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Abstract. It is emphasized in numerous prospective studies that the
development of swarms of Unmanned Aerial Vehicules (UAV) should be
important in the next years. However, the design of these new multi-agent
systems involves to take up many challenges. In particular, reducing the
number of operators requires to define new interfaces in order to inter-
act with such autonomous multirobot systems. We present an approach
that allows one operator to control a swarm of UAVs in the context of
simulated patrolling and pursuit tasks. Self-organized control relying on
digital pheromones, as well as authority sharing based on several op-
erating modes are defined. Experiments with human operators on the
simulated system show that the combination of the two approaches is
effective.

1 Introduction

Nowadays several operators (usually one for the platform and another for the
payload, not counting support) are required to supervise the mission of a single
UAV (Unmanned Air Vehicle). Future systems for surveillance are envisioned
using many vehicles that cooperate to perform their mission. In this context
the current ratio between the number of operators and the number of vehicles
will not be sustainable [9]. The existing approaches for monitoring (close to
teleoperation) must be changed to augment autonomy of the system [5] in order
to share the authority on various aspects of the mission.

This paper tackles the problem of the operation of a swarm of UAVs. This
work was carried out within the SMAART project. This project aims at the
surveillance of a military airbase. To perform such a task we consider a sys-
tem composed of a set of UAVs, i.e. of automonous rotary-wing aircrafts (heli-
copters). This system is simulated through a continuous environment where all
UAVs fly at the same altitude. Each of them can perform some simple actions
such as take off, landing or reaching a particular location on the base. They
carry a camera that allows them to perceive their vicinity and to detect some
possible intruders. We also study the coupling of the swarm of UAVs with a
sensor network augmenting the surveillance system.



Providing autonomy to UAVs is a problem that can be addressed following
two approaches. The first one, the most classical, consists in planning paths and
then setting the UAVs to execute them [14, 11]. On the contrary, the second ap-
proach relies on the self-organization of the UAVs in function of their interaction
with the environment, leading to the emergence of patroling paths [17, 3].

The main disadvantage of the first approach is that it builds a fixed solution,
that makes difficult to adapt online to changes such as the addition or removal
of agents, or to respond to operator commands. Each of these changes implies to
re-plan, which is subject to combinatory explosion when the number of agents
or the environment size grows. At the opposite, the swarm intelligence approach
relies on the autonomy of agents and their indirect cooperation via environment
interactions. In this paper we aim at studying how operators can interact with
such a swarm of UAVs. On the one hand, this approach allows to envision in-
direct interactions with the system. On the other hand, such a self-organized
system naturaly adapts to online changes. We also choose this approach as it is
impossible for an external observer to predict the UAV trajectories. We show in
this paper how an operator can, for instance, control a sub-part of the swarm
without reconsideration of the whole system organization.

The reminder of the paper is organized as follows: section 2 mentions works
relative to multiple UAVs control and supervision. Sections 3 and 4 present
swarm algorithms to deal with patroling and pursuit tasks as well as the asso-
ciated operating modes. In section 5 we present and analyze experiments per-
formed with human operators on a real time simulation of the proposed system.
Finally we conclude in Section 6 by discussing results and proposing some per-
spectives.

2 Approaches for Multi-UAVs Control

On the one hand, there exists a very large amount of literature in the field of
multi-agent systems devoted to enable a group of artificial agents to accomplish
one or several tasks in cooperation. On the other hand, most of the research
on interaction between human and semi-autonomous system focus on “single
instance” systems like intelligent cockpits, industrial process control system, etc.
But there is few work conducted on the human control of a multi-agent system.
We present here some work related to the domain of multi-UAVs control.

Cummnigs et al. work on human supervisory control of multiple unmanned
vehicles (tomahawk tactical missiles and UAVs [4]). Their work focuses more on
the human factor aspects of this task (workload, number of vehicles, etc.) rather
than on the control aspects proper. In addition, although several vehicles are
involved, they are not interacting, so one cannot speak of a multi-agent system.

A widespread approach to multi-robot control is to endow them with ele-
mentary behaviors (follow a target, go to a point, patrol, etc.) and to allow the
operator to assign behaviors to robots on an individual or group basis. The op-
erator supervises the system of vehicles and assign new behaviors according to
the context. Though, behavior-based approaches are useful only if the number of



available behaviors remains small and if the operator can anticipate their effects
[18].

