
A Formal Approach to Design and Reuse Agent
and Multiagent Models

Vincent Hilaire1, Olivier Simonin1, Abder Koukam1, and Jacques Ferber2

1 Université de Technologie de Belfort Montbéliard., 90010 Belfort Cedex, France
vincent.hilaire@utbm.fr

(33) 384 583 009
2 LIRMM Université Montpellier II - CNRS, 161 rue Ada

34392 Montpellier Cedex 5 - France

Abstract. While there are many useful models of agents and multi-agent
systems, they are typically defined in an informal way and applied in an
ad-hoc fashion. Consequently, multi-agent system designers have been un-
able to fully exploit these models commonalities and specialise or reuse
them for specific problems. In order to fully exploit these models and facil-
itate their reuse we propose a formal approach based upon organisational
concepts. The formal notation is the result of the composition of Object-Z
and statecharts. The semantics of this multi-formalisms is defined by tran-
sition systems. This operational semantics enables validation and verifica-
tion of specifications. We present this approach through the specification
of the satisfaction-altruism model which has been used to design situated
multi-agent systems. We put the emphasis on the specification of a mobile
robot architecture based on the refinement of this model. The availability
of such generic models is a fundamental basis for reuse. We also show how
to analyse the specification by validation and verification.

1 Introduction

While there are many useful models of agents and multi-agent systems, they
are typically defined in an informal way and applied in an ad-hoc fashion. Con-
sequently, multi-agent system designers have been unable to fully exploit these
models commonalities and specialise or reuse them for specific problems. We be-
lieve, and the experience bear this out, that formal specification can be used to
describe model concepts which can be refined to fulfil a particular system needs.

A whole range of methodological efforts relating to MAS have been under-
taken, and can be divided into those that are based upon semi-formal models
[2, 4, 22] on the one hand, and those that are based on formal models [17, 11, 24].
A drawback of semi-formal methods is that they do not allow validation or veri-
fication of MAS. Among formal models many impose specific agent architecture
like the BDI one and are not well fitted to enable reuse of concepts. The aim
of this paper is to present a formal approach for the specification of MAS mod-
els and their reuse. This formal approach allows validation and verification and
is presented through a case study. First a formal specification of a multi-agent
model is given then it is refined for a specific application.

P. Giorgini et al. (Eds.): AOSE 2004, LNCS 3382, pp. 142–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:vincent.hilaire@utbm.fr

A Formal Approach to Design and Reuse Agent and Multiagent Models 143

The specification approach is based on a formal notation OZS [7] and an
organisational framework [12]. The organisational framework gives methodolog-
ical rules in order to specify a system in terms of an organisational meta-model
named RIO which stands for Role, Interaction and Organisation [13]. This point
of view is the basis of several other specification approaches such as [24, 6, 23].
The OZS notation is the result of the composition of Object-Z [5] and state-
charts [9]. This multi-formalisms notation allows the modelling of systems with
both reactive and functional aspects. Indeed, the basic construct of this nota-
tion is an Object-Z class which encapsulates a statechart. The Object-Z class
specify attributes and operations in a set-theoretic fashion and the statechart
specifies how the class react to external and internal events. This notation allows
the prototyping and the verification of produced specifications. The prototyping
and verification processes enable the production of correct specifications which
can be refined downto executable code as shown in the figure 1. Each concept
of the RIO meta-model is specified by an OZS class which may encapsulates a
statechart in order to specify behaviours.

Fig. 1. Specification refinement process

We present this approach through the formal specification of a multi-agent
architecture: the satisfaction-altruism model [20, 21]. This model is based on a
behaviour-based architecture as [1] and introduces a cooperation mechanism.
This one is defined as reactions to the perception of simple signals broadcasted
by agents. We illustrate the refinement of the resulting formal model in order
to specify a mobile robot application. However, the specification approach isn’t
limited to behaviour-based architecture. Indeed, in [8] we have specified a men-
talistic based architecture.

