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M, en un autre abstrait A. La seconde fonction transforme un système d’événements B en un système
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UFR Sciences et Techniques,

16, route de Gray, 25030 Besançon Cedex (France)
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Abstract. In a model-based testing approach as well as for the verifi-
cation of properties by model-checking, B models provide an interesting
solution. But for industrial applications, the size of their state space
often makes them hard to handle. To reduce the amount of states, an
abstraction function can be used, often combining state variable elimi-
nation and domain abstractions of the remaining variables. This paper
presents a computer aided abstraction process that combines syntac-
tic and semantic abstraction functions. The first function syntactically
transforms a B event system M into an abstract one A, and the second
one transforms a B event system into a Symbolic Labelled Transition
System. This paper is devoted to define a syntactic transformation that
suppresses some variables in M. We show that this function is correct,
by proving that A is refined by M, and that a process that combines the
syntactic and semantic abstractions significantly reduces the number of
proof obligations to prove, and the time cost of abstraction computation.

Keywords: Model Abstraction, Syntactic Abstraction, Refinement.

1 Introduction

B models are well suited for producing tests of an implementation by means of
a model-based testing approach [BJK+05,UL06] and to verify dynamic proper-
ties by model-checking [LB08]. But model-checking as well as test generation
require the models to be finite, and of tractable size. This usually is not the case
with industrial applications, and the search for executions instantiated from the
model frequently comes up against combinatorial explosion problems. Abstrac-
tion techniques allow for projecting the (possibly infinite or very large) state
space of a system onto a small finite set of symbolic states. Abstract models
make test generation or model-checking possible in practice. In [BBJM09b], we
have proposed and experimented an approach of test generation from abstract
models. It appeared that the computation time of the abstraction could be very
expensive, as evidenced by an industrial application such as the IAS [GIX04] case
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study. In other words, we had replaced a problem of search time in a state graph
with a problem of proof time. Indeed, computing an abstraction is performed by
proving enabledness and reachability conditions on symbolic states [BPS05].

In this paper, we contribute to solve this proof time problem by defining
a syntactic abstraction function that does not need proof obligation checking.
The function works by suppressing some state variables of a model. When there
are domain abstractions on the remaining state variables, we also perform a
semantic abstraction that requires proof obligation checking, but it applies to a
model that has been syntactically simplified.

In Sec. 2, we define the notions of event system, refined event system and we
recall some of the main properties of substitution computation. We also define
a Symbolic Labelled Transition System as a B event system abstraction. Sec-
tion 3 presents the “Electrical System” case study that illustrates our approach.
In Sec. 4, we define how our syntactic abstraction function transforms the B
predicates and substitutions. We prove that this abstraction is correct in the
sense that the source model M refines the generated abstract one A. In this way,
the abstraction can be used to verify safety properties and to generate tests. In
Sec. 5, we present two processes to compute abstractions. The first one is the se-
mantic abstraction implemented by GeneSyst and the second one combines the
syntactic abstraction defined in Sec. 4 with the semantic one. In Sec. 6, we com-
pare the two processes on several examples. Section 7 concludes the paper, gives
some future research directions and compares our approach to other abstraction
methods.

2 Preliminaries

This paper presents an approach for computing an abstraction of an event system
such that the abstraction is refined by the source model. We give in this section
the background required for reading the paper. We first define general notions
about the B method: refinement, primitive forms of substitution, substitution
properties, and conjunctive form (CF) of B predicates. Then we summarize the
principles of the abstraction of B event systems as considered in [Sto07].

2.1 B Event Systems and Refinement

First introduced by J.-R. Abrial [Abr96a], a B event system defines a closed
specification of a system by a set of events. In the remainder of the paper, we will
use the following notations to define the event systems: x, y, z are state variables
and X is a set of states variables. Pred is the set of B predicates on the variables
of X . I, PC, P and P ′ are in Pred: I is an invariant, PC defines properties on
the constants, and P and P ′ are for the other predicates. We use S and S′ to
denote B generalized substitutions, and E and F to denote B expressions. We
distinguish between an event name and its definition. An event has its name ev

in a set E . Its definition ev =̂ S by means of a generalized substitution is in a
set Ev.

RR 2009–4
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Many substitutions in the B event systems can be rewritten by means of the
five B primitive forms of substitutions of Def. 1. We do not take into account
the PRE and ”;” substitutions as we only consider abstract B event systems.

Definition 1 (Substitution). The following five substitutions are primitive:

– single and multiple assignments, denoted as x := E and x, y := E, F
– substitution with no effect, denoted as skip
– guarded substitution, denoted as P ⇒ S
– bounded nondeterministic choice, denoted as S[]S′

– substitution with local variable, denoted as @z.S, allowing to express the
unbounded non deterministic choice, denoted as @z.(P ⇒ S)

Given a substitution S and a post-condition P ′, we are able to compute the
weakest precondition P such that if P is satisfied, then P ′ is satisfied after the
execution of S. The weakest precondition, defined in [Abr96b], is denoted by
[S]P ′. We define correct B event systems in Def. 2.

