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Abstract We consider the problem of coordinating a team of agents that have to
collect disseminated resources in an unknown environment. We are interested in
approaches in which agents collectively explore the environment and build paths
between home and resources. The originality of our approach is to simultaneously
build an artificial potential field (APF) around the agents’ home while foraging.
We propose a multi-agent model defining a distributed and asynchronous version
of Barraquand et al.’s Wavefront algorithm. Agents need only to mark and read in-
tegers locally on a grid, that is, their environment. We prove that the construction
converges to the optimal APF. This allows the definition of a complete parameter-
free foraging algorithm, called c-marking agents. The algorithm is evaluated by
simulation while varying the foraging settings. Then we compare our approach to
a pheromone-based algorithm. Finally, we discuss requirements for implementation
in robotics.
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1 Introduction

Swarm intelligence is now recognized as a robust and flexible paradigm to deal
with distributed problems in complex environments. Among the approaches, the
use of synthetic pheromones is one of the most popular ways to address problems
such as foraging (Parunak, 1997; Panait and Luke, 2004), path-planning (Parunak
et al., 2002; Sauter et al., 2002) and multi-agent patrolling (Sempe and Drogoul,
2003; Sauter et al., 2005).

In this paper we focus on the foraging problem, which is a well-known testbed
for multi-agent and multi-robot systems (Steels, 1989; Winfield, 2009). In the
foraging problem, several agents search an unknown environment for objects/food
sources, and eventually transport them to their home(s).

The foraging activity is particularly challenging when the environment is un-
known (no map) and complex (e.g. containing concave obstacles). It concerns both
physical environments and graphs (e.g. Wagner et al. 1998).

We are interested in approaches in which agents/robots have limited abilities,
little or no memory and are potentially numerous. In these approaches, the envi-
ronment is used by agents for their coordination. It is assumed that agents can read
and write information in the environment. This is a well-known approach in living
systems, for instance ants that leave pheromones to build paths in foraging prob-
lems (Bonabeau et al., 1999). Ants inspired several pheromone-based algorithms
for search problems. They rely either on computing diffusion and evaporation of
digital pheromone deposits (Deneubourg et al., 1986; Resnick, 1994) or updating
timestamps on visited nodes of a graph (e.g. Wagner et al. 1998; Glad et al. 2008).
However, ant models have some drawbacks such as requiring the fine tuning of
the free parameters (evaporation and diffusion rate) and the risk of building lo-
cal minima in the pheromone field where ants/agents can get trapped. Moreover,
some models require expensive computation such as diffusion of one or several
pheromones.

In this paper we propose a foraging approach that does not depend on free
parameters and does not require expensive computation as with pheromone-based
models. We aim at defining an efficient way for the homing task (finding a path
towards home) that avoids local minima, whatever the topology of the environ-
ment.

Our approach is inspired by centralized planning in which the environment is
known. We refer to popular techniques based on Artificial Potential Field (APF)
approaches (Khatib, 1985; Arkin, 1998). The APF approach consists in computing
and adding repulsive potential fields from obstacles and an attractive field to
the goal (as functions of the distances, see (Khatib, 1985)). It allows a robot to
go downhill toward the goal by following the negative gradient of the composite
potential. However, it is well known that the composite potential may contain
minima where robots can be trapped (see Zhu et al. 2006). The APF construction
proposed by Barraquand et al. (1992) is promising in this regard since it prevents
the formation of local minima. It consists of computing one field from the goal,
following a BFS1-like algorithm on a grid, so giving a shortest path from any cell.
In order to apply this approach in an unknown environment, we translate the
algorithm into the collective behavior of simple autonomous agents.

1 Breadth First Search
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Fig. 1 WaveFront algorithm: a) initial environment state and b) result of the construction.
Gray cells are obstacles and white cells are free cells. Cells are colored in black to represent
the shortest path from the agent, i.e. the circle, to the goal, i.e. to the ’G’ cell.

In this paper we define an asynchronous computation of the Barraquand et al.
wavefront based on memoryless agents marking their environment. We prove its
convergence to the optimal APF. Then we extend the approach to define a new
foraging algorithm relying on the computation and the use of this APF building.
As the APF values are persistent in the environment, we can define deterministic
behaviors that allow the marking and following of paths between resources and
the home, without requiring any parameter. We give proofs of convergence and
termination of these behaviors, before studying their performances in simulation
and comparing them to a classical ant model.

The rest of the paper is organized as follows. In Section 2, we present the
Barraquand et al. wavefront algorithm building a numerical potential field for
path-planning. In Section 3, we define a memory-less multi-agent algorithm that
builds a numerical potential field converging to the wavefront field. We prove this
convergence. In Section 4, the agent behavior is used to define a first foraging
algorithm, whose termination is studied. In Section 5, we extend the approach
to define the c-marking algorithm. In Section 6 we analyze performance of this
algorithm in simulations. Then we compare to the performance of a pheromone-
based (ant) algorithm in Section 7. We discuss related work in Section 8 and a
possible robotic implementation in Section 9. Finally, Section 10 concludes the
paper.

2 Barraquand et al. wavefront computation

We first examine the pre-computed map proposed by Barraquand and colleagues
(1991; 1992) which provides, from any place in a given discrete environment, a
shortest path toward a goal. Local minima are avoided by computing a “wavefront
expansion” from the agent/robot destination, which involves building an ascending
APF incrementally.
The environment is represented as a 2D-array of cells and is denoted by E (see
Figure 1.a). Eempty denotes the subset of E containing all obstacle-free cells. Each
cell c = (x, y) ∈ E has a maximum of four reachable neighbors:
(x− 1, y), (x+ 1, y), (x, y − 1) and (x, y + 1).
A potential field is a function V : c ∈ Eempty 7−→ V (c) ∈ R.
Let cgoal ∈ Eempty be the goal cell of the robot. The wave-potential V is computed
as shown in Algorithm 1 where V (cgoal) is set to 0 and Li denotes a list of cells
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Algorithm 1 WAVEFRONT EXPANSION (Barraquand et al., 1992)