The paper is organised as follows : section 2 introduces the OZS notation.
Section 3 abstracts the satisfaction-altruism model. Section 4 presents the for-
mal specification of the satisfaction-altruism model with the OZS notation and
section 5 the mobile robots extension. Section 6 illustrates prototyping and ver-
ification on this case study. Eventually, section 7 concludes.

2 OZS Notation

Many specification formalisms can be used to specify entire system but few, if
any, are particularly suited to model all aspects of such systems. For large or

144 V. Hilaire et al.

complex systems, like MAS, the specification may use more than one formalism
or extend one formalism.

Our choice is to use Object-Z to specify the transformational aspects
and statecharts to specify the reactive aspects. Object-Z extends Z [17] with
object-oriented specification support. The basic construct is the class which
encapsulates state schema and operation schemas which may affect its
variables.

Statecharts extend finite state automata with constructs for specifying
parallelism, nested states and broadcast communication for events. Both
language have constructs which enable refinement of specification. Moreover,
statecharts have an operational semantic which allows the execution of a
specification.

We introduce a multi-formalisms notation that consists in integrating stat-
echarts in Object-Z classes. The class describes the attributes and operations
of the objects. This description is based upon set theory and first order predi-
cates logic. The statechart describes the possible states of the object and events
which may change these states. A statechart included in an Object-Z class can
use attributes and operations of the class. The sharing mechanism used is based
on name identity. Moreover, we introduce basic types [Event ,Action,Attribute].
Event is the set of events which trigger transitions in statecharts. Action is the
set of statecharts actions and Object-Z classes operations. Attribute is the set of
objects attributes.

The LoadLock class illustrates the integration of the two formalisms. It spec-
ifies a LoadLock composed of two doors which states evolve concurrently. Paral-
lelism between the two doors is expressed by the dashed line between DOOR1
and DOOR2. The first door reacts to activate1 and deactivate1 events. When
someone enter the LoadLock he first activate the first door enter the LoadLock
and deactivate the first door. The transition triggered by deactivate1 event exe-
cute the inLL operation which sets the someoneInLL boolean to true. Someone
which is between the first and the second door can activate the second door so
as to open it.

LoadLock

someoneInLL : B

INIT
¬ someoneInLL

inLL
∆someoneInLL

someoneInLL′

outLL
∆someoneInLL

¬ someoneInLL′

A Formal Approach to Design and Reuse Agent and Multiagent Models 145

behavior

The notation for attribute modification consists of the modified attributes
which belongs to the ∆-list. In any operation sub-schema, attributes before their
modification are noted by their names and attributes after the operation are
suffixed by ’.

The result of the composition of Object-Z and statecharts seems particularly
suited in order to specify MAS. Indeed, each formalism has constructs which
enable complex structure specification. Moreover, aspects such as reactivity and
concurrency can be easily dealt with.

3 Overview of Satisfaction-Altruism Model

The satisfaction-altruism model has been developed to integrate intentional co-
operative behaviours into the collective solving problem approach. Assume the
system is composed of simple self-organised entities (reactive agents) working for
a common goal. Intentional cooperation is integrated thanks to three concepts.

The first concept is personal satisfaction. It is a value computed continuously
by each agent (noted P), representing the evolution of the current task. At each
step of the decision cycle, the agent computes a variation v of the value P ,
which can be a positive value if it progresses or a negative value if it regresses or
stagnates (see details in [20]). The cycle action-perception-update of P is shown
in figure 2 for one agent.

The second concept is dynamical influences. They are simple attractive or
repulsive signals locally emitted by the agents towards their neighbours (rep-
resented by Signal arrows in figure 2). An influence is released when an agent
perceives conflicts or possibilities to cooperate with its neighbours (represented
by the constraints evaluation box in figure 2). The influences are coded by values
defined in the same interval as P, with positive values for attraction and negative
ones for repulsion.