Control by policy can be used in conjunction with other approaches in or-
der to allow an human operator to restrict the activity of the system through
formal constraints [6]. This can be used for example for security reasons (e.g.
avoid certain zones) or in order to help the artificial reasoning by giving partial
solutions.

The playbook metaphor refers to a library of plans of action that are avail-
able for the operator to instantiate at various levels of detail, hence allowing
various levels of autonomy for the agents. This is inspired by football teams’
coaches tactics and was studied for the control of tactical ground robots [16] or
heterogeneous UAVs [8].

The Machinetta framework [15] takes an original stance by assigning a proxy
agent to each operator and each vehicle and include these proxy agents in an
artificial team. Work is being conducted to apply this approach to the control
of large UAV system (dozens of vehicles). But considering a human operator as
“just another agent” raises important human factor issues.

3 Multi-agent Patrolling

3.1 Autonomous Patrolling

Patrolling consists in deploying several agents in order to visit at regular time
intervals some defined places of an area [11]. In this way, we propose a model
relying on digital phermones. They are the computationnal model of chemical
substances (pheromones) dropped by ants which allows them to interact. Even if
ants individual behaviors are very simple, this indirect mean of communication
allows them to self-organize in order to accomplish complex tasks (pathfinding,
sorting, etc. [1, 2, 13]).

Pheromones are bound to two distincts mechanisms. On the one hand, the
evaporation process which realizes a progressive fade of the information. On the
other hand, the diffusion process which propagates the information across the
environment. This process also exhibits the property of building a pheromone
gradient usable by the agents.

In order to realize the patrolling task, we adapt to the UAVs specificities the
EVAP model [3] which only exploits the evaporation process (cf. algorithm 1).
This algorithm is initialy defined for theoretical discrete environments (grid of
cells covering the environment). EVAP relies on the environments marking: an
agent drops a fixed pheromone quantity Qmax when it visits a cell. The evapora-
tion process makes this value decrease so that the remaining pheromone quantity
represents the elapsed time since the last visit of the cell (called idleness of the
cell). So, on the cells set, local gradients appear giving the direction of the highest
idleness cells (i.e. with the lowest pheromone quantity). As a consequence, the
behavior of the agents is defined as a descent of the pheromone gradient. There-
fore, it ensures locally the patrolling of the cells which have not been visited for
the longest time (cf. Fig. 1).



Fig. 1. 3D illustration of the EVAP algorithm (with only one agent). Pheromone field
altitude represents elapsed time.

Algorithm 1 EVAP Algorithm
EVAP Agent
A) Find a cell y in Neighbors(x) such that q(y) = minw∈Neighbors(x)q(w)
in case of multiple choices do a random choice
B) Move to cell y
C) Set q(y)← Qmax (drop the Max quantity of pheromone)

EVAP Environment
For every cell x of the environment
If q(x) 6= 0 then q(x)← ρ.q(x)
(ρ ∈]0,1[)

Unlike EVAP agents, SMAART UAVs move in real coordinates according to
a given azimuth and a given speed. So, we keep the cells matrix in overlay of the
real environment only for the pheromones deposit and perception. Agents can
now perceive the environment through a r radius disk. They are thus able to
choose their destination among the cells that belong to this disk (which defines
Neighbor(x)). The pheromone is dropped on all the cells of Neighbor(x).

Moreover, at the environment level, we add to each cell its own evaporation
rate ρx. It allows us to modify evaporation speed of some cells dynamically,
therefore creating priority zones.

Fig. 2. Base patrolled by a set of UAVs dropping a visit pheromone: initial exploration
phase (left) and stabilized phase (right). Brighter color means more pheromone.



Figure 2 shows how SMAART UAVs patrol over the environment (the simula-
tor was developped in java using Madkit/Turtlekit framework [12]). Agents first
start an exploration phase of the environment. When all the cells has been vis-
ited once, the system tends to stabilize towards an average performance where
agents are homogenously distributed inside the environment (see EVAP algo-
rithm performances study in [3]). Moreover it was shown in [7] that the system
self-organizes in (sub)optimal cycles of same length. UAVs individual behavior
althought remains unpredictible, which is desirable in the frame of the surveil-
lance of a military area.

