
Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

International Journal of Software Engineering
and Knowledge Engineering
Vol. 17, No. 5 (2007) 615–641
c© World Scientific Publishing Company

FORMAL SPECIFICATION APPROACH OF ROLE DYNAMICS

IN AGENT ORGANISATIONS: APPLICATION TO THE

SATISFACTION-ALTRUISM MODEL

VINCENT HILAIRE∗, PABLO GRUER†, ABDER KOUKAM‡ and OLIVIER SIMONIN§

Systems and Transportation Laboratory,
University of Technology of Belfort Montbéliard, Belfort, 90010, France

∗vincent.hilaire@utbm.fr
†pablo.gruer@utbm.fr

‡abder.koukam@utbm.fr
§olivier.simonin@utbm.fr

http://set.utbm.fr

Received 6 March 2006
Revised 3 April 2006

Accepted 25 April 2006

This article deals with the problem of dynamic role-playing in Multi-Agent organisations.
The approach presented uses a formal specification notation and is based upon a formal
framework which defines the concepts of role, interaction and organisation. Within this
framework the problem of dynamic role-playing specification is related to the merging
of specifications. The formal notation used composes Object-Z and Statecharts. The

main features of this approach are: enough expressive power to represent Multi-Agents
dynamic aspects, tools for specification analysis and mechanisms allowing the refinement
of a high level specification into a low level specification which can be easily implemented.
The last part of this paper presents an application with the specification of a reactive and
cooperative MAS model named Satisfaction Altruism. An analysis of the specification
validates the agents’ behaviours.

Keywords: Multi-agent systems; dynamic role-playing; formal specification; organisa-
tional methodology.

1. Introduction

Software agents and Multi-Agent Systems (MAS in the sequel) have become an

appealing paradigm for the design of computer systems composed of autonomous

cooperating software entities [45]. This paradigm provides a new approach to anal-

yse, design and implement such systems based upon the central notions of agents,

their interactions and the environment which they perceive and within which they

act. Nevertheless it is still difficult to engineer MAS. Indeed, when massive number

of autonomous components interact it is very difficult to predict the behaviour of

the system and ensure that the desired functionalities will be fulfilled.

615



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

616 V. Hilaire et al.

This article presents a methodological approach for building Multi-Agent Sys-

tems specifications. The basic idea is to define such systems as a set of entities

playing roles that have interactions between them. Specifically, we present a mech-

anism for dynamic role-playing specification within a formal framework.

There exists several software engineering approaches [28] which try to fill the

gap between MAS analysis and development life-cycle. These approaches differ in

many ways like, for example, the notation employed, the basic concepts used and

the presence or absence of methodological guidelines. The notation may be formal

or not.

Due to their complexity, MAS have reactive and transformational features. A

formalism is yet to be defined that specifies easily and naturally both aspects, en-

ables validation and verification, and guides the implementation phase. We have

thus chosen to use a multi-formalisms approach that results in the composition of

Object-Z [11] and Statecharts [20] which are presented later on. The advantages

of this combination are threefold. First, this formalism enables the specification

of reactive and transformational aspects of MAS. Second, both formalisms relate

strongly to the construction of actual software. Indeed, in Object-Z there are refine-

ment mechanisms [44] and statecharts which allow code generation [21]. Third, we

have defined an operational semantics in terms of transition systems for this com-

bination [16]. The latter point enables the use of theorem prover such as STeP [36]

or SAL [6]. We have called this formalism OZS (which stands for Object-Z and

Statecharts).

A specification method is essential to manage MAS complexity using decom-

position and abstraction. Some approaches use organisational concepts to model

MAS [12, 47, 26]. The use of such primitive concepts enables one to go from the

requirements to detailed design and helps to decompose a MAS in terms of roles

and organisations. In fact, it is a three steps approach. The first step views the

system as an organisation or a society defined by a set of roles and their inter-

actions. The second introduces the agents and assigns roles to them according to

some design criteria. The third focuses on the design of the internal architecture of

agents. With the concepts we have defined the Role Interaction Organisation (RIO)

Framework which specifies each concept using OZS classes. By doing so we obtain

methodological guidelines formally grounded for the analysis and design of MAS.

Moreover, the semantics we have defined for the OZS notation allows the anima-

tion and verification of properties. The latter is very important in order to ensure

that desired properties or required functionalities will be satisfied in the system. We

have, for example, specified a MAS for solving a radio-mobile network field problem

[32, 18]. For this problem we have proved safety and liveness properties with the

STeP environment [36]. We have also animated a RIO model of foot-and-mouth

disease simulation [26].

One drawback of organisational-based methodologies is that they are frequently

restricted to static role-playing relationships. The purpose of this article is to extend

our approach to deal with dynamic role-playing relationships. Thus we can specify



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 617

models such as the satisfaction-altruism one that has been applied to the mobile

robotic field [34, 41].

The idea that we suggest for dynamic role-playing relationship is inspired from

viewpoints specification. Viewpoints approaches have been widely used in require-

ment analysis [1, 8, 14, 31]. They consist in separating partial specifications of large

and complex systems. There has been some work undertaken on a combination of

these specifications [1, 8]. The problem of dynamically combining roles specifica-

tions is similar to combining viewpoints. We have to merge several specifications

dynamically and check their consistency. We propose an approach to merge role

specifications based upon a refinement relationship. The refinement maps a set of

roles to the result of the merging.

The rest of this paper is organised as follows: Section 2 introduces the OZS

formalism; Sec. 3 presents the dynamic role-playing relationship on an example;

Sec. 4 illustrates the dynamic roleplaying relationship on the satisfaction/altruism

example; Sec. 5 presents related works and eventually Sec. 6 concludes.

2. Background

2.1. OZS = Object-Z + statecharts

Few specification languages, if any, are well suited to model all aspects of a sys-

tem. This has led to the development of new specification languages which com-

bine features of two or more existing formalisms. These languages are called multi-

formalisms. Such a combination is particularly suited to the specification of complex

systems, such as MAS, where both the modelling of processes and states are nec-

essary.

The multi-formalism approaches [49, 39] compose two or more formalisms in

order to specify more easily and naturally than with a single formalism. Indeed,

the multi-formalism approach deals with complexity by applying formalisms to

problem aspects for which they are best suited.

There are two sorts of techniques for multi-formalisms integration. The first

consists in translating one formalism into another. The second is composition and

consists in using several formalisms in the same specification. We have chosen the

latter type of approach. The main principle of our approach is to integrate within

an Object-Z class a specific schema called behaviour that specifies the behaviour of

the class using a statechart. It enables specifiers to use all Object-Z and statecharts

constructs.

Object-Z extends Z with object-oriented concepts. The basic construct is the

class that encapsulates a state schema with all the operation schemas that may

affect it. Object-Z is well suited for specifying the state space and the methods

of a class in a predicative way. It is, however, weak at describing dynamic and

communicational aspects [43].