The last concept is altruistic behavior. Each agent computes in its action-
selection module a comparative test between the values of the perceived influ-
ences and its personal satisfaction (P). If the intensity of an external influence is

146 V. Hilaire et al.

Fig. 2. Satisfaction Altruism principle

greater than P then the agent stops its current task and executes a predetermined
altruistic behavior. It is a response to the strongest influence: a displacement to
go towards the emitter or to move away. Note that agents executing an altruistic
behavior can propagate the signal they perceive. It is useful to solve conflicts
involving several close agents [21].

This model constitutes an extension of the Artificial Potential Field (APF)
approach in the sense that agents emit dynamical signals which are perceived
by others as environmental influences. These dynamical influences can be then
combined to other classical perceptions, for instance the repulsions from the
close obstacles. This combination is represented by the sum operation in
figure 2.

Different distributed problems have been efficiently solved by this model.
On the one hand with simulation tools: foraging tasks [20], navigation con-
flicts solving [21], cooperation for box-pushing and box-cutting in heterogeneous
multi-robot systems [3]. On the other hand with real autonomous mobile robots:
navigation conflicts solving [16].

4 Satisfaction-Altruism Kernel Specification

The satisfaction-altruism model is now detailed through its formal specifica-
tion, using the previously introduced approach. The analysis of the satisfaction-
altruism model using RIO is out of the scope of this paper. We only present the
classes we obtained.

The class DiscreteSensor specifies a discrete sensor device. The first line of
the class introduces the Intensity abbreviation by the == symbol. Intensity de-
notes [−Pmax ,Pmax] interval where Pmax is a real constant. The next unnamed
sub-schema specifies the state space of the class. Such a device takes as input a
discrete number of signals which are represented by the stimulus sequence. Each
different sensor, indexed by a number i in N, gives a different signal, stimulus(i).

A Formal Approach to Design and Reuse Agent and Multiagent Models 147

One can select the greater signal received by the getMax operation. An oper-
ation is enclosed in named sub-schema and is divided in two parts. The first
part, above a short line is a declaration part and the second part below the
short line is a predicate part. To include output (resp input) parameters the
name of the variable should end with an exclamation (resp question) mark. In
the getMax operation there is an output variable s. The predicate part speci-
fies the s domain. It belongs to the stimulus sequence range. It also states that
s is the greater stimulus perceived in terms of greater absolute value of signal
intensity.

DiscreteSensor
Intensity == [−Pmax ,Pmax]

stimulus : seqSignal

getMax
s! : Intensity

s ∈ ran stimulus
�s ′ ∈ ran stimulus • |s ′| ≥ |s|

With the SAAgent class we introduce an agent based upon the satisfaction-
altruism kernel. Its attributes, operations and behaviour are defined according
to the satisfaction-altruism model. The class SAAgent inherits from Agent de-
fined in the RIO framework [12] and specifies the Satisfaction/Altruism behavior
model. The altruismTest boolean decides if the agent must be in individual state
or altruism state. It is defined as a λ-expression which evaluates the condition
included in the predicate part.

The agent attributes are first an action it currently undergo : current . Then
the agent is described by weights attached to the actions it can do weight . These
different weights can be modified by the agents evolution and their initial values
are defined by initialWeight .

The progressionReward function maps each action to a 3-uplet giving the
bonus or penaltypenalty values for agents satisfaction when it is respectively in
progression, in regression or locked.

The statechart included in the behavior sub-schema specifies the behavior of
SAAgent . It consists of two exclusive-or states. These states specify the individ-
ual and altruistic behaviours. By default an agent is in individual state and if
the altruism test becomes true then it is in altruistic state. Each superstate is
divided in two parts. First an action part which is the reaction to events and
second a communication part which emits a I valued signals.

