new” three-rounds property derived from the
previous one that permits to obtain an higher number of collisions. For more
clarity, we use the same notation than the previous one. In this ”new property”,
the number of initial active bytes in the last Y column has been modified.
Here, we define two active bytes y and c0 instead of one (the y byte) before.
In this case, the c triplet becomes a pair of bytes defined by cp = (c1, c2). Let
us explain how those two active bytes cross three inner rounds (see figure 3) :

– After the first round, the y → z
cp

0 [y, c0] one to one function is independent
from the value of the cp triplet and is entirely determined by one key byte,
due to the effect of the ShiftRows operation. The same property holds for
z1, z2 and z3. So, the quartet of bytes (z0, z1, z2, z3) is a function of the
y and c0 values entirely determined by four key-dependent bytes.

– After the second round, each of the four bytes ri[y, c0], i = 0..3 is a one to
one function of the corresponding zi[y, c0] byte entirely determined by one
single unknown byte that is entirely determined by cp and the key. The
quartet of bytes (r0, r1, r2, r3) of R marked on figure 3 is a function of
(z0, z1, z2, z3) entirely determined by four key-dependent and c-dependent
bytes.

– After the third round, the s byte marked on figure 3 can be expressed
as a function of the (r0, r1, r2, r3) quartet of bytes entirely determined by
one key-dependent byte depending on the subkey of the round.

As in the section 3.1, we can deduce that the s byte at the end of the third
round is a function of y and c0 entirely determined by 5 key-dependent bytes
and 4 key-dependent and cp-dependent bytes. We can also exploit this restricted
dependency between the s byte and the two active bytes y and c0 by defining a
new kind of collision :
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Fig. 3. The Other Three Inner Rounds Property

Property 3. There exists c′p and c′′p two pairs of constants such as for all y and
c0 values between 0 and 255, we have : sc′p [y, c0] = sc′′p [y, c0]. In this case, we
say that we have a collision.

The number of obtained collisions is (256)2, one for each y and c0 value.
This ”new” property is due to the very symmetric and parallel structure of

the AES in the byte position level.
We verify the veracity of this property by computer experiments.

Unfortunately, this property could not be used to mount a more efficient four-
rounds distinguisher than the one presented in section 3.2. Indeed, the number
of cp pairs used in the distinguisher and the probability of success depend on
only the four intermediate cp-dependent bytes. The number of such bytes is the
same for the property of the section 3.1 and the ”new” one in depict of the bigger
number of obtained collisions.

So, we do not find a more efficient distinguisher that permits to use this
stronger property and to improve an attack. We use the same distinguisher than
the one described in section 3.2.
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5 The Bottleneck Attack on a Seven-Rounds Version of
the AES with Key Lengths Equal to 192 and 256 Bits
Using 232 Chosen Plaintexts

Even if the new property could not be used to improve the four-rounds
distinguisher described in section 3.2 and so the bottleneck attack, we give a
short description of this known cryptanalysis. So, we are going to recall, in
this section, how the four inner rounds distinguisher of the section 3.2 could
be extended to mount a seven-rounds attack on the AES with a 192 or a 256
bits key.

The seven-rounds version of the AES is depicted in figure 4. The seventh
round is here considered as the last round (i.e. it doesn’t contain the Mix-
Columns operation). X represents a plaintext block and V the corresponding
ciphertext. The four previous rounds are surrounded at the top by one initial
round X → Y, composed by an initial key addition followed by one round
and at the bottom by two final rounds : T → U and U → V.

The attack method is a combination between the four-rounds distinguisher
presented in section 3.2 and an exhaustive search of some keybytes or combi-
nation of keybytes of the initial and the two final rounds. The attack described
here uses the fact that, in the equations provided by the four-rounds distin-
guisher, there is a variables separation in terms which involve one half of
the 2 last rounds key bytes and terms which involve a second half of the 2
last round key bytes in order to save a 280 factor in the exhaustive search
complexity.

5.1 Extension at the Beginning

The distinguisher of section 3.2 could be extended by one round at the beginning
using the same method than the one proposed by the authors of Rijndael in the
initial paper [DR98] and first applied to the algorithm Square.

The main idea used here is that if, in the initial key addition, the 4 key bytes
(denoted by kini = (k0,0, k0,1, k0,2, k0,3)), added with the four bytes (x0, x1, x2, x3)
of the plaintext X marked in figure 3, are known then it is possible to partition
the 232 plaintexts into 224 subsets of 28 plaintexts values satisfying the condi-
tions of section 3.2 (i.e. (c0, c1, c2) stay a triplet of constants and y is the active
byte).