For every cell c ∈ Eempty , set V (c) to infinity (e.g., a large number M)
Set V (cgoal) to 0 and the list L0 to (cgoal), i = 0
While Li is not empty Do

initialize Li+1 to the empty list
For every cell c in Li

For every neighbor n of c in Eempty
if V (n) = M then set V (n) to i+ 1 and insert n at the end of Li+1

i = i+ 1

in E (i.e., those having distance i from cgoal). At each iteration of the main loop,
Li+1 is computed and i is increased. The algorithm terminates when Eempty has
been totally explored. Figure 1.b presents the result of the algorithm execution
on a test environment where the goal cell is located at letter G. Each cell has a
potential value equating to the minimum distance to the goal. We remark that
this algorithm is the classic BFS algorithm computed on a grid world (which is
a graph). So it requires robots to have a discretized map of the environment to
compute it.

Using this computed field, an agent can now reach the goal by following the
flow of the negative gradient. In a numerical potential field, such a behavior is
called a “descent” and is defined as follows: at every iteration, the agent examines
the potential values of the four neighboring cells and moves to the cell with the
smallest value (ties are broken arbitrarily). In Figure 1.b the black cells represent
a descent path. An agent occupies a cell and it is represented by a circle.

More formally, the following two properties derive from Algorithm 1 (cf. details in
(Barraquand et al., 1992)):

Property 1: In the numerical potential field produced by Algorithm 1, an agent
that always moves to the neighboring cell with the smallest potential value arrives
at the goal location and succeeds in avoiding all obstacles.

Property 2 : From any location in the numerical potential field (Alg. 1), the path
induced by Property 1 is the shortest.

The first step of our proposal is to define a multi-agent algorithm that builds a
numerical potential field such as the one produced by Algorithm 1 and that holds
these two properties.

3 Computation with memory-less agents

We study how the wavefront computation of Barraquand et al. (1992) can be
achieved on-line by a set of autonomous agents evolving on a grid. The main
property is that agents do not need an a priori knowledge of the world and do not
need to know their global position in the grid.

The considered agents are memory-less, that is, they do not have individual
memory but they are able to cooperate through indirect communication. This form
of communication is embedded in the environment. It is inspired by ants that drop
pheromones as markings to be read later by others (including possibly themselves),
see Holldobler and Wilson (1990). The environment allows the aggregation of
the local interactions of numerous agents in order to build collective patterns
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Algorithm 2 EXPLORATION & APF CONSTRUCTION (around cell c0)

EXPLORATION
IF there exist neighboring cells without a value THEN

move to one of them (random selection) and call UPDATE-VALUE
ELSE randomly move to a neighboring cell and call UPDATE-VALUE

UPDATE-VALUE
Compute val = 1 +min(4-neighbor values)
Write val in the current cell if this cell is different from c0

(Bonabeau et al., 1999). The environment becomes a shared memory in which
information can be stored and removed (according to a sequential access).

Thus we have the central idea of our first algorithm: numerical values of the
APF to be built are treated as markings that can be laid down and updated by
agents.

3.1 Simple “marking agents”

Let us now describe how agents asynchronously build the APF, that is, without
building it by incremental distance. The environment is a grid with free places and
obstacles defined by occupied places. The size of the cells corresponds to the agent
size. Free places can store an integer value which is the value of the APF for the
considered location. We consider that agents move following the iterations of an
infinite loop (or for a fixed time). At each iteration, all agents move sequentially
to a neighboring cell and write a value. Each agent computes a piece of the APF
while discovering the environment.

Agents do not know their global position, but rather occupy a cell. Initially,
the value of the goal cell c0 is set to 0, this is the single cell whose value cannot
change. All the agents are initially placed on cell c0 (agents can start from any
position but the construction is then longer). Without loss of generality and for
the sake of simplicity, we allow several agents to occupy a cell at the same time.
Each agent is capable of:

– reading and writing an integer value in the cell it occupies
– perceiving the four neighboring cells: detecting the cells which are obstacles or

reading their values
– moving to a neighboring cell that is not an obstacle.

We call such agents marking agents.

In order to build incrementally the wavefront around the initial value (the goal
cell), each agent repeatedly follows Algorithm 2 (exploration & apf construc-
tion). Agents move preferentially to not yet explored cells, otherwise they choose
randomly an obstacle-free cell with a uniform distribution. Then they perform the
update-value operation which corresponds to a local wavefront expansion in the
Barraquand et al. algorithm. As a consequence, the shortest path from this new
cell to the goal cell, in the current APF, is equal to the shortest distance to a
neighboring cell + 1 (one move). Figure 2 illustrates the incremental building of
the APF.

As agents favor unmarked cells over marked ones (see the first line of Algorithm
2) their moving is not just random exploration. Up to a certain distance, their
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Fig. 2 Collective construction of the potential field with 3 agents (iterations 2, 17 and 65).

spatial progression corresponds to the cells of the front computed by the centralized
algorithm. However, the number of agents is generally not sufficient to sustain all
the cells corresponding to the wavefront at the same time (this is the case in Fig.
2.a after the first iteration).

As a consequence, one exploration iteration, when all the agents move, is not
equivalent to one loop of Algorithm 1. Figure 2.b shows a situation where the
cell with value 13 has clearly not reached the value of the shortest distance to
G (which is 11, see Figure 2.c). Agents may therefore need to visit the same cell
several times before it reaches its optimal value. As the environment is bounded,
the time necessary to obtain the complete optimal potential field is finite (with
probability 1). The algorithm convergence is proved below.

3.2 Convergence

Let us consider the following notations:

– v(c)=current value of already visited cell c (v(c0) is initialized to 0)
– v∗(c)=optimal value of already visited cell c (distance to c0)
– Li = {c | v(c) = i} (Li contains all cells having currently distance i)
– L∗

i = {c | v∗(c) = i} (L∗
i contains all cells having their optimal distance i)

Remark: ∀t, ∀c, v(c) ≥ v∗(c). An immediate consequence is that, at any time,
a cell c ∈ L∗

i is part of some set Lj with j ≥ i.