Statecharts extend finite state automata with constructs for specifying paral-

lelism, nested states and broadcast communication. Both languages have constructs



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

618 V. Hilaire et al.

which enable the refinement of the specifications. Moreover, statecharts have an

operational semantic which allows the execution of a specification owing to the

STATEMATE environment [22]. However, statecharts have little support for mod-

elling the structural and functional aspects of a complex system.

Our method for composition relies on precisely combining the two notations.

We define a heterogeneous basis consisting of the notations of interest and we

resolve syntactic differences among the notations as presented in [39]. The role of

the heterogeneous basis is twofold. First it provides relationships between Object-Z

and statecharts without translating a formalism into another. Second it extends

expressive capabilities of each formalism using features available in the other. In

other words, the heterogeneous basis enables the use of both specification styles

without restraining a subset of any of the formalisms.

The class describes the attributes and operations of the objects. This descrip-

tion is based upon set theory and first order predicate calculus. The statechart

specifies the possible states of the object and how events may change these states.

The statechart included in an Object-Z class can use attributes and operations of

the class. The sharing mechanism used is based on name identity. Moreover, we

introduce basic types [Event, Action, Attribute, State]. Event is the set of events

which trigger transitions in statecharts. Action is the set of statecharts actions and

Object-Z classes operations. State is the set of states of the included statechart.

Operations are described by Object-Z schemas and can be called in statecharts

transition. Attribute is the set of object attributes. The definition of these sets al-

lows the specification in Object-Z of statecharts features, such as events and states,

and the use of Object-Z features such as attributes and operations within the in-

cluded statechart.

2.2. Example

The LoadLock class, presented below, illustrates the integration of the two for-

malisms. It specifies a LoadLock composed of two doors whose states evolve concur-

rently. The key syntactic element is the class schema. Each class schema is named,

here LoadLock, and contains sub-schemas that specify different aspects of the class.

The first sub-schema specifies the state space of the class. In the LoadLock example

there is only one Boolean attribute called someoneInLL. The following sub-schema

defines the initial state for instance of the class and is called Init . The constraint

placed here states that initially the Boolean someoneInLL is false. The next two

sub-schemas are operations that modify the state of the class. The inLL and outLL

operations are divided into two parts: a declarative part in the upper part of the

sub-schema and a constraints part in the lower predicate part. The ∆-list some-

oneInLL in the upper part of both sub-schemas is an abbreviation for someoneInLL

and someoneInLL’ and, as such, includes the state of someoneInLL before and after

the operation. The predicate part of the inLL (resp. outLL) operation states that

after the operation someoneInLL becomes true (resp. false). The last sub-schema,



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 619

called behaviour, includes a statechart and specifies the behaviour of the class. Par-

allelism between the two doors is expressed by the dashed line between DOOR1 and

DOOR2. The first door reacts to activate1 and deactivate1 events. The sequence, in

order to go through the loadlock is the following: someone activates the first door

and enter the loadlock. It may then enter the loadlock and deactivate the first door

from inside. This done he can activate the second door and go out of the loadlock.

The transition triggered by deactivate1 event executes the inLL operation which

sets the someoneInLL Boolean to true. The temporal invariant at the end of the

class specifies that a LoadLock must not be in DOOR1.opened and DOOR2.opened

states simultaneously. This invariant uses the predicate instate(S) which is true

whenever the S state of the statechart is active.

LoadLock

someoneInLL : B

INIT

¬ someoneInLL

inLL
∆someoneInLL

someoneInLL′

outLL
∆someoneInLL

¬ someoneInLL′

behaviour

ClosedOpened

DOOR2

ClosedOpened

DOOR1
deactivate1/inLL

activate1

deactivate2/outLL

activate2[someoneInLL]

¬ 3(instate(DOOR1.opened) ∧ instate(DOOR2.opened))

The result of the composition of Object-Z and statecharts seems particularly

suited in order to specify MAS. Indeed, each formalism has constructs which

enable complex structure specifications. Moreover, aspects such as reactivity and



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

620 V. Hilaire et al.

Agent

∗1..

Interaction

Organisation

Role

RoleContainer

*
*

0..1

*

orig

dest

Fig. 1. RIO meta-model.

concurrency can be easily dealt with. The semantics of the OZS notation is defined

by means of transition systems [16]. It is an operational semantics which enables

automatic verification of specification properties.

Available OZS constructs enable natural specification of “low” level aspects

inherent to MAS. Higher level aspects like coordination are expressed by roles,

interactions and organisation classes which are presented in the following section.

3. Dynamic Role-Playing Mechanism

3.1. RIO overview

The RIO framework is composed of OZS classes [26, 24]. These classes specify the

following abstract concepts: Role, Interaction, Organisation, RoleContainer and

Agent. Figure 1 describes the relationships between the RIO framework classes

using the UML notation.

The Role class is a superclass for all acting entities of the system. A role is

a specific behaviour, for example Lecturer, Researcher and Student are roles. An

interaction occurs when two roles communicate, for example the Lecturer and Stu-

dent roles interact during a course. Interactions are then defined by the origin and

destination roles involved. Organisations are sets of interacting roles, the Univer-

sity organisation may group Lecturer, Researcher and Student roles. RoleContainer

classes specify social positions i.e. roles that are played simultaneously. For

example, the roles Lecturer and Researcher can be played simultaneously and they



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 621

define a specific position in the university. Each agent is related to several roles it is

playing. In fact an agent occupies a specific position in an organisation specified by

a RoleContainer. The roles an agent plays at a specific moment are specified by the

position it is occupying. When an agent occupies another position it plays another

set of roles.

The RIO framework is associated with a step by step process to guide the devel-

opment from analysis to design. This process is a refinement based process where

each step is used to build the next step. In the analysis stage, roles in the system

are identified and their interactions are specified. Coherent patterns of interacting

roles are grouped so as to form organisations. Once pertinent organisations and

their components are specified, the next stage consists in identifying which roles

can be played simultaneously and under which constraints. These are specified by

RoleContainer classes. RoleContainer groups a set of coherent roles played simul-

taneously.

Playing a role means for an agent that it exhibits the behaviour and characteris-

tics specified by the role. One can see roles as specific viewpoints. Indeed, each role

is a partial specification of an agent. There has been several attempts to combine

viewpoints specifications [1, 8].

The idea we adopt to merge several role specifications and check their consis-

tency is to define a relationship between the roles and agents’ specifications. This

relationship is a sort of refinement that defines the attributes, actions, stimulus and

behaviours of the agent by refining those of the roles it plays.

3.2. Formal specifications

A role is an abstraction of an acting entity. We have chosen to specify it by the

Role class. This class represents the characteristic set of attributes whose elements

are of [Attribute] type. These elements belong to the attributes set. A role is also

defined by stimuli it can react to and actions it can execute. These are specified

by stimulus set and actions set respectively. The [Attribute], [Event] and [Action]

types are defined as given types and are not defined further.