Definition 2 (Correct B Event System). A correct B event system is a
tuple 〈C, PC, X, I, Init, Ev〉 where:

– C is a set of constants,
– PC is a predicate defining the constants C,
– X is a set of state variables,
– I (∈ Pred) is an invariant predicate over X,
– Init is a substitution called initialization, such that: PC ⇒ [Init]I,
– Ev is a set of event definitions in the shape of evi =̂ Si such that the following

condition holds for every substitution Si: PC ∧ I ⇒ [Si]I.

When we explicitly refer to a given model, we add the name of that model
as a subscript to the symbols C, PC, X , I, Init and Ev. IM is for example the
invariant of a model M.

In Sec. 4, we will prove that an abstraction A that we compute is refined
by its source event system M, and so we give in Def. 3 the definition of the B
refinement.

Definition 3 (B Event System Refinement). Let A and R be two B event
systems. A is refined by R if:

– the initialization satisfy: PCR ∧ PCA ⇒ [InitR]¬[InitA]¬IR,
– any event defined as ev =̂ SA in EvA and redefined as ev =̂ SR in EvR satisfies

the following condition: PCR ∧ PCA ∧ IA ∧ IR ⇒ [SR]¬[SA]¬IR.

We use in the remainder of the paper the following main axioms and prop-
erties of substitutions:

[skip]P ⇔ P (1)

[P ⇒ S]P ′ ⇔ (P ⇒ [S]P ′) (2)

[S[]S′]P ⇔ [S]P ∧ [S′]P (3)

[@z.S]P ⇔ ∀z.[S]P if z is not free in P (4)

Distributivity: [S](P ∧ P ′) ⇔ [S]P ∧ [S]P ′ (5)

LIFC
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Definition 4 (Conjunctive Form). A B predicate P ∈ Pred is in CF when it
is a conjunction p1 ∧ p2∧ . . .∧ pn where any pi is a disjunction p1

i ∨ p2
i ∨ . . .∨ pm

i

such that any p
j
i is an elementary predicate in one of the following two forms:

– E(X) r E(C) or E(X) r F (Y ), where E(X) and F (Y ) are B expressions
on the sets of variables X and Y , r is a relational operator and E(C) is a
constant B expression on the set of constants C,

– ∀z.P or ∃z.P , where P is a B predicate in CF.

The aim a putting a predicate in CF is to have the negations applied only
to the atomic propositions, so that the non-monotonicity of a predicate trans-
formation function T (T (¬P ) 6= ¬T (P )) is not a problem.

2.2 Symbolic Labelled Transition Systems

The event-based semantics of a B event system is defined by its set of execution
traces (the set of all its feasible sequences of event executions, starting with the
initialization). Hence, a SLTS A is a semantic abstraction of a B model M if it
has the same set of events as M and a set of variables included into that of M
(Def. 5), and if every execution trace of M is included into the set of paths of
the SLTS A (Def. 5). Def. 5 is that of [BPS05] where we restrict the labels of
the transitions to event names.

Definition 5 (Symbolic Labelled Transition System Associated to a B
Model). A SLTS A defined by the tuple 〈XA, EA, QA, q0, DefA, TA〉 is associated
to a B model, if:

– XA(⊆ X) is a set of variables, subset of the variables of the B model,
– EA(= E) is a set of event names, equal to the one of the B model,
– QA is a set of symbolic state names,
– q0(∈ QA) is the initial state,
– DefA(∈ QA → PredA) associates a predicate to any symbolic state name,
– TA is a transition relation (TA ⊆ QA × EA × QA).

Definition 6 (Semantic Abstraction of a B Model). A SLTS A is a se-
mantic abstraction of a B model M, if and only if A is associated to M according
to Def. 5 and every execution trace of M is an existing path over the transitions
of A.

3 Electrical System Example

We describe in this section a B event system that we will use in this paper as a
running example to illustrate our proposal.

A device D is powered by one of three batteries B1, B2, B3 as shown in Fig. 1.
A switch connects (or not) a battery Bi to the device D. A clock H periodically
sends a signal that causes a commutation of the switches, i.e. a change of the
battery in charge of powering the device D. The working of the system must
satisfy the three following requirements:

RR 2009–4
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Fig. 1. Electrical System

– Req1: there must be no short-circuit, i.e. there is only one switch closed at
a time,

– Req2: there is continuous power supply, i.e. there is always one switch closed,
connected to a working battery,

– Req3: a signal from the clock always changes the switch that is closed.

But the batteries are subject to electrical failures. When it occurs to the
battery that is powering D, the system triggers an exceptional commutation to
satisfy the requirement Req2. The broken batteries are replaced by a mainte-
nance service. We assume that it works fast enough for not having more than
two batteries down at the same time. When there are two batteries down, the
requirement Req3 is relaxed and the clock signal leaves unchanged the switch
that is closed.