Before proving the convergence of algorithm 2, we need to consider its ability
to visit and revisit all the cells of the environment. We study this preliminary
property in the following lemmas 3.1 and 3.2.

Lemma 3.1. Considering a set of agents performing Algorithm 2 in a bounded
environment, each obstacle-free cell will be visited in finite time with probability 1.

Proof: Let Svisited be the set of already visited cells, Sboundary the set of
visited cells having one non-visited cell among its neighbors and Sinside the com-
plementary set Sinside = Svisited\Sboundary.

When an agent is in Sinside, it performs a random walk within Svisited which
consists in moving to a neighbor cell with uniform probability. We are interested in
the time to hit Sboundary (from which the agent will explore a new cell). To show
that it is finite with probability 1, consider this random walk over all Svisited
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cells (assuming that the walk does not stop at Sboundary but continues within
Svisited with the same rule). It is a discrete time-homogeneous Markov chain over
the cells Svisited. This set of states is closed and finite, thus recurrent (J. Norris’s
book 1998, Theorem 1.5.6) and, since it is irreducible, the time to hit any cell in
Sboundary from any starting cell is finite with probability 1 (Norris 1998, Theorem
1.5.7). The time to reach such a cell can be arbitrarily long, however (we evaluate
later the consequences of using random walks).

When the agent reaches a cell of Sboundary, it moves to a non-visited cell,
whose state switches to visited, and which then belongs to Sinside or Sboundary.
The number of random walks is bounded by the number of cells because each
random walk ends with the addition of a new cell to Svisited. So, each agent
alternates a finite number of times between finite length random walks and moves
extending Svisited. This process stops when all cells are in Svisited, which happens
in finite time (with probability 1). �

Lemma 3.2. Once each cell has been visited once, the time between two visits
of a given cell is finite with probability 1.

Once all cells have been visited, Svisited can no longer change and from that
time the moves of an agent follow exactly the random walk described in the pre-
vious lemma. It is a discrete time-homogeneous Markov chain over Svisited. The
set of states is closed and finite, thus recurrent (Norris 1998, Theorem 1.5.6) and,
since it is irreducible, the time to hit any cell from any starting cell is finite with
probability 1 (Norris 1998, Theorem 1.5.7). �

Same remark as above: the time for each revisit can be arbitrarily long.
We can now consider the convergence property of algorithm 2:

Theorem 3.3. In a bounded discrete environment, a set of agents performing
Algorithm 2 builds the optimal APF in finite time with probability 1.

Proof: Let us prove by induction that, for all i, we have Li = L∗
i in finite time

(with probability 1).
This is true for L0 as v(c0) = v∗(c0) = 0 in the initial state and no other cell

has a value lower or equal to 0.
Let us now consider that this is true for some i = 0, . . . , k−1. Lk\L∗

k is a finite
set and each cell of Lk\L∗

k will be visited or revisited in finite time (Lemma 3.2).
When a cell c ∈ Lk\L∗

k is visited, its value v(c) is updated to v∗(c) = k because
at least one of its neighbors is in L∗

k−1. Indeed, the maximum gradient difference
between two neighboring cells in the optimal APF is one (and L∗

k−1 is built). As
a result, we obtain Lk = L∗

k in finite time.
Because there is a finite number of sets L∗

k (bounded by the number of cells),
Algorithm 2 builds the optimal APF in finite time with probability 1. �

Note that while the participation of multiple agents speeds up convergence (see
Section 6), these properties are valid also when only one agent is used. However,
the APF construction can be long, due to the random walk used by agents when
they evolve in already visited regions. In practice, using several agents allows the
avoidance of long convergence times (see study of scalability in Section 6.4). Ant
algorithms also use a random walk strategy for exploration, we will compare to
such a model in Section 7.

The next section shows how the proposed multi-agent construction can be used
to define a foraging algorithm.
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4 Extension to collaborative foraging

4.1 The multi-source foraging problem

Foraging is a benchmark for multi-agent and multi-robot systems. It was inspired
by the foraging task of some ant species, which search for food in unknown envi-
ronments before transporting it to their nest (homing), see (Steels, 1989).

There are many variants of this problem based on assumptions about robots
and the environment (Winfield, 2009). However, we want to focus on the two main
tasks, searching and homing, while considering simple agents/robots. So, in the
rest of the paper we consider that agents can detect and manipulate resources in
the environment, and have no energy limits. However, we consider finite search
spaces, a classic setting that represents energy limitation (Ferber, 1999).

Let us note that several round-trips may be necessary to completely upload
all resources at a given place. Therefore task completion requires the agents to be
able to return from the base to a discovered resource location. The environment
may and usually does contain obstacles. The difficulty of foraging depends on the
number and shape of the obstacles. We do not consider dynamic environments
(e.g., moving sources) that define other complex variants of the problem.

In practice, the assumption that the robots forage in an unknown environment
is often relaxed by making some other assumptions. In particular, many models
consider that the base emits a signal allowing agents to perceive its direction in
order to come back (simplifying the problem and its implementation in robots),
see for instance (Drogoul and Ferber, 1992). However, even such facilities cannot
help the robots navigate through obstacles, especially if they are complex (e.g. with
concave shapes). In the proposed model, we do not consider such external facilities
or knowledge of the environment.

4.2 Foraging using marking agents

Let us consider environments that have resources in multiple locations. These
locations are unknown to the agents, they contain a given quantity of resource
which is also unknown. We consider, in the rest of the article, that a cell of the
environment can contain:

– an obstacle or wall (cell colored in Gray),
– a resource (dark Gray) whose quantity qi is bounded,
– the base (‘B’ letter in black cell), where the resources have to be brought,
– one or several agents (whose ID number is shown in a circle in the cell).