The reactive aspect of a role is specified by the sub-schema behaviour which

includes a statechart. The behaviour schema specifies the different states of the

role and transitions among these states. The obtainConditions and leaveConditions

attributes specify conditions required to obtain and leave the role. These conditions

require specific capabilities or features to be present in the agent in order to play

or leave the role. Stimuli which trigger a reaction in the role’s behaviour must

appear in, at least, one transition. The action belonging to the statechart transitions

must belong to the actions set. In order to ensure coherence between Object-Z and

statechart parts we have specified common concepts grouped in an heterogeneous

basis following the method of Paige [39]. Two constraints specified in the Role class

use these heterogeneous basis concepts.



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

622 V. Hilaire et al.

Role

attributes : P Attribute
stimulus : PEvent
actions : PAction
obtainConditions, leaveConditions : Condition

∀ s ∈ stimulus, ∃ e ∈ behaviour •
(∃ t ∈ e.transitions • t .label .event = s)

∀ e ∈ behaviour •
(∀ t ∈ e.transitions • t .label .action ⊆ actions)

behaviour

An interaction is specified by a couple of roles which are the origin and the

destination of the interaction. The role orig and dest interact using operations op1

and op2. These operations are combined by the ‖ operator which equates output

of op1 and input of op2. The 3 symbol is a temporal logic operator which states

that eventually the expression following the symbol will be true. In order to extend

interactions to take into account more than two roles or more complex interactions

one has to inherit from the Interaction class.

Interaction

orig , dest : Role
op1, op2 : Action

op1 ∈ orig .action
op2 ∈ dest .action

3(orig .op1‖dest .op2)

Organisation

roles : PRole
interactions : P Interaction

∀ i∈ interactions•
(i .orig ∈ roles ∧ i .dest ∈ roles)

An organisation is specified by a set of roles and their interactions. Interactions

happen between roles of the organisation concerned. It means that for each inter-

action of the interactions set, the roles of the interaction must belong to the roles

set of the organisation.

A RoleContainer specifies an entity which plays a set of roles. The role-playing

relationship is static. In other words, the set of played roles does not change. In

the RoleContainer the link between entities which play roles and roles specifica-

tion is specified. Indeed, three functions Retrieveatt , Retrievestim and Retrieveop

map respectively attributes, stimulus and actions of roles with attributes, stimulus

and actions of the entity playing the roles. These functions impose that for each

attribute, stimulus or action of a role there exists an attribute, stimulus or action

which refines it in the RoleContainer. The refinement relationship is denoted by

the 4 symbol. An object o ′ refining an object o is represented as o 4 o ′.



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 623

RoleContainer

Role

playing : PRole

∃Retrieveatt : Attribute → Attribute •
∀ r ∈ playing •
∀ a ∈ r .attributes, ∃ a ′ ∈ attributes • a ′ = Retrieveatt (a) ∧ a 4 a ′

∃Retrieveop : Action → Action •
∀ r ∈ playing •
∀ a ∈ r .actions, ∃ a ′ ∈ actions • a ′ = Retrieveop (a) ∧ a 4 a ′

∃Retrievestim : Stimulus → Stimulus •
∀ r ∈ playing •
∀ a ∈ r .stimulus, ∃ a ′ ∈ actions • a ′ = Retrievestim (a) ∧ a 4 a ′

∃Retrievebeh : Statechart → Statechart •
∀ r ∈ playing •
∀Retrievebeh (r .behaviour) 4 behaviour

The Agent class inherits from RoleContainer. This class is defined by a position

which is an instance of RoleContainer. The agent position is the set of roles it plays

at a specific moment in time. These roles define the agent’s status and behaviour in

all contexts which it may encounter. The position of an agent may change during

its lifetime. This mechanism allows dynamic role-playing. The addRole (resp. leave-

Role) operation adds (resp. substracts) a role to (from) an agent. The preconditions

of this operation impose that obtainConditions (resp. leaveConditions) must be sat-

isfied. These operations modify the functions which map attributes, stimulus and

actions from roles to agents. These functions defined statically in the RoleContainer

class are modified dynamically whenever an agent changes one of its roles.

An agent A is also defined by an acquaintances set. This set represents the other

agents which are currently interacting with A.

Agent
RoleContainer

acquaintances : PAgent
position : RoleContainer

∀ a ∈ acquaintances, ∃ r1, r2 : Role,

∃ i : Interaction •
r1 ∈ playing
∧ r2 ∈ a.playing
∧ (r1, r2) ∈ i .roles

∀ r ∈ position • r .behaviour ⊆ behaviour



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

624 V. Hilaire et al.

addRole
∆position
r? : Role

r .obtainConditions
playing ′ = playing ∪ r?
∀ a ∈ r .attributes • (Retrieve ′att = Retrieveatt ⊕ {r .a, a ′})

∧ ((a ′ ∈ attributes ∧ a 4 a ′)
∨ (attributes ′ = attributes ∪ {a ′} ∧ a 4 a ′))

∀ a ∈ r .actions • (Retrieve ′op = Retrieveop ⊕ {r .a, a ′})
∧ ((a ′ ∈ actions ∧ a 4 a ′)
∨ (actions ′ = actions ∪ {a ′} ∧ a 4 a ′))

∀ a ∈ r .stimulus • (Retrieve ′stim = Retrievestim ⊕ {r .a, a ′})
∧ ((a ′ ∈ stimulus ∧ a 4 a ′)
∨ (stimulus ′ = stimulus ∪ {a ′} ∧ a 4 a ′))

leaveRole
∆(position)
r? : Role

r .leaveConditions

playing ′ = playing \ r?

2(∀ r ∈ playing , ∀ e ∈ r .behaviour .% •
e.instate
∧ (∃ t : Transition • t .source = e) ⇒

(t .event
∧ t .conditions ⇒
(∀ f ∈ t .destinations • ©©©f .instate))

2(∀ r : Role • (r 6∈ playing) ∧ ©©©(r ∈ playing) ⇒ r .obtainConditions)

2(∀ r : Role • (r ∈ playing) ∧ ©©©(r 6∈ playing) ⇒ r .leaveConditions)

In this context, an agent is only specified as an active communicative entity

which plays roles [12]. In fact agents instantiate an organisation (roles and interac-

tions) when they exhibit behaviours defined by the organisation’s roles and when

they interact following the organisation’s interactions. The main reason for this

choice is that one can study agent behaviours and agent architectures separately.

Indeed, the different roles an agent plays define its behaviour. The architectures

used by agents may be different for the same behaviour and so it is sound to study

them apart from the core agent behaviour. For example, in [17] we have specified

a specific cognitive agent architecture by extending the RIO framework classes.



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 625

3.3. Refinement relationship

The dynamic role-playing mechanism is based on the refinement of the roles con-

tained in the playing set of a RoleContainer. The attributes, actions, stimulus and

behaviours are refined to define attributes, actions, stimulus and behaviour of a

RoleContainer which can be substituted to any of the roles. If such a refinement

exists, we can construct it, given a relation between attributes, actions, stimulus

and behaviours of roles and those of a RoleContainer. The definition process of this

relation is a four step process. First, the attributes are mapped. In the second step

the actions are mapped. The two last steps are stimulus and behaviour mapping.