The operations of the class are P which computes the personal satisfaction
of the agent according to the Satisfaction Altruism model and Iext which selects
the perceived signal with the maximum intensity. Eventually, actionSelection
decides for the individual state which action is to be achieved. This operation

148 V. Hilaire et al.

modifies the state space of the class. Specifically it modifies the current and
weight variables. These variables are listed in the ∆-list of the operation. The
mechanism of action selection isn’t described further here since we restrict ac-
tions to movements in the sequel.

SAAgent
Agent

altruismTest : B

altruismTest ⇔ |Iext()| ≥ P() ∧ |Iext()| ≥ |I |
BMValue == [−∆s, ∆s] × [−∆s, ∆s] × [−∆s, ∆s]

current : Action
initialWeight ,weight : Action → [0, 1]
progressionReward : Action → BMValue
s : DiscreteSensor
satisfaction, I : [−Pmax ,Pmax]

current ⊆ actions
dom initialWeight = dom weight ⊆ actions
∀ v ∈ ran progressionReward • v =
(n,m, f) ∧ ∆s ≤ f ≤ n ≤ 0 ≤ m ≤ ∆s

P
satisfaction! : [−Pmax ,Pmax]

progression(current) ⇒ satisfaction ′ = satisfaction + v .m
regression(current) ⇒ satisfaction ′ = satisfaction + v .n
locked(current) ⇒ satisfaction ′ = satisfaction + v .f

Iext
ext ! : R

ext ! = s.getMax ()

actionSelection
∆(current ,weight)

behavior

A Formal Approach to Design and Reuse Agent and Multiagent Models 149

5 Mobile Robots Extension

5.1 Principle of Robots Behavior

In the previous section we have presented the kernel of the satisfaction-altruism
model. To apply it on concrete problems it is necessary to refine the agent
perceptions and to clarify the satisfaction computation. Here we aim to de-
fine a mobile robot architecture using the model to allow agents cooperation
for navigation. In order to treat navigational conflicts the satisfaction-altruism
kernel is refined by adding the key concepts of : displacement, perception and
satisfaction.

When an agent tries to move towards a direction its displacement is de-
fined by a vector (V). This vector represents the current task of the agent.
When the agent gets the altruist state this vector becomes equal to the pre-
determined reaction to signals. In any case the vector V integrates obstacles
avoidance.

An agent blocked by the fault of others emit a repulsive signal when its
satisfaction becomes negative (the value emitted is then equals to P). When an
agent perceives such a signal and the intensity of the signal is higher than its
personal satisfaction the agent tries to move away from the transmitting agent.
It is the altruistic reaction.

Each agent is equipped with sensors allowing the detection of walls and
robots, towards different directions (into [0◦,360◦]). When the agent can progress
towards its goal the variation of satisfaction v is positive (equal to m > 0). When
it moves away v is a negative value (equals to n ≤ 0). If the agent is locked (paral-
ysed) the variation of P is equal to f , with f < n ≤ 0. The value f is computed
in function of the elements surrounding the agent. Each element has a negative
weight: value θ for robots, θ’ for walls as θ’ < θ < 0 because walls are stronger
constraints than mobile robots. v is then computed as the sum of these weights
over all the directions. In other words, the more an agent is surrounded by walls
the faster its satisfaction will decrease. As a consequence, there is an induced
emergent phenomenon that moves agents from the more constrained regions to
the less constrained ones, cf [21].

5.2 Classes for the Mobile Robot Extension

The DiscreteSituatedSensor class inherits from DiscreteSensor . It specifies a
sensor which devices are located at given angles. The signal type introduced
in the beginning of the class is defined as a free type by the ::= symbol
and we enumerate the possible value for this type. The different possible val-
ues are: ∅ (which means no signal), obstacle or agent (another robot). For
each specific sensor one can know the signal type with getSignalType oper-
ation and the number of sensors activated with the getActivatedSensor
operation.