This system is modeled by means of three variables H , Sw and Bat. H models
the clock and takes two values: tic when it asks for a commutation and tac when
this commutation has occurred (H ∈ {tic, tac}). Sw models the state of the
three switches by an integer between 1 and 3: Sw = i indicates that the switch i

is closed while the others are opened. This modelling makes that requirements
Req1 and Req2 necessarily hold. Bat models an electrical failure by a total
function (Bat ∈ 1..3 → {ok, ko}). The ko value for a battery indicates that it
is down. In addition to the typing of the variables, the invariant I expresses the
assumption that at least one battery is not down by stating that Bat(Sw) = ok:

I =̂ H ∈ {tic, tac} ∧ Sw ∈ 1..3 ∧ (Bat ∈ 1..3 → {ok, ko}) ∧ Bat(Sw) = ok.

Notice that the requirement Req3 is a dynamic property, not formalized in I.
The initial state is defined by Init in Fig. 2. The behavior of the system is
described by four events, modeled in Fig. 2 with the primitive forms of substi-
tutions:

– Tic sends a commutation command,
– Com performs a commutation (i.e. changes the closed switch),
– Fail simulates an electrical failure on one of the batteries,
– Rep simulates a maintenance intervention replacing a down battery.

4 Syntactic Abstraction

We consider abstractions obtained by observing only a subset of variables. For
instance, to test the electrical system in the particular cases where two batteries

LIFC
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Init b= H, Bat, Sw := tac, {1 7→ ok, 2 7→ ok, 3 7→ ok}, 1
Tic b= H = tac ⇒ H := tic
Com b= card(Bat ⊲ {ok}) > 1 ∧ H = tic ⇒

@ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ∧ ns 6= Sw ⇒ H, Sw := tac, ns)
Fail b= card(Bat ⊲ {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ok}) ⇒
nb = Sw ⇒

@ns.(ns ∈ 1..3 ∧ ns 6= Sw ∧ Bat(ns) = ok ⇒
Sw, Bat := ns, Bat <+ {nb 7→ ko})

[]nb 6= Sw ⇒ Bat := Bat <+ {nb 7→ ko}))
Rep b= @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ko}) ⇒ Bat := Bat <+ {nb 7→ ok})

Fig. 2. B Specification of the Electrical System

are down, we just have to observe the variable Bat. To compute such an abstrac-
tion, we define a set of transformation rules that produce a simplified model A.
We will prove that A is, by construction, refined by the source model M. Thanks
to this property, it is sufficient to verify safety properties on A for them to hold
on M. It is also easier to compute test cases from the simplified model.

Let X be a set of variables (or constants) and let TX be a transformation
function of predicates and substitutions according to X , denoted here as TX(P )
or TX(S). We define the transformation of a B model according to a transfor-
mation function T in Def. 7. Then we define a transformation function T which
translates a correct model M into a model A that is refined by M (Theorem 2).

Definition 7 (B Event System Transformation). A correct B event system
M =〈CM, PCM, XM, IM, InitM, EvM〉 is transformed as follows, according to a
function T in the B event system A = 〈CA, PCA, XA, IA, InitA, EvA〉 having the
same set of event names EA = EM:

– CA ⊆ CM, there is less constants in the abstraction,
– PCA = TCA

(PCM), constants properties are simplified,
– XA ⊆ XM, there are less variables in the abstraction,
– IA = TXA

(IM), the invariant is transformed,
– InitA = TXA

(InitM), the initialization is transformed,
– for each event ev =̂ S in EvM, ev =̂ TXA

(S) exists in EvA.

We first present the predicate transformation rules and then we give the
generalized substitution rules. We finally prove that, by construction, the initial
system is a refinement of the transformed system.

4.1 Predicate Transformation

We define the transformation function T on predicates by induction with the
rules given in Fig. 3. Each rule transforms a predicate P w.r.t. the set of variables
XA(⊆ XM) denoted here X . This transformation is denoted as TX(P ). We define
a rule Ri for each form of predicate in the conjunctive form (CF) of Def. 4.

An elementary predicate is undetermined when an expression depends on
the values of some variables that we do not observe any more (see the rules
R2 and R4). When all the variables used in the predicate are observed, the

RR 2009–4
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transformation leaves it unchanged (see the rules R1 and R3). As we want to
weaken the predicate so that the events are enabled more often, we replace
an undetermined elementary predicate by true. Consequently, a predicate P ∧
P ′ is transformed into P when P ′ is undetermined, and a predicate P ∨ P ′

is transformed into true when P or P ′ is undetermined (see the rules R5 and
R6). These predicates are weakened since P ∧ P ′ ⇒ P and P ∨ P ′ ⇒ true are
valid formulas. Finally, the transformation of an α-quantified predicate is the
transformation of its body w.r.t. the observed variables, augmented with the
quantified variable (see the rule R7). Notice that the quantified variable must
not belong to the already observed variables, or else it must be renamed.

R1 TX (E(Y ) r E(C)) b= E(Y ) r E(C) if Y ⊆ X
R2 TX (E(Y ) r E(C)) b= true if Y 6⊆ X
R3 TX (E(Y ) r E(Z)) b= E(Y ) r E(Z) if Y ⊆ X and Z ⊆ X
R4 TX (E(Y ) r E(Z)) b= true if Y 6⊆ X or Z 6⊆ X
R5 TX (P ∨ P ′) b= TX (P ) ∨ TX (P ′)
R6 TX (P ∧ P ′) b= TX (P ) ∧ TX (P ′)
R7 TX (αz.P ) b= αz.TX∪{z}(P ) if z /∈ X

Fig. 3. CF Predicate Transformation Rules

Similar rules are defined for constants simplification. Due to a lack of space,
we do not exhibit these rules in this paper.