If r1 and r2 are two roles and 4 the refinement relationship we want to con-

struct a RoleContainer rc such that r1 ∧ r2 4 rc. Let the relations Retrievebeh ,

Retrievestim , Retrieveop and Retrieveatt be the relations between roles and Role-

Container behaviour, stimulus, operations and attributes, respectively. We must

verify

rc.attributes = Retrieveatt (r1.attributes) ∪ Retrieveatt (r2.attributes)

∧ rc.actions = Retrieveop(r1.actions) ∪ Retrieveop(r2.actions)

∧ rc.stimulus = Retrievestim (r1.stimulus) ∪ Retrievestim (r2.stimulus)

∧ rc.behaviour = Retrievebeh(r1.stimulus) ∪ Retrievebeh(r2.stimulus)

The first two steps are the definition of Retrieveatt and Retrieveop that concern

the Object-Z part. The third and fourth steps are the definition of Retrievestim and

Retrievebeh that concern the statechart parts of the multi-formalism notation. The

following subsections deal with each part separately.

3.4. Object-Z part

This mechanism allows the specification of several, possibly overlapping, roles to

be merged into one entity. There are three different combination cases which can

concern the attributes and the operations.

The first case is when attributes specifying the same RoleContainer attribute are

defined on the same definition domain. The mapping is then the identity function.

The second case is when two attributes specifying the same RoleContainer at-

tribute are defined with different definition domains. The function must map these

attributes to a RoleContainer attribute which is defined over the union of the two

definition domains.

The third case is when two attributes specifying the same RoleContainer at-

tribute are defined with different definition domains. The function must map the

two attributes to a subset of the Cartesian product of the definition domains.

Let ⊥ be the undefined value for all definition domains, a1 and a2 two attributes

of two roles. The notation a � i stands for the ith component of the tuple a. The

three cases can be summarized as follows:



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

626 V. Hilaire et al.





a = Retrieveatt (a1) = Retrieveatt (a2)

(a1 = ⊥ ⇒ a = Retrieveatt (a2)) ∨ (a2 = ⊥ ⇒ a = Retrieveatt(a1))

a = (a1, a2) ∧ Retrieveatt (a1) = a � 1 ∧ Retrieveatt (a2) = a � 2

For the operations, the first and simplest case is when operations are equiva-

lent. The resulting mapping is the identity function. The other cases occur when

at least one mapped attribute belongs to the parameters of several operations. If

the mapped attribute is the result of the union of several definition domains then

the operation applied is the one which is concerned by the restricted domain. If the

mapped attribute is defined as a Cartesian product then each operation is sequen-

tially applied modifying each component of the Cartesian product. The =̂ notation

used below stands for schema (operation schema in this case) definition and the

notation o

9 stands for schema composition.




op =̂ Retrieveop(op1) =̂ Retrieveop(op2)

(pre op1 ⇒ op =̂ Retrieveop(op1)) ∨ (pre op2 ⇒ op =̂ Retrieveop(op2))

op =̂ op1(a � 1) o

9 op2(a � 2)

The predicate pre op is true whenever the preconditions of op1 are true.

3.5. Statechart part

Since we consider only simple events Retrievestim is just a renaming. There are

three different cases for the statecharts refinement. The first case is when two stat-

echarts specifying two role behaviours are independent. In this case, the result of

the refinement of the two roles consists in behaving like both roles at the same time.

The resulting statechart is the AND composition of the statecharts specifying the

two role behaviours. If State1 is the statechart corresponding to the first role and

State2 is the statechart corresponding to the second role the resulting statechart

is a super-state which encapsulates State1 and State2 composing them by an AND

composition as illustrated in Fig. 2(a). The semantic of the AND composition is

that State1 and State2 are both active simultaneously.

The second case occurs when two statecharts specifying two role behaviours are

not independent but exclusive. This is the case when one role must not be played

in conjunction with the other. In terms of statecharts the resulting statechart is

the XOR composition of the statecharts specifying the two roles behaviours. The

XOR composition means that the two statecharts are part of a same super-state

and that there may exist a transition from one state to another as illustrated in

Fig. 2(b). This transition is guarded by the obtainCondition of the destination role

and leaveCondition of the origin role.

The third case occurs when one statechart, say State1, specifying a role be-

haviour is part of another statechart, say State2, specifying the behaviour of another

role. In this case the role specified by State1 must be included in the hierarchy of



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 627

State1 State2

State1 State2

State1 State2

State1 State2

superstate

event2[r1.obtainConditions and r2.leaveConditions]

event1[r2.obtainConditions and r1.leaveConditions]

(a) and refinement (b) xor refinement

Fig. 2. Statecharts refinement.

roles which constitutes the behaviour of the role specified by State2. This case re-

sults from a modelling problem. Indeed playing the role specified by State2 implies

playing the role specified by State1.





stc = (AND(Retrievebeh(stc1),Retrievebeh(stc2))

stc = (XOR(Retrievebeh(stc1),Retrievebeh(stc2)),

(stc1, stc2, [r2.obtainConditions ∧ r1.leaveConditions ],

(stc2, stc1, [r1.obtainConditions ∧ r2.leaveConditions ])))

(stc1 ⊆ stc2 ⇒ stc = Retrievebeh(stc2)) ∨ (stc2 ⊆ stc1 ⇒ stc = Retrievebeh(stc1))

In the following section, we present a specification of a concrete multi-agent

model called the satisfaction altruism model. The aim of this example is to illustrate

the proposed formal specification framework.

4. Example: the Satisfaction-Altruism Model

4.1. Introduction to the satisfaction-altruism model

This model aims at providing a means of cooperation and conflict solving for

behaviour-based agents working in the same environment [41, 42]. In order to in-

troduce local intelligent interactions into the collective approach an extension of

the artificial potential fields (APF) approach is proposed. The satisfaction-altruism

model introduces new artificial fields in the environment [42]. These fields are dy-

namically and intentionally generated by agents thanks to the emission of attractive

and repulsive signals. Agents broadcast such signals in order to influence their close

neighbours. These artificial fields augment the information present in the environ-

ment to improve cooperation between agents. At the heart of the model there are



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

628 V. Hilaire et al.

Agent

Environment
Actions

neighbour agents

selection &
action

emissions

perception

Signals  I

perception

of neighbours

neighbours
evaluation

Sat. P

ka
b

c

Fig. 3. Scheme of agent-agents and agent-environment interactions in the Satisfaction-Altruism
model.

two modules dedicated to individual and cooperative behaviours. The first one mea-

sures the agent satisfaction, i.e. gives in real time an evaluation of the agent task

progress. This individual satisfaction is defined by a value P(t) ∈ [−Pmax,Pmax]

(represented by Sat P box in Fig. 3). The second module evaluates a complemen-

tary satisfaction which concerns the interactions of the agent with its neighbours

(noted perception of neighbours in Fig. 3). These satisfactions are used in the

action-selection module to decide if the current behaviour must be continued or

changed [5]. These measures of satisfactions are also used to enable cooperative

interactions. Agents can communicate their satisfactions in order to influence their

neighbours. They can locally broadcast attractive or repulsive signals, defined as

numerical values: I (t) ∈ [−Pmax,Pmax] (noted signals I in Fig. 3). The semantic

is the following: positive values for attractions and negative ones for repulsions.