All agents start from the base (there is no limit to the number of agents per cell).
In addition to the abilities mentioned in section 3.1, an agent can also

– detect the presence of resources in the four neighboring cells,
– load a quantity qmax of resources.

Building a wavefront from the base is useful for any task that requires to come
back to the base. Whatever its position in the environment, an agent only has
to descend the numerical gradient in order to reach the base. Obstacles are not a
problem. We prove in the next subsection that, even if being asynchronously built,
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the wavefront under construction remains monotone, that is, an agent can never
fall into local minima.

To abstract, the proposed approach is
a marking agent with the ability to re-
turn to the base as often as required.
We define this re-entrant behavior as
a descent motion (presented in Sec-
tion 2). Algorithm 3 represents the
complete behavior of such an agent, re-
peating sequentially the tasks search
and return to base.

Figure 3 provides a schematic overview
of this foraging approach.

LOADING

base reached

filled agent or
worked−out resource

resource found

UNLOADING INIT

UPDATE
VALUESEARCH

RETURN to BASE

Fig. 3 Foraging with a marking agent.

Algorithm 3 SEARCH & RETURN TO BASE

SEARCH (Repeat)
IF a resource is detected in a neighboring cell THEN

move into this cell, load a quantity qmax of resource and execute RETURN to BASE
ELSE execute EXPLORATION & APF CONSTRUCTION (i.e. Alg. 2)

RETURN TO BASE (Repeat)
IF agent reaches the base THEN unload resource and execute SEARCH
ELSE move to a neighboring cell that has the smallest value and call UPDATE-VALUE

Note that this multi-agent system can perform three tasks simultaneously :

– exploration to discover resources,
– construction of an optimal APF,
– transportation of resources to the base (homing).

Figure 4 illustrates the progression of this foraging algorithm in a small maze
containing resources at five locations (4.a) and the final state obtained after 500
iterations (4.b) showing the optimal APF.

a b

Fig. 4 Foraging with 8 marking agents in a small maze (a) after 18 iterations (b) in final
state. The base is the black center cell, resources are the 5 dark gray cells.
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4.3 Soundness of the APF construction

Contrary to the Barraquand et al. algorithm and as stated in Section 3.1, the value
of a cell is not necessarily optimal after its first visit, but it converges monoton-
ically to the optimum. It is a consequence of the random nature of the agents’
exploration, contrary to its incremental computation in algorithm 1.

Thus, one may wonder if the agents can get trapped in local minima when
returning to the base. The answer to this question is: no. To prove this we first
consider the following lemma:

Lemma 4.1. During the APF construction, any cell other than c0 which is
revisited can only change for a smaller value.

Proof: Consider any reachable cell ci different from c0, and cmin its neigh-
boring cell having the minimum value2. We have v(ci) = 1 + v(cmin) because the
update operation is done at every visit of cell ci.

Suppose now that v(ci) changes for a greater value when applying the update
operation. This implies that v(cmin) has changed previously to a greater value. So
the same reasoning must be applied to cmin for which the minimum neighboring
cell must have been increased before, and so on, until reaching c0 as the minimum
neighboring cell. But v(c0) = 0 and cannot be changed, making the hypothesis
absurd. The update operation can only compute a value lower than or equal to
the current one. �

Theorem 4.2. During the APF construction, for each reached cell c other than
c0, there exists at least one neighboring cell with a value lower than v(c).

Proof : Consider any reachable cell ci different from c0, and cmin its neigh-
boring cell having the minimum value. We examine if visits to the ci neighboring
cells could make ci a local minimum. We consider two cases :

(a) A neighboring cell of ci 6= cmin receives a new value. If this value is greater
than or equal to v(cmin) then v(ci) = 1 + v(cmin) is unchanged. If the value is
lower than v(cmin) then ci takes a new neighboring minimum, noted cmin′ , which
verifies the property v(cmin′) < v(ci).

(b) If the cmin neighboring cell is visited, Lemma 4.1 ensures its value can only
change for a lower value, so still verifying v(cmin) < v(ci).

The visit of any ci neighboring cell cannot prevent ci from holding a lower-
value neighboring cell. As each neighbor calculation is independent, the property
is verified for any simultaneous visit of the neighboring cells. �

Theorem 4.2 permits any agent that evolves in the APF under construction to
perform a descent to the base in a finite time, since from each cell there always
exists a lower-value neighbor to move to. As a consequence, at any point of the
exploration, from any cell, our algorithm provides a valid path for any agent to
return to the base, whatever the number of obstacles and their shape.

This result has consequences for the termination of the foraging.

2 If several neighboring cells have the minimum value, cmin is one of them.
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4.4 Termination of algorithm 3

Obviously a first consequence of Theorem 4.2 is that task return to base ter-
minates. Indeed, return to base is computed as a descent to the base when a
resource is discovered (visited).

A second consequence is that the foraging terminates (Algorithm 3). We con-
sider that the foraging is finished when all resource locations are exhausted. We
show that our algorithm will reach this state if the environment is finite and con-
tains finite resources. As quantity of resource is bounded, a resource location will
be exhausted in a finite number of visits. So, to demonstrate that the foraging
terminates, we must verify that all resource locations will be discovered and revis-
ited until exhaustion. The properties of visiting and revisiting all cells have been
proved in Section 3 with Algorithm 2 (exploration & apf construction), in
Lemmas 3.1 and 3.2. Now consider the question with Algorithm 3.

Algorithm 3 consists of repeating successively the search and return to
base tasks, as the latter terminates. Initially agents execute the search task. At
least one of them will terminate if there are resources in the environment. It is
due to the fact that search consists of executing Algorithm 2, which was proved
to visit all cells in finite time (Lemma 3.1).

When an agent finds resources it executes return to base, which does not
change the set of visited cells. So its execution has no consequences on the validity
of Lemmas 3.1 and 3.2.

When agents have unloaded their resources at the base, they restart search
behavior (i.e. Algorithm 2). As return to base terminates, agents will always
return to the search behavior.