150 V. Hilaire et al.

DiscreteSituatedSensor
DiscreteSensor
SignalType ::= ∅ | obstacle | agent

angularDistance : [0, 360]
numberOfSensors : N

dom stimulus ⊆ [1,numberOfSensors]
angularDistance = 360/numberOfSensors

getSignalType
n? : N
t ! : SignalType

getActivatedSensor
n! : N

n! ≤ numberOfSensors

Eventually the MobileRobot class specifies a robot which behavior is based on
the satisfaction altruism model. This class inherits from SAAgent. In this class
we precise many things. The propagation condition of the agent is true whenever
the external signal (Iext) is less than zero (i.e. repulsive signal) and when there
is a robot in its way. One agent perceives a hinderer when there is one agent
just in front of him. An agent progresses if and only if its move is non zero. An
agent is locked whenever its moving vector is zero and it can’t be in regression.
In order to simulate random we use a non described operation random which
outputs a random number in the set {−30,−15, 0, 15, 30}.

MobileRobot
SAAgent

propagationCondition : B

propagationCondition ⇔ (Iext ≤ 0)
∧ (s.getSignalType(s.getActivatedSensor() + 180) = agent)

perceiveHinderer ! : B

perceiveHinderer ! ⇔ s.getSignalType(0) = agent

progression : B

progression ⇔ −→V !goal
= −→0
locked : B

locked ⇔ −→V !goal = −→0
regression : B

¬ regression

A Formal Approach to Design and Reuse Agent and Multiagent Models 151

calculateVf ! : R

calculateVf ! = Σn=s.numberOfSensors
n=0 valObs(n)

valObs! : R
n? : N

s.getSignalType(n?) = obstacle ⇒ valObs(n)! = −0.75
s.getSignalType(n?) = agent ⇒ valObs(n)! = −0.25
s.getSignalType(n?) = ∅ ⇒ valObs(n)! = 0.5

dom progressionReward= {altruismReaction,
individualReaction}

ran progressionReward = (2, 0, calculateVf)
s ∈ DiscreteSituatedSensor

calculateSlide−−→Vsli =
∑

i∈{s.getSignalType(i)=obstacle}((i × angularDistance) + 90

altruismReaction−→V !goal : Vector
−→V slide = calculateSlide()−−−→Vgoal = −−−−−−→Valtruism + −−−→Vslide−−−−−−→Valtruism = k × s.getMax ().(s.getActivatedSensor()

×s.angularDistance)

individualReaction−→V ! : Vector

s.getSignalType(0) = obstacle ⇒ −−−→Vgoal = 0
s.getSignalType(0)
= obstacle ⇒ −−−→Vgoal = random−−−→Vslide = calculateSlide()−→V ! = −−−→Vgoal + −−−→Vslide

getDirection−→V ! : Vector

instate(Indivual) ⇒ −→V ! = individualReaction()
instate(Altruism) ⇒ −→V ! = altruismReaction()

The mobile robots environment is specified by the coordinate of the mobile
robots and the position of obstacles. It refines the Environment class of the RIO
framework.

152 V. Hilaire et al.

RobotsEnvironment
Environment
Coordinate == R × R

situation : MobileRobot → Coordinate
obstacles : P Coordinate

∀ a ∈ agents • situation(a)
∈ obstacles
∀ a, b ∈ agents • a
= b ⇒ situation(a)
= situation(b)

�(∀ a ∈ agents •
(x , y) = situation(a)
∧ ©©©(situation(a) = (x , y) + a.getDirection()))

6 Specification Analysis

6.1 Prototyping

The prototyping is performed by using STATEMATE [10] ; an environment
which allows the prototyping and the simulation of the statechart specifications.
The specification analysis is based upon execution of the statecharts and can
be done using two techniques. The first technique is simulation and the second
is animation. In our case simulation would consist in assigning probabilities to
events or actions occurrences. With this technique one can evaluate quantitative
parameters of the specified system. As an example, in the satisfaction-altruism
model, probabilities can be assigned to agent in order to simulate exploration of
various environments.