A cooperative behaviour consists in moving according to the perceived signals: go

towards the source if attraction or go away if repulsion. This reaction, named the

altruistic behaviour, is performed only when

|Iext(t)| ≥ P(t) ∧ |Iext(t)| ≥ I (t)

where Iext is the strongest perceived signal. This condition expresses that an agent

reacts to a signal if the signal intensity is greater than the intensity of its own

satisfaction. The altruistic reaction is defined as a repulsive or attractive vector

(which depends directly on the sign and intensity of the value received). Note that

this vector can be combined to environment constraints, e.g. obstacles, to optimize

agents’ navigation.

Eventually, a process of signal-passing ensures the propagation of the signals.

The signal-passing defines quick recruitment processes and chains of repulsive in-

fluences to free blocked agents [42].



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 629

> signal

AltruistIndividual

SatAlt

* *

Fig. 4. Satisfaction Altruism organisation.

This model has been validated on different simulated problems such as foraging,

navigation in constrained environments, box-pushing [5] and with real robots (see

details in [34]). Figure 4 represents the Satisfaction Altruism organisation. It is

specified by two roles: Individual and Altruist. Each role may interact with other

Individual and Altruist role-players. The interactions mentioned earlier are signals.

The next section presents the formal specification of these roles.

4.2. Roles

In order to specify the Satisfaction-Altruism model we have distinguished two roles:

Individual and Altruist.

The first attribute of the Individual role, current, is the action the role-player

is executing. This role is also described by weights associated to the actions it can

carry out. These different weights, representing the task’s priority, can be modified

by the evolution of the system. The initial values of the weights are defined by

initialWeight. The progressionReward function maps each action to a 3-uplet giving

the bonus or penalty values when the agent is respectively in progression, regression

or locked. The element of DiscreteSensor type specifies a sensor which enables the

perception of the environment. This part of the specification is out of the scope

of this paper so it will not be discussed here. Note that in general agents emit a

value (I ) equal to their satisfaction level. Therefore, satisfaction and I are numbers

which allow the comparison between the level of satisfaction of the role and external

influences (perceived signals).

The Iext operation outputs the maximum signal perceived. The actionSelection

operation chooses the best action according to the personal satisfaction of the cur-

rent action and the individual weights of the others. There are two different cases

detailed in the constraints. The two cases depend on whether there is an action with

true preconditions and a greater weight than the current action or not. If there is

no such action the current action remains unchanged, otherwise the current action

is replaced with the new one.



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

630 V. Hilaire et al.

Individual
Role

current : Action
initialWeight ,weight : Action → [0, 1]
progressionReward : Action → BMValue
s : DiscreteSensor
satisfaction, I : [−Pmax,Pmax]

current ⊆ actions
obtainCondition = {|Iext()| < P() ∨ |Iext()| < I }
leaveCondition = {|Iext()| ≥ P() ∧ |Iext()| ≥ I }

Iext

ext ! : R

ext ! = s.getMax ()

actionSelection
∆(current , weight)

(current ′ = current ∧ (@a : Action• a ∈ actions
∧ pre a
∧ weight(a) − γ ≥ P()))

∨ (current ′ = b• b ∈ actions
∧ pre b
∧ (@a : Action• a ∈ actions

∧ pre a
∧ weight(a) ≥ weight(b))

∧ ((P() ≤ 0 ⇒ weight ′(current) = 0))

behaviour

Repulsion
Emission

Attraction
Emission

Quiet

C

C

act
individualAction

[s.perceiveHinderer]

[s.decideAttract]

Individual

/actionSelection



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 631

The Altruist role is also specified by a progressionReward function, a Discrete-

Sensor and two values, satisfaction and I, measuring satisfaction and external

influences.

Altruist
Role

progressionReward : Action → BMValue
s : DiscreteSensor
satisfaction, I : [−Pmax,Pmax]

current ⊆ actions
obtainCondition = {|Iext()| ≥ P() ∧ |Iext()| ≥ I } = ¬ leaveCondition

Iext

ext ! : R

ext ! = s.getMax ()

behaviour

Quiet

Altruist

Emission

I

altruismReaction
Altruism

[propagationCondition]

The RoleContainer SatAlt groups the role Individual and Altruist. All attributes

of the two roles are mapped by the identity function as they share the same seman-

tics and definition domains. The Iext and actionSelection operations are mapped

to the operations of SatAlt. The behaviour of SatAlt is defined by an exclusive

mapping of the behaviours of Individual and Altruist. Indeed, an agent can either

play the Individual role or the Altruist role but not both simultaneously. Satisfied

transitions between each role are fired when the leaveCondition of the active role is

true.



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

632 V. Hilaire et al.

SatAlt
RoleContainer

playing = {Individual ,Altruist}

behaviour

Repulsion
Emission

Attraction
Emission

Quiet

C

C

Quiet

act
individualAction

[s.perceiveHinderer]

[s.decideAttract]

Individual

Emission

I

altruismReaction
Altruism

[propagationCondition]

/actionSelection

[altruism
T

est]

[n
ot

 a
ltr

ui
sm

T
es

t]

Altruist

4.3. Agent

The class SAAgent inherits from Agent and its position is SatAlt. It means that

initially the agent plays the role Individual and if the altruismTest is true then it

leaves this role to play the Altruist role. If the altruismTest becomes false then it

leaves the Altruist role to play the Individual role. The altruismTest is defined using

the obtainCondition of the Altruist role.

SAAgent
Agent

position = SatAlt



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 633

4.4. Specification analysis

The specification analysis is performed by using STATEMATE [22]; an environ-

ment which allows the prototyping and simulation of statechart’s specifications.

The specification analysis is based on the execution of the statechart and can be

carried out using two techniques. The first technique is simulation and the second is

animation. In our case simulation would consist in assigning probabilities to events

or action occurrences. With this technique one can evaluate quantitative param-

eters of the specified system. As an example, in the satisfaction-altruism model,

probabilities can be assigned to an agent in order to simulate exploration of various

environments.

Animation technique consists of testing the specification with predefined in-

teraction scenarios. It enables one to test if the system’s behaviour is consistent

with requirements. For example, we have tested that simulated autonomous robots

blocked in a narrow corridor can coordinate their behaviours to explore it by us-

ing the satisfaction-altruism model [27]. Figure 5 shows an example of such a test.