As long as there remain resources in the environment, at least one search
will terminate in finite time by visiting or revisiting a cell with resources (due to
Lemmas 3.1 and 3.2). Then the quantity of resource decreases to 0 in finite time,
in other words, the foraging of Algorithm 3 terminates. �

We conclude by showing the property of convergence to the optimal APF of
Algorithm 3 (i.e. Theorem 3.3 of Algorithm 2). We have seen that Lemmas 3.1
and 3.2 are unchanged in Algorithm 3. For the proof of Theorem 3.3, we need
to show that executing return to base cannot change the value of the cells
that have converged. This is true because return to base can only compute the
update-value operation. �

Note that the foraging can end before the APF has converged.

5 c-marking agents: colorings the paths

5.1 Algorithms

Let us now reconsider the foraging problem in order to allow agents to efficiently
return to already discovered resources.

In the previous section, we saw that once a location containing a resource is
discovered, the task return to base makes the agent follow a valid path back
to the base. The idea is to make the agent mark the trail while going to the base.
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not exhausted

existsexists

COLOR TRAIL

UNLOADING

exhausted

base reached

not exists not exists

base reachedbase reached

SEARCH &

CLIMB TRAILS

LOADING

RETURN &

resource found

resource

trail trail

RETURN &

REMOVE TRAIL to BASE

INIT

RETURN

Fig. 5 A c-marking agent colors paths between resource locations and the base.

Then returning to discovered resource locations will be as simple as following this
trail.

We now detail the whole approach, called c-marking agent, presented in Algo-
rithm 4 and represented in Figure 5.

return & color trail task. In order to allow agents to mark trails in the
numerical potential field, they have the capability to color visited cells. Each trail
corresponds to a specific color, which is a function of the agent ID and the time
of the resource discovery3. As several trails can overlap, a cell can have several
colors. This differentiates our approach from existing models that use one or two
pheromone markers. However, our approach could use a single color for all the
trails. In this case, agents must be able to detect trails crossing when they write
or remove a trail (this version is not developed in this paper).

For an agent, creating a trail from a new discovered resource location consists
in performing its return to the base while adding the trail color in the visited cells.
This task terminates as the trail is built by descending the field to the base (it is
a finite path, see Theorem 4.2).

search & climb trail task. When an agent crosses a colored trail it may
follow it to reach a resource location. It is important to show that this task termi-
nates. As values of trail cells can change since they were colored, agents could be
blocked in a local maximum. This problem is avoided as agents follow a trail by
moving to the next cell of the same color, that is, independently of the cell’s value.
Values are considered only to enter the trail: the agent determines the direction
to follow by considering the highest neighboring colored value. Even if cell values
where the agent enters have changed, the agent only risks going toward the base
and it will not become blocked.

Note that a trail marking in a static APF cannot generate a colored region
(e.g., an area of 2×2 cells), as a shortest path is followed to return to the base.

3 RGB = agent ID (8 bit) + #iteration (modulo 216) (16 bit)



Revisiting wavefront construction with collective agents: an approach to foraging 13

Algorithm 4 COLOR-MARKING AGENT

SEARCH & CLIMB TRAIL (Repeat)
IF a resource is detected in a neighboring cell THEN move into that cell and exec. LOADING
IF there is no neighboring cell, other than previous position, with a color THEN

execute EXPLORATION & APF CONSTRUCTION /*i.e. Alg. 2*/
ELSE

IF previous position was not a trail cell
THEN Move to the highest-valued colored neighboring cell (1)(2) /*entering trail*/

ELSE Move to a new cell with the current trail color (1) /*following trail*/
UPDATE-VALUE

LOADING
Pick up a quantity qmax of resource
IF the cell is not exhausted of resources yet THEN

IF the cell is colored (it is part of a trail)
THEN execute RETURN TO BASE /*i.e. Alg. 3*/
ELSE execute RETURN & COLOR TRAIL

ELSE execute RETURN & REMOVE TRAIL

RETURN & COLOR TRAIL (Repeat)
Color the cell in a specific color , UPDATE-VALUE
IF the agent is located at the base THEN

unload resource and execute SEARCH & CLIMB TRAIL
ELSE

Move to a neighboring cell with the smallest value

RETURN & REMOVE TRAIL (Repeat)
IF the cell has the trail color THEN Remove this color , UPDATE-VALUE
IF the agent is located at the base THEN

unload resource and execute SEARCH & CLIMB TRAIL
ELSE

IF there is at least one neighboring cell with the trail color THEN
Move to a neighboring trail cell (the smallest one if several are available)
ELSE Move to the smallest neighboring cell

(1) do random selection if several neighbors are available.
(2) do random selection if several colors are available.

However, such a region could appear, with a low probability4, if the APF is under
construction (i.e. if some cells can still be updated). That is why the climbing
behavior chooses randomly a colored neighboring cell, different from the previous
position, if several are available (see Alg. 4 /*following trails*/ footnote (1)). This
allows an agent to escape such possible small regions with a random walk strategy
in order to continue to follow the trail.

return & remove trail task. When a resource location becomes exhausted,
the trail leading to it must be removed as quickly as possible, since now it is of no
use to any agent. In a standard ant model, the pheromone evaporation mechanism
automatically removes useless trails. In our evaporation-free approach, this task
is done by the module return & remove trail, in which the agent follows
the colored trail while removing this color from the visited cells. If a part of the

4 Consider the marking of a 3-cell long trail in a 2×2 area (i.e. the trail is turning). If
during the two last iterations, the not yet marked cell of the 2×2 area is updated, the trail
could continue to this cell, then forming a 2×2 region. Such a region was observed only in
simulations with a high density of agents (i.e., number of agents is greater than 25% of the
size environment).
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colored trail forms a region, at least a 2×2 cells area, the agent could arrive on a
cell without colored neighboring cells, what we call a dead end5. In this case, the
agent simply goes down the APF. The process terminates when the agent reaches
the base.