Animation technique consists of testing the specification with predefined in-
teraction scenarios. It enables one to test if the system behavior is consistent
with requirements.

In order to evaluate our specification of the architecture we simulated the
behavior of two robots evolving in a particular environment. We defined a closed
narrow corridor where it is impossible for two agents to inter-cross, as showed
in figure 3a. The goal of each agent is to find an exit by exploring the whole
corridor. With such an environment exploration conflicts are unavoidable and
lead to the emission of repulsive signals and altruistic reactions. In particular,
when the agents meet around the centre they both try to push back the other,
this causes a quick fall of their satisfactions. The more unsatisfied agent repulses
the other to an extremity of the corridor. As the ends are closed the agents
will be blocked again. The first agent to arrive at one end of the corridor will
be surrounded by three walls. Thus it will be more constrained than the other
agent and its satisfaction will decrease faster. The model ensures that it will then
repulse the other agent and thus both will continuously explore the environment.
If an exit for the corridor is artificially created the robots will take it.

The figures 3b and 3c shows an example of such a test. The x axis represents
time and y axis represents discretized positions in the corridor for the 3b figure

A Formal Approach to Design and Reuse Agent and Multiagent Models 153

Fig. 3. Corridor environment and curves

and level of satisfaction for each robot for the 3c figure. One can see that levels
of satisfaction and trajectories are correlated. Indeed, each time the two robots
are locked the satisfaction levels decrease. They decrease faster when a robot is
locked against a wall. As soon as the altruism test becomes true the concerned
robot plays the altruist role and changes its direction (it is the case around times
109, 155 and 235). If a robot isn’t locked and can explore the corridor following
its initial direction its satisfaction level increases.

This animation shows an example of the execution of the specification for
a specific environment (the corridor) and a specific number of agents. These

154 V. Hilaire et al.

Fig. 4. Hedographs of 2 real robots

parameters can be easily modified in order to check the specification against
pertinent test cases. It is important to note that the validation of the specification
by simulation gives similar results as the real world experiments [16], see figure 4.
This figure, called hedograph from the Greek hedos which means satisfaction,
shows the satisfaction levels of two real robots.

The simulation is performed by executing the behaviour part of the obtained
specifications without developing a specific simulator. The simulation tool offers
an interactive simulation mode and a program controlled mode. In the latter
a program written in a high level language replaces the user. One feature of
this programming language is the breakpoint construct. Breakpoint stop the
specification execution when a condition is verified. Possible uses of breakpoints
are, for example, configuration tests with predefined interaction scenarios and
output of statistics.

6.2 Verification

OZS semantics [7] is based upon transition systems as defined in [19]. It means
that for each OZS specification there is an associated transition system. This
transition system represents the set of possible computations the specification
can produce.

With such transition systems and software tools like STeP [18] one can ver-
ify specification properties. With STeP specification properties are expressed in
Linear-time Temporal Logic formulas and the verification may be done by using
two techniques.

The first technique is model-checking which enables the verification of the
satisfiability of a property. The STeP model-checker proves or refutes validity
of LTL formulas relatively to a transition system. To establish the satisfiability
of history invariant H one must actually establish that ¬ H is not valid. This
technique is the simplest to use but is limited by the specification state space.

The second technique is semi-automatic proof. It is based on deductive method.
The deductive methods of STEP verify temporal properties of systems by means
of verification rules, e.g. induction and verification diagrams. Verification rules
are used to reduce temporal properties of systems to first-order verification con-
ditions. Verification diagrams provide a visual language for guiding, organising
and displaying proofs. Verification diagrams allows the user to construct proofs
hierarchically, starting from a high-level, intuitive proof sketch and proceeding
incrementally, as necessary, through layers of greater detail. The specifier can
help the proover if it can not proove a property by introducing axioms.