The x axes represents time-points and the y axes represents discretized positions in

the corridor for the upper figure, and the level of satisfaction of each robot for the

lower figure. The individual behaviour consists of exploring the corridor with closed

extremities. One can see that levels of satisfaction and trajectories are correlated.

Indeed, each time the two robots are locked the satisfaction levels decrease. Here

the satisfaction variation is defined to depend on environmental constraints: the

more a robot is surrounded by walls, the faster its satisfaction falls. Thus the robot

locked against a wall is more quickly dissatisfied than the other. Agents emit their

dissatisfactions as local signals, then the altruism test becomes true for the less

constrained robot. This robot plays the altruist role and changes its direction (it is

the case around times 109, 155 and 235 in Fig. 5). If a robot is not locked and can

explore the corridor following its initial direction, its satisfaction level increases.

This animation shows an example of the execution of the specification for a specific

environment (the corridor) and a specific number of agents. The parameters can be

easily modified in order to check the specification against pertinent test cases. This

approach enables the validation of the specification.

The simulation tool offers an interactive simulation mode and a program con-

trolled mode. In the latter a program written in a high level language replaces

the user. One feature of this programming language is the breakpoint construct.

Breakpoint stops the specification execution when a condition is verified. Possible

uses of breakpoints are, for example, configuration tests with predefined interaction

scenarios and output of statistics.

4.5. Property proof

OZS semantics [16] is based upon transition systems as defined in [37]. It means that

for each OZS specification there is an associated transition system. This transition

system represents the set of possible computations the specification can produce.



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

634 V. Hilaire et al.

Fig. 5. Robots’ trajectories and satisfactions.

With such transition systems and software tools like SAL [6] one can verify

specification properties.

Among the tools proposed by SAL we have chosen the SAL model checker which

enables the verification of the satisfiability of a property. The SAL model-checker

proves or refutes validity of Linear Temporal Logic (LTL) formulas relatively to a

transition system. To establish the satisfiability of history invariant H one must

actually establish that ¬ H is not valid. This technique is the simplest to use but



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 635

is limited by the specification state space. We have also used first the SAL path

finder. This tool is a random trace generator based on SAT solving. It enables

us to be sure that the transition system specification we have produced from the

specification has the desired semantics.

In order to prove properties we have generated the Transition System consider-

ing the classes presented in this section.

The property we have proven using the model checker is specified as follows:

left(r1) = wall ∧ right(r1) = robot ⇒ 3right(r1) = empty

The functions left and right specify the perception of a robot inside the corridor.

These functions can take value in the {empty , robot ,wall} set. The formula states

that if a robot r1 perceives a wall on its left side and a robot on its right side then

eventually the robot at its right will move.

The model checker with this property and the transition system produced gen-

erate no counter-example. It means that whenever a robot is locked between a wall

and another robot it will be freed.

5. Related Works

This section describes approaches for Agent-Oriented Software Engineering. We

have divided these approaches into two parts: the semi-formal approaches and the

formal ones. Our approach uses the semi-formal diagrams to represent the analysis

in terms of roles, interactions and organisations. Each concept has a formal nota-

tion and semantics. This mapping from semi-formal to formal representation is not

present in the following semi-formal approaches.

5.1. Semi-formal approaches

The i∗ framework of Yu [48] is based upon requirements analysis by means of goals,

dependencies, roles, actors, positions and agents. These notions are similar to those

we use and enables us to deal with dynamic role playing. They are graphically

presented on the same schema. It is sometimes difficult to read such schemas where

all concepts are on the same level. We think that a schema which separates analysis

and design level is needed.

Kendall [29] suggests the use of extended Object Oriented methodologies like

design patterns and CRC. CRC are extended to Role Responsibilities and Collab-

orators. In [30] a seven layered architectural pattern for agents is presented. The

seven layers are: mobility, translation, collaboration, actions, reasoning, beliefs and

sensory. This architecture is dedicated to mobile agents. Dynamic role playing is

enabled by the use of aspects oriented programming and so considered only at im-

plementation level. With our approach we consider dynamic role playing at the

analysis level.

The Andromeda methodologies [10] use the role notion and propose a step

by step methodology in order to design MAS. Andromeda deals with machine



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

636 V. Hilaire et al.

learning techniques for MAS. These methodologies are oriented towards the de-

sign of reactive MAS. We have already specified cognitive architecture [17].

The MaSE methodology [7] insists upon the necessity of software tools for soft-

ware engineering, specifically code generation tools. This methodology has seven

steps. These steps are structured sequentially. It begins with the identification of

overall goals and their structuring. From goals with use case and sequence diagrams

one can identify roles and define them as a set of tasks. Agents are then introduced

with class diagrams with a specific semantics. The last step consists in defining

precisely: high level protocols, agent architectures and deployment diagrams. For

each step a different diagram is introduced. MaSE methodology suffers from lim-

ited one-to-one agent interactions. The authors authorize a dynamic role playing

relationship without dropping a hint of how it can be done.

Bergenti and Poggi [2] suggest the use of four UML-like diagrams. These dia-

grams are modified in order to take into account MAS specific aspects. Among these

MAS specific aspects there are conceptual ontology description, MAS architecture,

interaction protocols and agent functionalities.

In [38], the authors present an approach extending UML for representing agent

relative notions. In particular, the authors insist upon role concept and suggest the

use of modified sequence diagrams to deal with roles.

The problem with latter notations is the UML starting point. Indeed, using

an object oriented notation in order to describe MAS leads specifiers to use object

oriented concepts. We think that a MAS methodology must insist on agent oriented

concepts first as it is the case in our approach.

5.2. Formal approaches

Formal approaches for MAS specification are numerous but they are often abstract

and unrelated to concrete computational models [9]. Temporal and modal logics, for

example, have been widely used [46]. Despite the important contribution of these

works to a solid underlying foundation for MAS, no methodological guidelines are

provided concerning the specification process and how an implementation can be

derived.

Another type of approach consists in using traditional software engineering or

knowledge based formalisms [35]. One advantage of using such approaches is that

they are widely used. The expertise concerning such notations is greater than newer

ones and there are tools which help the specification process.

For example, the approach proposed by [23] is based upon the refinement of

informal requirement specifications to semi-formal and then formal specifications.

The system structuring is based on a hierarchy of components [3]. These components

are defined in terms of input/ouput and temporal constraints. With this approach it

seems difficult to refine specifications into an implementation language. Moreover,

the verification technique is limited to model checking. It seems difficult to introduce

a kind of dynamic role playing relationship.



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 637

Luck and d’Inverno [35] propose a formal framework which uses the Z language.

This framework is the starting point of any specification. It is composed of concepts

to be refined in order to obtain a MAS specification. However, this approach has two

drawbacks. First, the specifications unit is the schema. Therefore, state spaces and

operations of agents are separated. This drawback is avoided in our approach as we

specify structure, properties and operations of an entity in a same Object-Z class.