The loading task can release three different return tasks. Note that trails
are only used to go back to discovered resource locations. Returning to the base
is unchanged, as descending the APF allows to perform a shortest path in the
current APF.

It is important to note that this version of the proposed approach keeps the
properties studied in the previous sections. Convergence to the optimal APF is
unchanged as the coloring processes can only change a cell’s value by calling
update-value. Termination of the algorithm is a consequence of the termina-
tion of the behaviors Coloring, Climbing and Removing trails (see above). As in
the previous version (Algorithm 3), if the resources are bounded, a finite num-
ber of search-return behaviors will be required to exploit all sources. Then the
algorithm terminates in finite time.

5.2 Illustration of foraging with c-marking agents

We use the TurtleKit simulation platform (Michel et al., 2005) (part of the multi-
agent MadKit Platform (Gutknecht and Ferber, 2001)) for testing our algorithm.
In this platform, all agents are activated sequentially at each iteration in random
order.

We test c-marking agents within rectangular environments (grids of various
sizes), in which obstacles are defined by occupied cells following a desired density.
These cells are randomly chosen with a uniform distribution.

The remainder of this section illustrates the whole behavior of the system by
describing an experiment with the following first scenario.

Setup 1 (a):

– A 40 cell x 40 cell environment, where 30 % of the cells (randomly distributed)
are obstacles. 20 cells are randomly distributed resource locations. Each re-
source location contains 10 units of resource.

– The number of agents is 10. Each agent can carry a maximum of one unit.

Agents are initially located at the base, which is located at the center of the
environment. We observe in Figure 6.a that the construction of the numerical
potential field starts out as a partial WaveFront expansion (iteration 11). We can
also observe that agent 9 discovers a resource location and starts to create a trail
back to the base. Figure 6.b shows that at iteration 21 two other agents discover
resource locations and start to create trails, while agent 9 performs multiple trips
from the base to the discovered resource location. Later on, at iteration 53, Figure
6.c shows that six resource locations are discovered, with many agents involved
in transporting resources along trails marked by others. Note that an agent may
follow a trail even if it does not connect to the base at that point in time (e.g.,

5 To reach such a “dead end” is also necessary that the values of the area have changed
since their coloring
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a b

c d

e

Fig. 6 Resolution of the foraging problem with 10 c-marking agents (with Setup 1 (a)).
Trails are represented in dark Gray color. Snapshots at iteration 11(a), 21(b), 53(c), 76(d) zoom
around the base. The snapshot (e), at iteration 1200, shows the final state of the environment.
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agent 4 Fig.6.c). This communication through trails permits the recovery of all
the resources in the environment while the APF construction proceeds in parallel.
Figure 6.d shows iteration 76, where agents 2, 4 and 5 work simultaneously along
the same trail (connecting to a resource location at the bottom of the snapshot).
The trail connecting the first discovered resource location is now removed (by
agent 9) after being exhausted.

Note that when agents leave the base, they may have to choose among several
trails. They randomly choose one, whatever the number of discovered resource
locations.

At around the 1200th iteration, all resource locations in the environment have
been discovered and thereby exhausted and, additionally, the potential field has
converged to its optimal value (Figure 6.e). A video of such a foraging can be found
in Online Resource 1. The next section is devoted to quantitatively evaluating
algorithm performances.

6 Evaluation of the algorithm (c-marking agents)

6.1 Methodology

Criteria — We now study the performance of the c-marking algorithm. We mea-
sure the foraging time, which is the number of iterations required by the agents to
discover and exhaust all the resources in the environment. To evaluate the average
foraging time for a given setup, we repeat foraging runs until the performance
stabilizes. The random number seed is changed at each run. We denote Xn this
average time, where n is the number of agents.

We also consider the global cost Cn to achieve the foraging with n agents. Cn
is computed as n·Xn. So n·Xn stands for the total distance covered by all agents.

Basic environment — Environments are squares in all experiments. All the
agents start their exploration from the base which is located at the centre. Obsta-
cles and resource locations are distributed randomly in the environment.

6.2 Performance study

Let us first describe performances in a representative scenario, called Setup 1
(b). This one is based on Setup 1 (a) (defined in section 5.2), where the density
of obstacles is decreased to 20% in order to reduce unreachable resources (i.e. sur-
rounded by obstacles).

Figure 7.a shows the performance of the algorithm as the number of agents
grows. The algorithm was first evaluated with five agents and then this number
was progressively doubled to reach 160. Each average foraging time was obtained
from 1000 runs.
As Figure 7.a shows, foraging becomes faster as the number of agents increases.
Up to 20 agents, with each doubling of agents, the number of iterations required
for foraging is halved or reduced even further. This shows the effect of coopera-
tion between agents. The standard deviation can be large, as there is a variation
between the environment configurations (obstacles and resources location are gen-
erated randomly). However, it is interesting to note that the standard deviation
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Fig. 7 Performance of the c-marking algorithm in Setup 1 (b) (20 resource locations and
20% obstacle density). a) Average time to achieve foraging (Xn). b) Global cost of foraging
(n·Xn). Error bars are the standard deviation.

decreases when the number of agents increases, see fig. 7.a. This is a consequence
of the agent spatial dispersion that allows an efficient environment coverage, what-
ever the location of obstacles and resources. On the contrary, when the size of the
environment increases so does the standard deviation, as we will see in subsection
6.4 (Table 1).

We also evaluated the algorithm by varying other parameters such as obstacle
density, resource location density, the quantity of resource at each location, in ad-
dition to the environment size and the number of agents. For all test configuration,
we obtained the same performance profile as that of figure 7.a. At the beginning
of the curve, when using few agents, the foraging time decreases dramatically.
Then, as the number of agents grows, the curve asymptotically converges to the
minimum time required. This results from the minimum amount of time required
(i) to reach the resource locations and (ii) to carry all the resources to the base
(depends on minimum distance between resource locations and the base).

The performance of the algorithm raises a number of questions. What is the
effect of cooperation on performance? How does it scale up with the environment
size? How does our algorithm compare to a pheromone-based ant algorithm? In
the next sections we attempt to answer these questions.