A Formal Approach to Design and Reuse Agent and Multiagent Models 155

For our case study one has to refine the RobotsEnvironment class to specify
the corridor example and try to verify with the STeP model-checker the satis-
fiability of the following informal property ”When a robot is locked by another
robot it’s eventually be freed”. This property is specified by the following LTL
formula :

(∃ a ∈ agents •
∀ i ∈ a.s.numberOfSensors •
a.s.getSignalType(i) = agent
∨ a.s.getSignalType(i) = obstacle) ⇒

�(∃ j ∈ a.s.numberOfSensors •
a.s.getSignalType(i) = ∅)

It means that if there exists one agent that perceives an obstacle or other
agents from all its sensors (the agent is locked), eventually this agent will be freed
ans thus at least one perception will be void. To be verified by a model checker
the corresponding transition system should include only finite and bounded sets.
All part of the specification that describe continuous or infinite types must be
discretized and bounded.

7 Conclusion

In this paper we have presented an approach which allows specification, vali-
dation and verification of MAS. Moreover, we have specified a particular MAS
model, the satisfaction-altruism one. This reactive-based model is useful for co-
operation between situated agents (or robots). We have shown validation and
verification examples for the satisfaction-altruism specification. This formali-
sation shows that our approach can be applied to behavior-based architectures,
that were not formally analysed at the beginning. We have thus applied a reverse-
engineering approach to specify formally this model. The result is composed of
OZS [7] classes which specify each component of the satisfaction-altruism model.
The first level of the specification specifies the kernel of the satisfaction-altruism
model. The second level refines the first and specifies an extension applied to
mobile robots. The advantages of our approach are first that the satisfaction-
altruism model is presented in formal and non ambiguous terms and second that
the specification decomposes the model in formal concepts which can be reused
in specific applications. The validation phase enables specifications test with pre-
defined interaction scenarios such as the corridor application. The verification
phase allows the proof of logical properties. The reusability of such a specifica-
tion is enhanced by the results of the validation and the verification. Indeed,
all the roles and agents, validated and verified, constitute reliable components
which can be used in other applications.

At this time, our approach can be improved. In particular we plan to ease
the specification process by associating a methodology. A methodology must be
associated to ease the specification process. A CASE tool could be helpful to
support the specification. We plan to explore the verification of properties for

156 V. Hilaire et al.

such specifications by using semi-automatic proofs. We also plan the specification
of others multi-agent models following the process described in this paper. This
will constitute a library of reusable generic agent and multi-agent models a sort
of design patterns for agents.

References

1. R. Arkin. Behavior Based Robotics. The MIT Press. 1998
2. Bergenti, F. and A. Poggi: 2000, ‘Exploiting UML in the Design of Multi-Agent

Systems’. In: A. Omicini, R. Tolksdorf, and F. Zambonelli (eds.): Engineering
Societies in the Agents’ World.

3. J. Chapelle, O. Simonin, and J. Ferber. How situated agents can learn to cooper-
ate by monitoring their neighbors’ satisfaction. In 15th European Conference on
Artificial Intelligence, pages 68–72, Lyon, France, 2002.

4. DeLoach, S.: 1999, ‘Multiagent Systems Engineering: a Methodology and Language
for Designing Agent Systems’. In: Agent Oriented Information Systems ’99.

5. R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification language.
Technical report, Software Verification Research Center, Departement of Computer
Science, University of Queensland, AUSTRALIA, 1991.

6. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of orga-
nizations in multi-agent systems. In Y. Demazeau, E. Durfee, and N. Jennings,
editors, ICMAS’98, july 1998.

7. P. Gruer, V. Hilaire, and A. Koukam. Heterogeneous formal specification based
on object-z and state charts: semantics and verification. Journal of Systems and
Software, 70(1), 2004.

8. P. Gruer, V. Hilaire, A. Koukam, and K. Cetnarowicz. A formal framework for
multi-agent systems analysis and design. Expert Systems with Applications, 23.
2002.

9. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987.

10. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. B. Trakhtenbrot. Statemate: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering, 16(4):403–414, Apr. 1990.

11. Herlea, D. E., C. M. Jonker, J. Treur, and N. J. E. Wijngaards: 1999, ‘Specification
of Behavioural Requirements within Compositional Multi-agent System Design’.
Lecture Notes in Computer Science 1647, 8–27.

12. V. Hilaire, A. Koukam, and P. Gruer. A mechanism for dynamic role playing. In
Agent Technologies, Infrastructures, Tools and Applications for E-Services, number
2592 in Lecture Notes in Artificial Intelligence. Springer Verlag, 2002.

13. V. Hilaire, A. Koukam, P. Gruer, and J.-P. Müller. Formal specification and pro-
totyping of multi-agent systems. In A. Omicini, R. Tolksdorf, and F. Zambonelli,
editors, Engineering Societies in the Agents’ World, number 1972 in Lecture Notes
in Artificial Intelligence. Springer Verlag, 2000.

14. V. Hilaire, A. Koukam, O. Simonin, and P. Gruer. Formal specification of role
dynamics in agent organizations: Applications to the satisfaction-altruism model.
Autonomous Agents and Multi-Agent Systems, 2003. submitted.

15. Michael Luck and Mark d’Inverno. A formal framework for agency and autonomy.
In Victor Lesser and Les Gasser, editors, Proceedings of the First International
Conference on Multi-Agent Systems, pages 254–260. AAAI Press, 1995.

A Formal Approach to Design and Reuse Agent and Multiagent Models 157

16. P. Lucidarme, O. Simonin, and A. Ligeois. Implementation and evaluation of a
satisfaction/altruism based architecture for multi-robot systems. In International
Conference of Robotics and Automation (ICRA’2002), pages 1007–1012, Washing-
ton, USA, 2002.

17. Luck, M. and M. d’Inverno: 1995, ‘A Formal Framework for Agency and Auton-
omy’. In: V. Lesser and L. Gasser (eds.): Proceedings of the First International
Conference on Multi-Agent Systems. pp. 254–260.

18. Z. Manna, N. Bjoerner, A. Browne, and E. Chang. STeP: The Stanford Temporal
Prover. Lecture Notes in Computer Science, 915:793–??, 1995.

19. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

20. O. Simonin and J. Ferber. Modeling self satisfaction and altruism to handle action
selection and reactive cooperation. 6th International Conference On the Simulation
Of Adaptive Behavior (SAB 2000 volume 2), pages 314–323, 2000.

21. O. Simonin, A. Liegois, and P. Rongier. An architecture for reactive cooperation
of mobile distributed robots. In DARS 4 Distributed Autonomous Robotic Systems
4, pages 35–44, Knoxville, TN, 2000. Springer.

22. J. Odell, M. Nodine, and R. Levy. A metamodel for agents, roles and groups. In
J. Odell, P. Giorgini, and J. P. Müller, editors, The Fifth International Workshop
on Agent-Oriented Software Systems, volume in this book. Springer-Verlag, 2004.

23. E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. Designing roles for situated
agents. In J. Odell, P. Giorgini, and J. P. Müller, editors, The Fifth International
Workshop on Agent-Oriented Software Systems, volume in this book. Springer-
Verlag, 2004.

24. M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented
analysis and design. In Proceedings of the Third International Conference on Au-
tonomous Agents (Agents’99), pages 69–76, Seattle, WA, USA, 1999. ACM Press.

	Introduction
	OZS Notation
	Overview of Satisfaction-Altruism Model
	Satisfaction-Altruism Kernel Specification
	Mobile Robots Extension
	Principle of Robots Behavior
	Classes for the Mobile Robot Extension

	Specification Analysis
	Prototyping
	Verification

	Conclusion