So, if all the 232 possible plaintexts are encrypted for all the possible values of
the (x0, x1, x2, x3) quartet (the other 12 bytes being taken equal to a constant),
the 232 plaintexts could be partitioned, according to the value of kini, into 224

subsets of 28 plaintexts according the values of y (which are known up to an
unknown constant linked with the first round key byte). Those subsets are such
that the y byte takes all possible values between 0 and 255 and the c = (c0, c1, c2)
triplet is composed of three constant values, different and unique for each of the
224 subsets, the 12 other Y bytes are constant and all those constant values are
the same for all subsets.

Those 232 plaintexts give the corresponding 232 ciphertexts V .
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Fig. 4. Attack on Seven Rounds of the AES

5.2 Extension at the End

Each of the t0, t1, t2, t3 bytes can be expressed as a function of four bytes of the
V ciphertext and five unknown key bytes (i.e. four of the final round subkey and
one linear combination of the penultimate round subkey). So, in order to improve
the key exhaustive search on the two last rounds, the equations of collisions are
”cuted” in two parts as follows :
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τ c′
1 = 0E · tc′0 + 0B · tc′1 and τ c′

2 = 0D · tc′2 + 09 · tc′3
With this notation the equation of collision τ c′ = τ c′′ described in property 2

could be expressed as τ c′
1 + τ c′

2 = τ c′′
1 + τ c′′

2 , i.e. τ c′
1 + τ c′′

1 = τ c′
2 + τ c′′

2 . τ1 depends
on t0 and t1 and τ2 depends on t2 and t3. Now, due to the fact that the last
round of the AES does not contain the MixColumns operation, t0 and t1 could
be expressed, as shown on figure 3, as a function of 8 ciphertext bytes and 10 key
bytes of the two last rounds denoted by kτ1 . In the same way, t2 and t3 depend
on 8 ciphertext bytes and on 10 key bytes of the two last rounds denoted by kτ2 .

This remark permits to share in two parts the key exhaustive search and to
improve the attack on a seven rounds-version of the AES by a factor 280.

5.3 Outline of the Attack

An efficient exhaustive search of the kini, kτ1 and kτ2 keys could be performed
in the following way:

First step :
Cipher the 232 chosen plaintexts for all possible values of the quartet
(x0, x1, x2, x3).

Second step :
For kini from (0,0,0,0) to (255,255,255,255) do

Partition the (256)4 chosen plaintexts
into (256)3 Λc sets according the value of the triplet c
Choose into those (256)3 Λc sets 216 values of c
For each value of the (c′, c′′) pair do

For kτ1 from (0, · · · , 0) to (255, · · · , 255) do
Compute the values of (τ c′

1 ⊕ τ c′′
1 )y=0···15 from the ciphertexts

Put them in a table Tkini,c′,c′′ [kτ1 ]
End For
For kτ2 from (0, · · · , 0) to (255, · · · , 255) do

Compute the values of (τ c′
2 ⊕ τ c′′

2 )y=0···15 from the ciphertexts
Look in the table Tkini,c′,c′′ [kτ1 ] if the same values appear
If yes, verify the same computation for all the y values

If equality for all y values, return (kini, kτ1 , kτ2)
Else continue
End If

End For
End For

End For

Since the above procedure tests whether the exist collisions inside a random
set of 2562 of the 2564 possible sc[y] functions, the probability of the procedure
to result in a collision, and thus to provide kini, kτ1 and kτ2 is high (say about
1/2). In other words, the success probability of the attack is about 1/2.

The first step could be made independently and requieres 232 chosen plain-
texts and 232 AES executions.
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The complexity of the secund step is about 2144 operations less expensive than
AES executions. Its probability of success is about 1/2. This attack provides 20
bytes of information on the last and penultimate key values.

5.4 How to Improve this Attack Using the Lucks’ Property of the
Key Schedule for a 192 Bits Key

We can improve, by using the particular property of the key schedule described
by S. Lucks in [Luc00], the complexity of the attack by a little factor in the
case of a key length equal to 192 bits. Indeed, the attack presented by S. Lucks
permits to limit the key exhaustive search to only 8 kτ2 bytes instead of the 10
initial bytes because the knowledge of the two first columns of the last subkey
determines completely, taking into account the effect of the last ShiftRow, the
two others bytes of the penultimate subkey that compose kτ2 .

6 Conclusion

We have shown in this paper that there exists a strong collision property on
three inner AES rounds due to some partial byte oriented functions induced by
the AES cipher. This property is stronger than the one used in the bottleneck
attack even if this new bottleneck property could not be extend in a better four
rounds distinguisher that the one used in the known attack.

Maybe, there is a better way to exploit this new restricted dependency but
we do not find how to extend it.
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