3.2 Operating Modes for Patrolling

The main task of the operator in his/her day-to-day activity is to supervise
the surveillance of the airbase by the patrol of the UAVs. The objective is to
make sure that every point of the airbase is regularly scanned by an UAV.
This can be done homogeneously or with some emphasis on certain zones of the
airbase according to the operational context. In this activity, the operator has
to evaluate the state and evolution of the coverage of the airbase (potentially
neglected zones, etc.) and act accordingly on the UAV system. He/she has several
operating modes for this observation task:

– observation of the position of the UAVs across the area;
– reading on the HCI (Human–Computer Interface) of the computed average

and maximum idleness values for particular zones (landing strip, hangars,
tower, etc.);

– analyzing a color-gradient representation of the idleness grid (it can be con-
figured so that only idleness values above a certain threshold are represented,
e.g. show points with an idleness above 3 minutes).

According to the operational context, the operator can assign different pri-
orities to certain zones of the airbase (landing strip, hangars, tower, etc.). If
the operator sets a higher (lower) priority for a zone, the evaporation value is
locally raised (lowered) which leads to a quicker (slower) disappearance of the
pheromone and incites UAVs to visit the zone more (less) often.

The trajectories of the UAVs for patrolling can be determined according to
two operating modes:

– the UAVs can follow the modified EVAP algorithm and decide their direction
according to the local patrol pheromone level (this is their default behavior);

– the operator can assign a subset of the UAVs to a set of positions specified
by the operator on the airbase. In this case, the UAVs are dealt over the
positions and adopt their default behavior once they reach their respective
position.



4 Pursuit

4.1 Autonomous Pursuit

Patrolling the environment is not sufficient to ensure the interception of intrud-
ers. This task aims at carrying on the search over a limited area in the case
that an intruder has been spotted and contact has been lost. When an UAV
perceives an intruder, it drops a second type of pheromone (alarm pheromone)
which diffuses locally. This diffusion represents a disk of probability of the in-
truder presence which all the UAVs may use in order to find it again (see Fig. 3).
So, as soon as a UAV percieves some alarm pheromone, it climbs its gradient
and consumes it. As a consequence, UAVs move towards the signal origin first
to consume the isolines of the alarm pheromone field.

Fig. 3. Illustration of the use of the alarm pheromone by an UAV.

The propagation of the information throught the environment allows to at-
tract other nearby UAVs towards the search zone. It aims at improving the
interception probability of the intruders before they reach their objective. It is
necessary to tune correctly the diffusion coefficient in order to avoid attract-
ing too many UAVs and letting parts of environment without surveillance (the
diffusion tuning is conducted empirically for each environment).

The evaporation process determines the duration of the signal. If the signal
vanishes before the UAVs have consumed all the pheromone, they revert to the
patrolling task without having taken advantage of the pheromone trace. On the
contrary, it is useless (and even penalizing) to keep obsolete information that
may mobilize some agents to find an already gone intruder. We was able to
establish analytically the Qmax value and the evaporation rate in order to size
up the alarm pheromone propagation.

We define here a second surveillance mode, joint to the UAVs, and based
on the use of a sensor network (as proposed in [10]). In fact, the number of
required UAVs to ensure a good patrolling rate may be important and therefore
too expensive. So, sensors may be placed randomly on the environment or along
the border. Each sensor is able to trigger an alert by dropping a given quantity
of the same alarm pheromone. UAVs can either use their alarms or the sensor
ones for the tracking task.

We do not present here a testbed for the fully autonomous system but rather
focus our attention in the next section on the human–UAVs swarm interaction



4.2 Operating Modes for Pursuit

When an alarm is raised in the perimeter of the airbase, the operator switches
his/her activity: surveillance/patrolling become secondary, while it becomes cru-
cial to intercept the potential intruders that have triggered the alarm(s). An
intruder is considered intercepted if the UAVs manage to detect him/her several
times in a row (otherwise it gives just another contact and an indication on the
position of the intruder). The role of the operator is twofold:

– he/she has to analyze, identify, interpret and classify the contacts (alarms).
A contact can be a false alarm (animal, malfunction of a sensor) but also
the sign of a well-prepared multiple coordinated intrusion. In such a case, it
is vital to correctly interpret the pattern of contact;

– he/she has to supervise the deployment of the UAVs that have to search and
intercept intruders.

The SMAART HCI assists the operator in these roles. First, in order to
avoid alarm proliferation on the HCI, alarms are aggregated into contacts on a
temporal and spatial basis (time and distance thresholds) i.e. alarms that are
raised almost simultaneously at the same location are considered as one contact
generated by the same intruder or group of intruder. That way, if a group of
three intruders are detected by an UAV and a ground sensor at the same time,
only one contact is generated instead of six distinct alarms.