6.3 Superlinear performance

To study the benefit of cooperation between agents, we analyze the global cost Cn
when the number of agents increases.

Figure 7.b plots n·Xn values for Setup 1 (b). We can see that up to 20 agents
the cost decreases as the number of agents increases. This shows cooperation results
in superlinear performance. Beyond this value, the cost increases as the number
of agents grows.

Although increasing the number of agents decreases the foraging time, this does
not necessarily mean superlinear performance. Figure 8 illustrates that the cost
can have different profiles, without including necessarily superlinear performances.
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Fig. 8 Global cost with Setup 2 when varying the number of agents : three resource locations
containing 10 units (a) and 20 units (b). (2000 runs for each average time).

This illustration uses Setup 2, which contains three sources. We consider two
different quantities of resource in the sources.

Setup 2 (a) and (b):

– A 20 cell x 20 cell environment, where 5% of the cells are obstacles. There are
three randomly located resource locations each containing (a) 10 units (b) 20
units of resource.

– The number of agents ranges from 1-5. Each agent can carry a maximum of
one unit.

We can see in figure 8.a that no superlinear performances are obtained with
three resource locations of 10 units. When the quantity of resources is doubled
(see fig. 8.b) it appears that the optimal cost is obtained with three agents, a
superlinear performance compared to one and two agents.

This last result leads to a question concerning the main factors that affect per-
formance. A foraging process is composed of exploration phases (to find resource
locations) and exploitation phases (to transport resources). It is clear that increas-
ing the quantity of resources will increase the exploitation phase (i.e. the number
of round-trips required to exhaust the resource locations). Cooperation between
agents occurs when they simultaneously explore the environment. Conversely, a
single agent will forage by repeating a sequence of search and transport phases.
The difference will be significant if the transport phases last long enough, it is true
when resource locations contain enough resource. Figures 8.a and 8.b illustrate this
difference.

6.4 Influence of the size of the environment (scalability)

In this section we examine how the size of the environment affects the performance
of the algorithm when the number of agents is fixed. Obviously, extending the
environment will require more time for exploration and transportation of resources
to the base.

To conduct this analysis, we computed the performances with Setup 3 when
we progressively quadruple the size of the environment.
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Fig. 9 Scalability of c-marking agents (blue curve) and ants (red curve) when the size of the
environment is varied - quadrupled at each step - in Setup 3.

Setup 3:

– The environment size is progressively quadrupled from 25× 25 to 800× 800.
– 5% of the cells are obstacles. 20 cells are randomly distributed resource loca-

tions, each containing 20 units of resource.
– The number of agents is 50. Each agent can carry a maximum of one unit.

Average performance times are given in Table 1.

Table 1 Influence of the size of the environment on the performance of c-marking agents
using Setup 3.

c-marking perf. 25x25 50x50 100x100 200x200 400x400 800x800

average time 341 847 2369 7691 28294 111265
std. deviation 41.6 139.8 590 3196 11313 46408

To examine the scalability of the approach, we plot the time on a logarithmic
scale, following the environment size variation. For a series of time y0, y1, .., yn
we plot y = log4(yi/y0). The corresponding curve is presented in Figure 9 (the
blue curve). The yellow curve shows a linear reference. We can see that times are
proportional in the growth of the environment, up to 800× 800.

This illustrates that the approach has an efficient scaling. However, as the
exploration behavior of the agents uses a random walk, the time follows an ex-
ponential growth for larger environments (runs were too long to compute times
with size 1600 × 1600). In the next section, we compare the model with an ant
algorithm and discuss the effect of random walk.
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Fig. 10 The ant algorithm: (a) global ant behavior (b) details of task SEARCH & CLIMB
PHEROMONE.

7 Comparison with a pheromone-based model

7.1 The ant algorithm

We compare the performance of our algorithm to an ant algorithm based on digital
pheromones. In nature, ants deposit a chemical substance called pheromone in the
area in which they explore (Holldobler and Wilson, 1990). In computer models
these deposits are made when ants find food and return to their nest, in order to
create paths from food locations to the nest (Resnick, 1994; Parunak, 1997). Dif-
fusion allows the enlargement of paths in order to recruit other ants. Evaporation
deletes useless paths from exhausted resources.

We have implemented such an algorithm, presented in Figure 10, to deal with
the foraging problem considered in this article. The default behavior is searching
for resource, detailed in Figure 10.b. It consists in climbing trails of pheromone if
this allows to move away from the base, otherwise a random walk is performed until
perceiving pheromone or finding resources. In this latter case, the ant behavior
consists in moving towards the base while dropping pheromones (see Fig. 10.a).

This behavior requires an external information which is the base direction. In-
deed, in a model using only one pheromone, ants need information about base loca-
tion for homing and exploration. The base direction is used to (i) follow pheromone
trails in the opposite direction from the base, in order to return to discovered re-
sources, and (ii) to go back to the base. Moreover, this algorithm requires

– each ant is able to drop an amount of pheromone in the current cell (the
quantity of pheromone in a cell i, j at time t is denoted qi,j(t))

– each ant can move towards four different neighboring cells and perceive them
to detect obstacles and to read the quantities of pheromone

– each ant knows the direction of the base from its current cell
– the environment computes pheromone diffusion (rate α, 0 < α < 1):
∀i, j qi,j(t+ 1) = (1−α)qi,j(t) + α

4 (qi−1,j(t) + qi+1,j(t) + qi,j−1(t) + qi,j+1(t))
– the environment computes pheromone evaporation (rate ρ, 0 < ρ < 1):
∀i, j qi,j(t+ 1) = ρ · qi,j(t) .
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a b

Fig. 11 Foraging with ants that drop pheromones and know the base direction (50 × 50
env., 50 ants, 20 resources, base at the center). a) obstacle density of 5% does not interfere
with foraging b) obstacle density of 30% generates cavities where ants get trapped (zoom ×2).
Dark-gray cells are obstacles and circles are the agents. The green, or light gray, color intensity
represents the pheromone amount in cells.