For example the predicate invariant I of the electrical system is transformed
in T{Bat}(I) =̂ Bat ∈ 1..3 → {ok, ko} as in Fig. 4.

T{Bat}(H∈{tic, tac} ∧ Sw∈1..3 ∧ Bat∈1..3 → {ok, ko} ∧ Bat(Sw)=ok)

=
T{Bat}(H∈{tic, tac}) ∧ T{Bat}(Sw∈1..3)

∧ T{Bat}(Bat∈1..3 → {ok, ko}) ∧ T{Bat}(Bat(Sw) = ok)
applying R6

= Bat ∈ 1..3 → {ok, ko} applying R1 and R2

Fig. 4. Example of Predicate Transformation

Property 1. Let P be a CF predicate in Pred and let X be a set of variables.
P ⇒ TX(P ) is valid.

Proof. As we said before, TX(P ) is weaker than P . Indeed, for any predicate P

in CF there exist p and p′ such that P = p ∧ p′ and such that it is transformed
either in p∧ p′, or in p, or in p′, or in true, by application of the transformation
rules Ri. For any disjunctive predicate P there exist p and p′ such that P = p∨p′

and p ∨ p′ is transformed either in p ∨ p′ or in true.

4.2 Substitution Transformation

The transformation of substitutions are defined through cases in Fig. 5 on prim-
itive forms of substitutions. We address the problem of the transformation of the

LIFC
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R8 TX (x := E) b= skip if x /∈ X
R9 TX (x := E) b= x := E if x ∈ X
R10 TX (skip) b= skip
R11 TX (x, y := E, F ) b= skip if x /∈ X and y /∈ X
R12 TX (x, y := E, F ) b= x := E if x ∈ X and y /∈ X
R13 TX (x, y := E, F ) b= y := F if x /∈ X and y ∈ X
R14 TX (x, y := E, F ) b= x, y := E, F if x ∈ X and y ∈ X
R15 TX (P ⇒ S) b= TX (S) if TX (P ) = true
R16 TX (P ⇒ S) b= TX (P ) ⇒ TX (S) elsewhere

R17 TX (S[]S′) b= skip if TX (S) = skip and TX (S′) = skip
R18 TX (S[]S′) b= TX (S)[]TX(S′) elsewhere

R19 TX (@z.S) b= TX (S) if z not free in TX∪{z}(S) and z /∈ X
R20 TX (@z.S) b= @z.TX∪{z}(S) if z free in TX∪{z}(S) and z /∈ X

Fig. 5. Primitive Substitution Transformation Rules

substitutions assuming that any assignment x := E in the transformed model
is such that the expression E is defined only from constant values and from some
observed variables, in X when x belongs to X . Therefore, in rules R8 to R14, we
do not transform the expressions E and F . In the context of test generation to
which our method is intended, this assumption is not a restriction. It is satisfied
when X is computed as a fixpoint, starting from an initial set of variables that
is iteratively incremented with the variables that are used in the substitutions
that assign variables of X . In Sec. 6, we apply this process to determine the sets
of observed variables from the variables used in test purposes.

Intuitively, a substitution is abstracted by skip when it does not modify
variables from X . The assignment of a variable is replaced by skip (i.e. no effect)
if the variable is not observed (see rules R8, R11), otherwise it is left unchanged
(see rules R9, R12, R13, R14). The substitution with no effect is unchanged (see
rule R10). The rules R15 and R16 transform the guarded substitution P ⇒ S.
The substitution becomes TX(S) when TX(P ) is undetermined (= true), so
that TX(S) is enabled more often than S. This is also the case in rule R16 since
TX(P ) is weaker than P from Prop. 1. The bounded non deterministic choice
S [] S′ becomes TX(S) [] TX(S′) (see rule R18) so that TX(S) and TX(S′) are
enabled more often than S and S′. In the case where both are transformed into
skip (see rule R17), the substitution becomes skip. The quantified substitution
is transformed only when the quantified variable z is not an observed variable in
X . It is transformed into TX(S) when z is not free in TX∪{z}(S) (see rule R19)
and into @z.TX∪{z}(S) elsewhere (see rule R20).

Theorem 1. Let I be a CF invariant of a correct B event system, let S be a
substitution and let X be a set of observed variables. The transformation rules
R8 to R20 are such that S refines TX(S) according to the invariant I.

Theorem 2. Let T be the transformation defined in Fig. 5, let X be a set of
observed variables, and let A be an abstraction of an event system M defined
according to Def. 7. A is refined by M in the sense of Def. 3.

Theorem 1 establishes that any substitution S refines its transformation
TX(S) for a given set of observed variables X . The associated proof is given

RR 2009–4
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in Appendix A. The theorem 2 establishes that a B abstract system obtained
by the transformation of Def. 7 is refined by a B event system M, using the
transformation rules defined in Fig. 3 and Fig. 5.