Second, a module in the HCI allows to organize contacts temporally to repre-
sent intrusions i.e. successive contacts can be linked to represent the hypothesis
that they have been generated by the same intruder or group of intruder. Fig-
ure 4.a illustrates how this is represented on-screen. Several operating modes are
available to the operator for this task:

– the system can classify a new contact automatically by ranking the different
hypotheses (create a new intrusion for this contact or affect it to an existing
one) and choosing the highest ranked. The ranking is computed by linking
the likelihood of an hypothesis to the speed needed by the hypothetical
intruder;

– the system gives a time delay to the operator to perform the classification
manually before applying the highest ranked hypothesis;

– the operator can perform the classification manually but the system assists
him/her by presenting the hypotheses ranked by likelihood.

Third, the trajectories of the UAVs for patrolling can be determined accord-
ing to three operating modes:

– the UAVs can follow the modified EVAP algorithm and decide their direction
according to the local patrol or alarm pheromone level (this is their default
behavior);

– the operator can assign a subset of UAVs to a set of positions specified by the
operator on the airbase. In this case, the UAVs are dealt over the positions
and adopt their default behavior once they reach their respective position.



a. b.

Fig. 4. a. An intrusion illustration: the larger the pie part, the more recent the contact.
b. Intrusion scenario.

– the operator can also use contacts or intrusions as intermediary objects to
dispatch UAVs rather than to specify positions on the map. UAVs are dealt
over selected contacts or along a selected intrusion (privileging more recent
contacts).

5 Experiments with Operator

5.1 Protocol

In order to evaluate the interaction between human operator and UAV swarm,
that is allowed by the different operating modes of the SMAART HCI, a series
of experiments with human operator were conducted on a simulator.

Subjects The subjects are eight cadets of the French Naval Academy (École
Navale de Lanvéoc-Poulmic) aged 20-23. They are anonymized and referred to
as X1a, X1b, X2a, X2b, X3a, X3b, X4a, X4b according to the number of their
session (1-4) and their console (a or b).

Scenario The objective of the experiments is to evaluate the quality of the
SMAART–operator interaction and the usage of the different operating modes
in the context of the two main activities: surveillance and pursuit. The subjects
are confronted with a three-parts fifteen minutes scenario: (1) 20’ of pure surveil-
lance without intrusion; (2) 5’ consisting of a false alarm that allows operators
to become familiar with pursuit operations; and finally (3) 25’ consisting in a
coordinated intrusion by three two-men commandos toward the aircraft hangars,
as shwon in fig 4.b. The airbase is equipped with a linear sensor network along
the border and 10 UAVs with one hour autonomy.

Qualitative Data After each fifty minutes experiment, the subject is inter-
viewed by the experimenter along a pre-defined questionnaire. This is the occa-
sion to collect information about the subjects (knowledge of different domains



like UAV systems or real-time strategy games) and their evaluation of different
characteristics of the system. Answers to specific questions are coded as a num-
ber between −1 and +1, but all free commentaries and remarks are recorded
and transcribed afterwards. These are precious in human-centered design loop,
but we will not present them in this paper but rather hint at some of them in
section 6.

Quantitative Data During the operator’s activity within the scenario, several
types of data are logged by the system:

– IMI (Instantaneous Matrix Idleness) at each step in order to evaluate the
quality of the surveillance;

– actions of the operator on the HCI;
– intruders progress: reaching waypoints and objectives, being intercepted.

In order to evaluate the performance of the operator on IMI and intruders
progress, we averaged the results from 12 runs of the system without operator
with the same scenario.

5.2 Surveillance Performance

Figure 5 shows the relative performance (idleness) of the system in autonomous
mode (thick line) and of the operators (continuous and dotted thin lines).
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Fig. 5. Surveillance performance with and without operator: thick line was obtained
without human operator (lower idleness values are better).

Two phases appear: (1) during the first 20’ there is no intrusion on the airbase
and the objective is only to optimize the surveillance (minimize idleness); (2)
during the second phase intruders must be intercepted, surveillance becomes
secondary.