Second, Luck and d’Inverno’s framework does not allow one to specify temporal and

reactive properties of MAS [13]. In our framework these aspects are specified by

temporal invariants and statecharts. Concerning the specification of organisational

aspects the authors adopt a norm approach [33]. The norms allows the definition of

organisational rules that regulate societies of agents. Agents can adapt their goals

according to these norms. We have chosen a more constructivist approach in order

to be able to deduce the agent implementation. Nevertheless, this framework has a

significant contribution to clarify several aspects of agent oriented approaches.

Wooldridge, Jennings and Kinny [47] propose the Gaia methodology for agent

oriented analysis and design. This methodology is composed of two abstraction

levels: agent level and structural organisational level. The role concept exists in

Gaia; however the relationship between agent and role is a static one.

6. Conclusion

In this paper, we have presented a formal specification approach for MAS based

upon an organisational model. The organisational model describes interaction pat-

terns which are composed of roles. When playing these roles, agents instantiate

interaction patterns. An agent can play several roles and can change the roles it

plays. Specifically, we have built a formal specification of role dynamics. Among

organisational approaches, to our knowledge, there are no such semantics. This

model is thus well suited for describing complex interactions which are among MAS

main features. As an example we have presented a part of the specification of the

satisfaction-altruism model used for autonomous robots [42, 34]. The language used

by the specification framework can describe reactive and functional aspects. It is

structured as a class hierarchy. A new specification is produced by inheriting from

these classes. Several MAS have already been specified with the RIO framework

with or without using a specific agent architecture [25, 26, 4, 17]. These MAS have

been applied to complex problems like radio-mobile network field [32], foot-and-

mouth disease simulation [26] and office automation [15].

The specification language used allows the prototyping of specification [26]. In

this paper we have pointed out some advantages and examples of the use of this

technique. Prototyping is not the only means of analysis. Indeed, we are working on

automatic verification of the specification presented in this paper. For example, we

have used the SAL model checker to verify a property which may be interpretated

as “When a robot is locked by another robot it’s eventually freed”. Moreover, the

specification structure enables incremental and modular validation and verification



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

638 V. Hilaire et al.

through its decomposition. Eventually, such a specification can be refined to an

implementation with multi-agent development platform like MadKit [19] which is

based upon an organisational model [12].

Despite the encouraging results already achieved, we are aware that our ap-

proach still has some limitations. Indeed, it does not tackle all problems raised by

a MAS development methodology. Among issues remaining for future work our or-

ganisational model needs to be improved. The Object-Z part of the specification is

not yet executable. However preliminary work [18] has shown that it is possible to

give an operational semantic to Object-Z but it must be strengthened. We are also

working on the automation of the methodology steps. Indeed, many steps, such as

code generation and animation of specifications, can be automatised and a software

tool must be developed to help the specifier in his tasks. Up to now, we have not

specified all possible families of MAS. We have tried to cover the widest range from

reactive MAS [25, 27] to cognitive MAS [17] and holonic MAS [40]. In order to be

sure that OZS has no limitations concerning MAS features we need to experiment

it on more case studies.

References

1. M. Ainsworth, A. H. Cruickshank, P. J. L. Wallis, and L. J. Groves, Viewpoint spec-
ification and Z, Information and Software Technology 36(1) (1994) 43–51.

2. F. Bergenti and A. Poggi, Exploiting UML in the design of multi-agent systems, in A.
Omicini, R. Tolksdorf, and F. Zambonelli (eds.), Engineering Societies in the Agents’
World, Lecture Notes in Artificial Intelligence, Springer-Verlag, 2000.

3. F. M. T. Brazier, B. D. Keplicz, N. Jennings, and J. Treur, Desire: Modelling multi-
agent systems in a compositional formal framework, Int. J. Cooperative Information
Systems 6 (1997) 67–94.

4. R. Campero, P. Gruer, V. Hilaire, and P. Rovarini, Modeling and simulation of agent-
oriented systems: an approach based on object-z and the statecharts, in C. Urban
(ed.), Agent Based Simulation, 2000.

5. J. Chapelle, O. Simonin, and J. Ferber, How situated agents can learn to cooperate
by monitoring their neighbors’ satisfaction, in 15th European Conference on Artificial
Intelligence, 2002.

6. L. de Moura, S. Owre, Ha. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari, SAL
2, in R. Alur and D. Peled (eds.), Computer-Aided Verification, CAV 2004, LNAI,
Vol. 3114, Springer-Verlag, pp. 496–500.

7. S. DeLoach, Multiagent systems engineering: a methodology and language for design-
ing agent systems, in Agent Oriented Information Systems ’99, 1999.

8. J. Derrick, H. Bowman, and M. Steen, Viewpoints and objects, in J. P. Bowen and
M. G. Hinchey (eds.), Ninth Annual Z User Workshop, LNCS, Vol. 967, Springer-
Verlag, 1995, pp. 449–468.

9. M. d’Inverno, M. Fisher, A. Lomuscio, M. Luck, M. de Rijke, M. Ryan, and M.
Wooldridge, Formalisms for multi-agent systems, Knowledge Engineering Review
12(3) (1997).

10. A. Drogoul and J. Zucker, Methodological issues for designing multi-agent systems
with machine learning techniques: Capitalizing experiences from the robocup chal-
lenge, 1998.

11. R. Duke, P. King, G. Rose, and G. Smith, The Object-Z specification language,



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 639

Technical report, Software Verification Research Center, Department of Computer
Science, University of Queensland, Australia, 1991.

12. J. Ferber and O. Gutknecht, A meta-model for the analysis and design of organiza-
tions in multi-agent systems, in Y. Demazeau, E. Durfee, and N. R. Jennings (eds.),
ICMAS’98, July 1998.

13. M. Fisher, If Z is the answer, what could the question possibly be?, in Intelligent
Agents III, LNAI, Vol. 1193, 1997.

14. P. Gruer, V. Hilaire, A. Koukam, and S. Hayat, A methodology based on multiple
views for multi-agent systems in simulation, application to the transportation domain
in 13th European Simulation Symposium, 2001.

15. P. Gruer, V. Hilaire, and A. Koukam, Approche multi-formalismes pour la
spécification des systèmes multi-agents, Organisation et Applications des SMA,
Hermès, 2002, Chapter 1.

16. P. Gruer, V. Hilaire, and A. Koukam, Heterogeneous formal specification based on
object-z and state charts: semantics and verification, J. Systems and Software 70(1–2)
(2004) 95–105.

17. P. Gruer, V. Hilaire, A. Koukam, and K. Cetnarowicz, A formal framework for multi-
agent systems analysis and design, Expert Systems with Applications 23(4) (2002)
349–355.

18. P. Gruer, V. Hilaire, and A. Koukam, Verification of Object-Z Specifications by using
Transition Systems, in T. S. E. Maibaum (ed.), Fundamental Aspects of Software
Engineering, LNCS, Vol. 1783, Springer Verlag, 2000.