Proof (of theorem 2). This is a direct consequence of theorem 1 and Def. 7
since the substitution InitA =̂ TX(InitM) is refined by InitM and for any event
ev =̂ SM, the substitution SA =̂ TX(SM) is refined by SM.

The electrical system is transformed as shown in Fig. 6 for the set of observed
variables {Bat}. It is a correct B event system. But with the method, there is
a risk for the syntactically abstracted systems not to satisfy their invariants
TX(IM), when a property on the observed variables depends on the eliminated
ones. This has no consequence on the soundness of the verification of safety
properties and of the test generation, but the verification may fail, and some
generated tests could be impossible to instantiate. Notice that this happened to
none of our eight abstracted systems of Sec. 6: they were all correct. Also notice
that it is always possible to get a correct abstracted model by weakening the
invariant, for instance by reducing it to typing properties.

Init b= Bat := {1 7→ ok, 2 7→ ok, 3 7→ ok}
Tic b= skip
Com b= card(Bat ⊲ {ok}) > 1 ⇒ @ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ⇒ skip)
Fail b= card(Bat ⊲ {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ok}) ⇒ Bat := Bat <+ {nb 7→ ko})
Rep b= @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ko}) ⇒ Bat := Bat <+ {nb 7→ ok})

Fig. 6. B Syntactically Abstracted Specification of the Electrical System

5 Abstraction Process

In [BBJM09b] we have introduced a test generation method based on a semantic
abstraction of a B model (see Fig. 7/Process A). The abstraction is computed
according to a test purpose. The idea is to observe the state variables that are
modified by the operations activated by the test purpose. The domain of the
observed variables can be abstracted into a few subdomains. For example, a
natural integer n can be abstracted into subdomains n = 0 and n > 0.

The two main drawbacks of this process are its time cost and the proportion
of proof obligations (PO) not automatically proved. Indeed, the semantic ab-
straction is based on the proof of the feasibility of the transitions between two
symbolic states. Each unproved PO adds a transition that is possibly unfeasible.
Hence we propose to use a syntactic abstraction in addition to the semantic one.
In Fig. 7/Process B, we describe a complete abstraction process in which we
combine a syntactic abstraction that eliminates some variables (see Sec. 4), with
a semantic abstraction computed by GeneSyst [Sto07] that projects the domain
of the observed variables onto abstract domains (see Sec. 2.2).

LIFC
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The two processes shown in Fig. 7 are not commutative, which means that
the abstract models AA, computed by combining a syntactic and a semantic
abstraction, and AM, computed directly from the behavioral model M, are in-
comparable. Both processes add unfeasible transitions, but not always the same
ones, as is discussed in Sec. 6.2. Nevertheless, the process is correct, since both
AA and AM are refined by the source behavioral model M.

The main advantage of the process including syntactic abstraction w.r.t. the
completely semantic one is the reduction of the number of PO (denoted as #PO)
computed by GeneSyst. Let #e be the number of events in the behavioral model
M and let #s be the number of symbolic states. The number of PO in the worst
case is defined as: #PO = #s + #s × #e + #s2 × #e. There is one PO per
symbolic state to compute the initial states, one PO per symbolic state for the
enabledness of each event, and one PO for the reachability per pair of symbolic
states for each event. The number of generated PO of the syntactically abstracted
model A depends on the structure of events. We consider four categories:

– #eskip is the number of events simplified as skip,
– #egskip is the number of guarded events simplified as P ⇒ skip,
– #etrue is the number of events simplified as true ⇒ S whose guard is true,
– and #egs is the number of simplified guarded events whose substitution is

different from skip and the guard P is different from true.

As the symbolic states are, by construction, mutually disjointed in our pro-
cess, the number of PO for each form of event can be reduced. An event reduced
to skip makes a reflexive transition on any symbolic state, with no need to
prove any PO. Any event reduced to P ⇒ skip makes a reflexive transition on
any symbolic state in which it is enabled. The other events generate the same
PO, but the events that are reduced with a true guard generate no PO for the
enabledness. Finally, the number of PO in the worst case is defined as:

#PO = #s + #s × (#egskip + #egs) + #s2 × (#etrue + #egs)
Moreover, the remaining PO are simplified because the abstract events and

the abstract invariant are simplified. Notice that the bigger the behavioral model
is, the more the simplifications are important, because the ratio of the number of
observed variables to the total number of state variables is small. For example,
the electrical system in Fig. 1 abstracted on {Bat} in Fig. 6 gives the following
worst-case results: #POAM

= 9+4×9+4×92 = 369 and #POAA
= 9+9× (1+

2)+92× (0+2)) = 198 for #e = 4, #s = 9, #eskip = 1 (event T ic), #egskip = 1
(event Com), #etrue = 0 and #gs = 2 (events Fail and Rep).