During the first phase, we observe that the operators’ intervention does not
improve the surveillance: on the contrary on average operators induce a −3.2%



decrease in performance (individuals vary between +6.5% and −13%). One can
make a striking relation with the following facts from the interviews: (1) the
subjects judge the autonomous system’s performance on surveillance only as
“somewhat good” (+0.5 in a [−1,+1] range); and (2) they are unanimous to
affirm that human intervention is critical for the surveillance, even though on
average it was measured that it had an adverse effect!

In the second phase of the scenario, the intrusions and subsequent alarms
disturb the surveillance, which worsens the idleness. This phenomenon is visible
with or without operator (see Fig. 5). One can note that the deterioration is
much worse for three of the operators (X3a, X4a, X4b, with dotted thin lines on
Fig. 5). These operators have massively dispatched the UAVs for the pursuit.
Even though, the log files show us that while X3a is the best interceptor (he
caught all 6 intruders), X4a and X4b are among the worst despite their intense
activity (number of actions on the HCI). It seems that massive intervention by
the operator is not a positive factor, neither for the surveillance nor for the
pursuit of intruders.

5.3 Pursuit Performance

During the sessions with human operators, 2.1 intruders out of 6 (on average,
with a mean deviation of 0.7) reached their objectives. During the 12 runs with-
out operator (autonomous mode) 3.4 intruders out of 6 (on average, with a mean
deviation of 1.1) did the same. This corresponds to a 20% increase in pursuit
performance.

We observe here a very positive effect of the actions of the operator on the
system. The global analysis capabilities of the human make a good combination
with the local processing of the UAVs. The operator is able to act on a strategic
level (affecting UAVs between the intrusions and the patrol task, anticipating
the intruder’s next move, etc.) while the UAVs perform the actual interception
once they are on-site. As a side-note, only two out of the eight operators used
contacts or intrusion objects to dispatch UAVs (see Sec. 4.2), the others specified
positions manually (using the mouse on the map).

6 Analysis and Perspectives

This paper presents only a part of the experimental results obtained in the
SMAART project. Most notably, it lacks a thorough analysis of the individual
interviews. Those gave insight in the human–system interaction and spurred
recommendations and ideas for future systems. Hereafter, we address two broad
topics that arose during these experiments.

6.1 Interpretative Complexity for the Operator

Human operators experience difficulties to judge the performance of the
pheromone-based patrol algorithm. This is clearly shown by the discrepancy



between the performance measured and evaluated by the subjects themselves.
However human operators are needed as they have a very positive impact on pur-
suit, and the algorithm can face some problems e.g. temporary pheromone islets
can appear that could be ignored by the UAVs if the system is not supervised.

These difficulties can likely be lessened by instruction and training of the op-
erators, but the representation gap between a human operator and a pheromone-
based swarm seems to call for new interaction and representation tools for the
HCI, beyond the thresholded view implemented in SMAART.

6.2 Towards an Extension of Control Modes

The human subjects were able to significantly increase interception rates by
positioning UAVs across the airbase, notably on the predicted path of intruders.
But operators experienced frustration due to the default behavior of the UAVs
i.e. upon reaching their designated position, they revert to patrol in the absence
of alarm pheromone. The operators had to resort to repeating the same orders
to keep UAVs on position.

It would be interesting to add the possibility of confining subsets of the
UAVs to specific zones. This would allow a kind of control by policy (see Sec. 2)
combined with the current modes. These zones could be manually defined by the
operator, computed based on a contact and on an estimation of an intruder’s
speed, or by a combination of these two modes.

7 Conclusion

This paper dealt with authority sharing between human operator and an UAVs
swarm for patrol and pursuit tasks. The swarm algorithm was based on the
environment marking by digital pheromones (i.e. the EVAP algorithm [3]) and
perceptions were augmented with a sensor network. The EVAP model was ex-
tended (i) to allow an operator to influence the swarm behavior and (ii) to sim-
ulate UAVs in continuous space. Then a number of different operating modes at
various levels of autonomy were implemented as an approach to authority sharing
via adjustable autonomy. Experiments with human operators have shown that
although the human has a positive role to play in the control and supervision of
the automation, the representation gap between human and swarm intelligence
calls for more advanced HCI tools.

This work was conducted in the context of a Exploratory Research and Inno-
vation contract (Recherche Exploratoire et Innovation: REI) of the French De-
fense Procurement Agency (Délégation Générale pour l’Armement : DGA, Mis-
sion pour la Recherche et l’Innovation Scientifique: MRIS).
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