19. O. Gutknecht and J. Ferber, The madkit agent platform architecture, in 1st Workshop
on Infrastructure for Scalable Multi-Agent Systems, June 2000.

20. D. Harel, Statecharts: A visual formalism for complex systems, Science of Computer
Programming 8(3) (1987) 231–274.

21. D. Harel and E. Gery, Executable object modeling with statecharts, IEEE Computer
30(7) (1997) 31–42.

22. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. B. Trakhtenbrot, Statemate: A working environment for the de-
velopment of complex reactive systems, IEEE Trans. on Software Engineering 16(4)
(1990) 403–414.

23. D. E. Herlea, C. M. Jonker, J. Treur, and N. J. E. Wijngaards, Specification of
behavioural requirements within compositional multi-agent system design, LNCS,
Vol. 1647, 1999, pp. 8–27.

24. V. Hilaire, A. Koukam, and P. Gruer, A mechanism for dynamic role playing, in Agent
Technologies, Infrastructures, Tools and Applications for E-Services, LNAI, Vol. 2592,
Springer Verlag, 2002.

25. V. Hilaire, T. Lissajoux, and A. Koukam, Towards an executable specification of
multi-agent systems, in J. Filipe and J. Cordeiro (eds.), Int. Conf. on Enterprise
Information Systems’99, Kluwer Academic Publishers, 1999.

26. V. Hilaire, A. Koukam, P. Gruer, and J.-P. Müller, Formal specification and proto-
typing of multi-agent systems, in A. Omicini, R. Tolksdorf, and F. Zambonelli (eds.),
Engineering Societies in the Agents’ World, LNAI, Vol. 1972, Springer Verlag, 2001.

27. V. Hilaire, O. Simonin, A. Koukam, and J. Ferber, A formal framework to design
and reuse agent and multiagent models, in J. Odell, P. Giorgini, and J. Müller (eds.),
Agent Oriented Software Engineering, LNCS, Vol. 3382, Springer, 2005.

28. C. Iglesias, M. Garrijo, and J. Gonzalez, A survey of agent-oriented methodologies, in
J. Müller, M. P. Singh, and A. S. Rao (eds.), Proc. 5th Int. Workshop on Intelligent
Agents V: Agent Theories, Architectures, and Languages (ATAL-98), LNAI, Vol. 1555,



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

640 V. Hilaire et al.

Springer, Berlin, 1999, pp. 317–330.
29. E. A. Kendall, Role modeling for agent system analysis, design, and implementation,

IEEE Concurrency 8(2) (2000) 34–41.
30. E. A. Kendall, P. V. Murali Krishna, C. B. Suresh, and C. G. V. Pathak, An appli-

cation framework for intelligent and mobile agents, ACM Computing Surveys 32(1)
(2000).

31. A. Koukam, B. Mazigh, P. Gruer, and V. Hilaire, A multiview approach to modeling
and analysis of discrete event systems, System Analysis — Modelling — Simulation
43(6) (2003) 721–740.

32. T. Lissajoux, V. Hilaire, A. Koukam, and A. Caminada, Genetic Algorithms as Proto-
typing Tools for Multi-Agent Systems: Application to the Antenna Parameter Setting
Problem, in S. Albayrak and F. J. Garijo (eds.), LNAI, Vol. 1437, Springer Verlag,
1998.

33. F. Lopez, Y. Lopez, and M. Luck, Modelling norms for autonomous agents, in Proc.
Fourth Mexican Int. Conf. on Computer Science, IEEE Computer Society Press, 2003.

34. P. Lucidarme, O. Simonin, and A. Liégeois, Implementation and evaluation of a
satisfaction/altruism based architecture for multi-robot systems, in IEEE Int. Conf.
on Robotics and Automation, 2002.

35. M. Luck and M. d’Inverno, A formal framework for agency and autonomy, in V.
Lesser and L. Gasser (eds.), Proc. First Int. Conf. on Multi-Agent Systems, AAAI
Press, 1995, pp. 254–260.

36. Z. Manna, N. Bjoerner, A. Browne, and E. Chang, STeP: The Stanford Temporal
Prover, LNCS, Vol. 915, 1995, pp. 793–794.

37. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer, 1991.

38. J. Odell, H. Parunak, and B. Bauer, Extending uml for agents, in Y. Lesperance and
E. Y. Gerd Wagner (eds.), Information Systems Workshop at the 17th National Conf.
on Artificial Intelligence, 2000, pp. 3–17.

39. R. F. Paige, A meta-method for formal method integration, in J. Fitzgerald, C. B.
Jones, and P. Lucas (eds.), FME’97: Industrial Applications and Strengthened Foun-
dations of Formal Methods (Proc. 4th Intl. Symposium of Formal Methods, Graz,
Austria, September), LNCS, Vol. 1313, Springer-Verlag, 1997, pp. 473–494.

40. S. Rodriguez, V. Hilaire, and A. Koukam, Towards a methodological framework for
holonic multi-agent systems, in Proc. ESAW’03 Workshop, 2003, pp. 179–185.

41. O. Simonin, Le modèle satisfaction-altruisme: coopération et résolution de conflits
entre agents situés réactifs, application à la robotique, PhD thesis, USTL, 2001.

42. O. Simonin and J. Ferber, Modeling self satisfaction and altruism to handle action
selection and reactive cooperation, in Sixth Int. Conf. on the Simulation of Adaptative
Behavior FROM ANIMALS TO ANIMATS 6, 2000, pp. 314–323.

43. G. Smith, A semantic integration of object-Z and CSP for the specification of concur-
rent systems, in J. Fitzgerald, C. B. Jones, and P. Lucas (eds.), FME’97: Industrial
Applications and Strengthened Foundations of Formal Methods (Proc. 4th Intl. Sympo-
sium of Formal Methods, Graz, Austria, September, 1997), Vol. 1313, Springer-Verlag,
1997, pp. 62–81.

44. G. Smith, The Object Z Specification Language (Kluwer Academic Publishers, 1999).
45. G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-

gence (MIT Press, Cambridge, MA, 1999).
46. M. Wooldridge and N. R. Jennings, Intelligent agents: Theory and practice, The

Knowledge Engineering Review 10(2) (1995) 115–152.



Final Reading
November 13, 2007 15:8 WSPC/117-ijseke 00339

Formal Specification Approach of Role Dynamics 641

47. M. Wooldridge, N. R. Jennings, and D. Kinny, A methodology for agent-oriented
analysis and design, in Proc. Third Int. Conf. on Autonomous Agents (Agents’99),
ACM Press, Seattle, WA, 1999, pp. 69–76.

48. E. Yu, Towards modelling and reasoning support for early-phase requirements
engineering, in 3rd IEEE Int. Symp. on Requirements Engineering, 1997, pp. 226–
235.

49. P. Zave and M. Jackson, Conjunction as composition, ACM Trans. Software Engi-
neering and Methodology, 2(4) (1993) 379–411.