6 Experimental Results

We have applied our method to four case studies. They are of increasing size, and
are various cases of reactive systems: the electrical system1 (Electr. [Cle01]), a

1 The 100 lines length of the model, in Table 1, refer to a “verbose” version of the
model, much more readable than our version of Fig. 2.
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Fig. 7. Abstraction Process

reverse phone book service (Qui-Donc [UL06]), an automatic conveying system
(Robot [BBJM09a]) and an electronic purse (DeMoney [MM02]). Each one is
abstracted w.r.t. two sets of observed variables . In [BBJM09b], we explain how
to extract the set of observed variables by a static analysis of a test purpose.

In Sec. 6.1 we present an experimental evaluation of the syntactic abstraction
process. Then, in Sec. 6.2 we compare AM with AA respectively computed by
the semantic abstraction process or by its combination with the syntactic one.

6.1 Syntactic Abstraction

Table 1 gives some metrics about case studies, while Table 2 indicates metrics
of the syntactically abstracted models. Symbols “♯”, “Ev.”, “Enum.”, “Var.”,
“Int.”, “Pot.”, “Symb.”, “Th.”, “Pr.” and “Trans.” stand respectively for num-
ber of, Events, Enumerated, Variables, Integers, Potential, Symbolic, Theoretical,
Practical and Transitions. For example, the Robot defined by 6 variables and 9
events is abstracted w.r.t. two sets of respectively 3 and 4 observed variables.
In the first case, one event becomes skip, four events become P ⇒ skip and
the four remaining ones are simplified as P ⇒ S. There are 6 abstracted states.
263 PO are generated by GeneSyst to abstract the original (i.e. not syntactically
simplified) specification, while only 143 PO are generated when it has first been
syntactically simplified.

Case Study #Ev. #Enum. Var. #Int. var. #B lines #Pot. states
Robot 9 6 0 100 384
QuiDonc 4 3 0 170 13
Electr. 4 2 1 100 36
DeMoney 11 3 6 330 1030

Table 1. Some Metrics about Case Studies

Depending on the examples, we can see that from 50% up to 90% of the
events are simplified as skip, P ⇒ skip or true ⇒ S. The direct observable
result of syntactic abstraction is a reduction of the number of generated PO,
from 10% up to 60% from a theoretical point of view, and from 40% up to 60%
from a practical point of view. Also notice that the simplification reduces from
10% up to 50% the number of lines of the model.
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Case #Enum. #Int. #B #Pot.
#eskip #egskip #etrue #egs

#Symb. #PO AM #PO AA

Study Var. Var. Lines States States Th. Pr. Th. Pr.

Robot
3 0 90 48 1 4 0 4 6 384 263 198 143
4 0 90 144 0 4 0 5 8 656 402 400 242

QuiDonc
2 0 160 16 0 0 2 2 5 125 71 115 89
2 0 160 16 0 0 2 2 6 174 89 162 103

Electr.
0 1 50 5 1 1 0 2 2 26 26 16 16
1 0 40 2 2 0 0 2 2 26 21 14 9

DeMoney
0 1 140 65536 4 0 6 1 3 135 116 69 68
2 1 150 11 6 0 4 1 9 999 737 423 331

Table 2. Some Metrics about Syntactically Abstracted Case Studies

6.2 Semantic Abstraction

Table 3 gives metrics about the semantic abstractions computed either directly
from the behavioral models (process A in Fig. 7), or from their syntactic abstrac-
tions (process B in Fig. 7). We can see that in the worst case, there are from
twice up to seven times less PO to compute once the model has been syntacti-
cally simplified. In practice on our examples, there is between 1.8 and 2.3 times
less PO to compute. The semantic abstraction computation takes from twice up
to five times less time. There are from twice up to seven times less unproved PO.
Finally, there are six cases out of eight where the abstraction AA is more precise
than AM in the sense that it has less transitions, due to the reduction of the
number of unproved PO. In these six cases, the set of traces of AA is included
in the set of traces of AM. In the two other cases, there is no inclusion at all.
The simplification of the invariant in the syntactic abstraction makes that some
transitions not enabled in AM are enabled in AA, and the event simplification
makes that some transitions enabled in AM are not enabled in AA. Thus the set
of traces cannot be compared.

The method is of poor interest on the smallest example (QuiDonc). But, as
evidenced by DeMoney, its efficiency grows with the size of the examples, in
terms of gain of the abstraction computation time, of reduction of the number
of unproved PO and of precision of the abstraction.

Case
AM AA Traces

Study #Trans.
#Not En. #Reach. Time

#Trans.
#Not En. # Reach. Time

inclusion
Trans. States (s) Trans. States (s)

Robot
42 5 6 64 36 0 6 35 AA ⊆ AM

51 0 8 76 50 0 8 49 AA ⊆ AM

QuiDonc
20 2 5 19 25 7 5 21 AA * AM

25 2 5 21 29 6 5 23 AA * AM

Electr.
13 5 2 7 13 5 2 5 AA ⊆ AM

7 0 2 5 7 0 2 2 AA ⊆ AM

DeMoney
38 5 3 189 38 5 3 38 AA ⊆ AM

92 2 7 226 89 2 7 74 AA ⊆ AM

Table 3. Abstraction Comparison

7 Conclusion, Related Works and Further works

We have presented in the B framework a method for abstracting an event system
by elimination of some state variables. We have proved that such abstractions are
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refined by the source model. This is useful for verifying properties and generating
tests.

The main advantage of our method is that it first performs syntactic trans-
formations, which reduces the number of PO generated and facilitates the proof
of the remaining PO. This results in a gain of computation time. We believe that
the bigger the ratio of the number of state variables to the number of observed
variables is, the bigger the gain is. This conjecture needs to be confirmed by
experiments on industrial size applications.

Many other works define model abstraction methods to verify properties. The
methods of [GS97,BLO98,CU98] use theorem proving to compute the abstract
model, which is defined over boolean variables that correspond to a set of a
priori fixed predicates. In contrast, our method firstly introduces a syntactical
abstraction computation from a set of observed variables, and further abstracts
it by theorem proving. [CABN97] also performs a syntactic transformation, but
requires the use of a constraint solver during a model checking process.

Other automatic abstraction methods [CGL94] are limited to finite state
systems. The deductive model checking algorithm of [SUM99] produces an ab-
straction w.r.t. a LTL property by an iterative refinement process that requires
human expertise. Our method can handle infinite state space specifications. The
paper [NK00] presents a syntactic abstraction method for guarded command
programs based on assignment substitution. The method is sound and complete
for programs without unbounded non determinism. However, the method is it-
erative and does not terminate in the general case. It requires the user to give
an upper-bound of the number of iterations. The paper also presents an exten-
sion for unbounded non deterministic programs that is sound but not complete,
due to an exponential number of predicates generated at each iteration step. In
contrast, our method is iterative on the syntactic structure of the specifications.
It is sound but not complete. It handles unbounded non deterministic specifi-
cations with no need for other iterative process and always terminates. Above
all, our method do not compute any weakest precondition whereas the approach
in [NK00] does, which possibly introduces infinitely often new predicates.

The method that we have presented is correct, but may sometimes produce
inaccurate over-approximations due to a too strong abstraction of the invariant.
We think that rules could be improved to get a finer approximation. For instance,
improving the rules is possible when the invariant contains an equivalence such
as x = c ⇔ y = c′. If y is an eliminated variable and x an observed one, we
could substitute all the occurrences of the elementary predicate y = c′ with
x = c. This would preserve the property in the syntactic abstraction AA, so that
the following semantic abstraction would be more accurate. Such rules should
prevent the addition of transitions in the QuiDonc abstraction AA w.r.t. AM.

We think that extending the test generation method introduced in [BBJM09b]
by using a combination of syntactic and semantic abstractions will improve the
method, because the abstraction is more accurate when there are less unproved
PO. But, what occurs if the abstraction is less accurate ?
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September 2009.

[BJK+05] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors.
Model-Based Testing of Reactive Systems, volume 3472 of LNCS. 2005.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite
state systems compositionally and automatically. In CAV’98, volume 1427
of LNCS. Springer, 1998.

[BPS05] D. Bert, M.-L. Potet, and N. Stouls. GeneSyst: a Tool to Reason about
Behavioral Aspects of B Event Specifications. In ZB’05, volume 3455 of
LNCS, 2005.

[CABN97] W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining constraint
solving and symbolic model checking for a class of systems with non-linear
constraints. In CAV’97, volume 1254 of LNCS. Springer, 1997.

[CGL94] E.M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
TOPLAS’94, ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, 1994.

[Cle01] Clearsy. System engineering Atelier B, version 3.6. Technical report,
http://www.atelierb.societe.com, 2001.

[CU98] M.A. Colon and T.E. Uribe. Generating fnite-state abstractions of reactive
systems using decision procedures. In CAV’98, volume 1427 of LNCS, 1998.

[GIX04] GIXEL. Common IAS Platform for eAdministration, 1.01 premium edi-
tion, 2004.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
CAV’97, volume 1254 of LNCS, 1997.

[LB08] M. Leuschel and M. Butler. ProB: An automated analysis toolset for the
B method. Software Tools for Technology Transfer, 10(2):185–203, 2008.

[MM02] R. Marlet and C. Mesnil. Demoney: A demonstrative electronic purse
Technical Report SECSAFE-TL-007, Trusted Logic, 2002.

[NK00] K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for
automatic abstraction. In CAV’00, volume 1855 of LNCS, pages 435–449.
Springer, 2000.
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A Proof of Theorem 1

Proof. The refinement theory as defined in B [Abr96b], requires that variable
sets from abstraction and variable sets from refinement are disjoint. If a variable
x is preserved through the refinement process, then it has to be renamed, i.e.
xrenamed, and associated by a gluing invariant, i.e. x = xrenamed. In order to
prove the correctness of the refinement, we introduce the Ren() function, which
renames every variable from a substitution or a predicate. Hence, the invariant IA

abstracted from IM and the substitution SA abstracted from any SM are defined
as follows:

IA =̂ Ren(TX(IM)) SA =̂ Ren(TX(SM))
To prove that SM is a correct refinement of SA, we need to prove (Def. 3):

PCA ∧ PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬(IM ∧ IG) (6)

where IG is the gluing invariant IG =̂
∧

xi∈X(xi = Ren(xi)). In order to prove

formula (6), it is sufficient to establish that the two following formulas hold:
PCA ∧ PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬IM (7)

PCA ∧ PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬IG (8)

Since free variable sets from IA and IM are strictly disjoint, (7) can be rewritten
as: PCA ∧ PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]IM, that holds, since the initial model M
is correct. Hence, we only have to establish (8) to prove theorem 1. The proof is
inductive on the five primitive forms of substitutions. We make a case analysis
for each rule in Fig. 5. We use Prop. 1 of Sec. 4.1 and axioms (1 to 5) defined in
Sec. 2.1.

We denote Hyps the repetitive predicate Hyps =̂ PCA ∧ PCM ∧ IA ∧ IM ∧ IG.

Case SM =̂ x := E
Rule R8 SA =̂ skip when x 6∈ X

is Hyps ⇒ [x := E]¬[skip]¬IG valid ?
It is valid, according to (1), since x is not free in IG.

Rule R9 SA =̂ Ren(x) := Ren(E) when x ∈ X
is Hyps ⇒ [x := E]¬[Ren(x) := Ren(E)]¬IG valid ?
It is valid since Rule R9 is the identity.

Case SM =̂ skip
Rule R10 SA =̂ skip

Hyps ⇒ [skip]¬[skip]¬IG is obviously valid according to (1).
Case SM =̂ x, y := E, F

Rules R11 to R14 proofs are similar to the first case.
Case SM =̂ P ⇒ S

Rule R15 SA =̂ Ren(TX(S)) when TX(P ) = true

is Hyps ⇒ [P ⇒ S]¬[Ren(TX(S))]¬IG valid ?
≡ Hyps ∧ P ⇒ [S]¬[Ren(TX(S))]¬IG – applying (2)
It is valid w.r.t. the induction hypothesis Hyps⇒ [S]¬[Ren(TX(S))]¬IG

Rule R16 SA =̂ Ren(TX(P )) ⇒ Ren(TX(S)) elsewhere

is Hyps ⇒ [P ⇒ S]¬[Ren(TX(P )) ⇒ Ren(TX(S))]¬IG valid ?
≡ Hyps ⇒ P ⇒ [S](Ren(TX(P )) ∧ ¬[Ren(TX(S))]¬IG) – applying (2)

≡



(R16.1) (Hyps ∧ P ⇒ [S]Ren(TX(P )))
∧ (R16.2) (Hyps ∧ P ⇒ [S]¬[Ren(TX(S))]¬IG)

– applying (5)

According to Prop 1, (R16.1) holds since S variables are not free in Ren(TX(P ))
and since IG is in Hyps. Proof of (R16.2) is similar to proof of (R15).
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Case SM =̂ S [] S′

Rule R17 SA =̂ skip when TX(S) = skip and TX(S′) = skip
is Hyps ⇒ [S [] S′]¬[skip]¬IG valid ?
It is valid since S variables are not free in IG.

Rule R18 SA =̂ Ren(TX(S))[]Ren(TX(S′)) elsewhere

is Hyps ⇒ [S [] S′]¬[Ren(TX(S))[]Ren(TX(S′))]¬IG valid ?
≡Hyps⇒ [S [] S′](¬[Ren(TX(S))]¬IG∨¬[Ren(TX(S′))]¬IG) – applying (3)

≡



(Hyps⇒ [S](¬[Ren(TX(S))]¬IG∨¬[Ren(TX(S′))]¬IG))
∧ (Hyps⇒ [S′](¬[Ren(TX(S))]¬IG∨¬[Ren(TX(S′))]¬IG))

– applying (3)

This formula is valid because the two induction hypotheses are valid:
1. Hyps ⇒ [S]¬[Ren(TX(S))]¬IG,
2. Hyps ⇒ [S′]¬[Ren(TX(S′))]¬IG.

Case SM =̂ @z.S
Rule R19 SA =̂ Ren(TX(S)) when z is not free in TX∪{z}(S) and z /∈ X

is Hyps ⇒ [@z.S]¬[Ren(TX(S))]¬IG valid ?
≡ Hyps ⇒ ∀z.[S]¬[Ren(TX(S))]¬IG – applying (4)
≡ Hyps ⇒ ∀z.([S]¬[Ren(TX(S))]¬IG) – since z /∈ X
valid because implied by the induction hypothesis.

Rule R20 SA =̂ Ren(@z.TX∪{z}(S)) when z is free in TX∪{z}(S) and z /∈ X
is Hyps ⇒ [@z.S]¬[Ren(@z.TX∪{z}(S))]¬IG valid ?
≡ Hyps ⇒ ∀z.[S]¬∀Ren(z).[Ren(TX∪{z}(S))]¬IG – applying (4)
It is valid since the following formula is implied by the induction hypothesis:

Hyps ⇒ ∀z.∃Ren(z).(z = Ren(z) ∧ [S]¬[Ren(TX∪{z}(S))]¬(IG ∧ z = Ren(z)))

Hence, Theorem 1 holds.
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