The model has been implemented in a Java simulator (see a video in Online
Resource 2). The random walk computes a new direction with probability 0.1. The
amount of pheromone dropped per cell is +10 and its detection threshold is 1.

Simulations with the ant algorithm (see Figure 11.a) show that ants collectively
build pheromone trails between the discovered resources and their base, and follow
them to exhaust the resources.

We have observed that ants can get trapped in cavities formed by just a few
obstacle-cells (Figure 11.b). Even for a density as low as 5 %, such obstacles may
be randomly generated. The problem can be partially solved by adding a random
walk in the homing behavior allowing to escape some cavities.

7.2 Measures and comparison

We evaluated the performance of the ant algorithm in Setup 3. This requires
tuning the free parameters of the ant algorithm for each configuration, that is for
each size of the environment. These parameters are the diffusion rate α and the
evaporation rate ρ.

Optimizing parameters of a multi-agent system or a bio-inspired metaheuristics
may be complex as the sensitivity to parameter variation may be great. To fine
tune the parameters of the ant algorithm, we implemented the iterated racing
algorithm proposed by López-Ibáñez et al. (2011).

After tuning the parameters for each environment size using Setup 3 (25× 25
up to 200 × 200), we computed the average time to complete the foraging in
each setting. The results are presented in Table 2. The table contains the average
time and the standard deviation for each configuration. We also give the ρ and α
parameters obtained from the iterated racing algorithm.
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It is important to note that the time to optimize the parameters was greater
than the time to compute average performances. Moreover, we were forced to limit
the tuning to 200× 200 environments as the time with 400× 400 was too long. It
is the consequence of the exploration process, based on a random walk, that time
is exponential with the size of the environment.

Setup 3 contains less than 5% obstacles to avoid ants becoming blocked by
obstacles, allowing the comparison of performance with the c-marking algorithm.
We repeat the results with c-marking agents in the last row of Table 2. In all
different configurations, we can see that the c-marking algorithm takes on average
less time to finish the foraging. The average time for ants is about 40% greater
than c-marking agents until the size of the environment reaches 100×100, at which
point the time difference rises to 180%. The scalability of ants is nevertheless good
up to 200× 200 as shown in Figure 9 by the red curve.

Table 2 Performances of the ant algorithm after tuning the free parameters (given in the
table) and the c-marking algorithm, by varying the size of the environment in Setup 3.

25x25 50x50 100x100 200x200

ants (av. time) 481 1204 3243 21576
std. deviation 78.6 197 1153 26180
ρ (evap) 0.16 0.05 0.02 0.0005
α (diff.) 0.4 0.1 0.01 0.005

c-marking (av. time) 341 847 2369 7691

It is interesting to examine why the c-marking algorithm has better perfor-
mance. The difference stems from the ability to explore the environment and to
return to a discovered source. Concerning exploration, c-marking agents combine a
random walk with a priority to non-visited cells while ants use only a random walk
(when they do not detect pheromones). Consequently, c-marking agents reduce the
time taken to perform a complete exploration of the environment. Another differ-
ence is the ability of c-marking agents to build a persistent trail once a resource
location is discovered and until it is exhausted. At the opposite, in the ant al-
gorithm, a pheromone trail could evaporate if no other ant revisits the resource
location early enough, which is a probabilistic behavior. However, the persistence
of trails in the c-marking agents could have a cost. The trails do not necessarily
provide a shortest path from the base to a resource location (this arises during
the APF construction). In the ant approach, pheromone evaporation allows to
adapt and to optimize the trails. This is a very interesting feature for dynamic
environments.

7.3 Discussion of model requirements

When considering the two approaches, the ant algorithm presents different require-
ments and abilities compared to the c-marking algorithm.

All marking-based approaches require some environment mechanisms. This is
the case for our approach (reading and writing integer values) as well as for the
ant algorithm. However, the ant approach requires some additional computational
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costs. Even if the evaporation process can be performed by agents when they visit
a cell6, pheromone diffusion involves a computational expense within the environ-
ment (note that this is not the case with real pheromones). The computation of
diffusion and evaporation is not required in the c-marking algorithm. More signif-
icantly, our approach has no free parameters to tune before being used efficiently,
contrary to the ant algorithm for which the tuning is costly (see previous section).

Furthermore, the ant algorithm requires that agents know/perceive the base
direction. This external information is used to follow pheromone trails and to
return home. However, this information is generally not sufficient to reach the base
when the environment contains complex shaped obstacles. As mentioned above,
we observed that ants can get trapped in cavities. To address this problem some
extensions of the model have been proposed in the literature. The gist of these
attempts is that generally a secondary pheromone is spread from the base in order
to build a new gradient centered on the base (e.g. Panait and Luke 2004; Hoff
et al. 2010).

The comparison we have proposed is, however, limited to foraging in static
environments. We plan to continue this work by considering unbounded environ-
ments and dynamic scenarios (as moving obstacles and sources). Pheromone-based
models are known to adapt to dynamic environments, as the evaporation process
allows a continuous update of the field (Parunak, 1997; Winfield, 2009). Note that
our APF computation can also adapt to obstacle changes, as the update opera-
tion is always executed at each cell visit. Concerning the management of trails,
our algorithm will require to be adapted, in order to compare with ants.

The differences between the two approaches are real. On one side, the ant
algorithm is a bio-inspired model, taking advantage of the adaptive nature of
the pheromone. On the other side, we explore an approach which is based on
path planning engineering. As a consequence, our approach is limited to some
specific tasks and presents few adaptive abilities. For instance, it does not deal with
regulation of recruitment. The difference between the two approaches relies mainly
on the nature of the marks, each of which has varying abilities. Continuation of
this work is motivated by the challenge of bringing closer the approaches.

8 Related work

8.1 A(ge)nts algorithms

Wagner and colleagues (1998; 2000) proposed ant algorithms to deal with search
problems on bounded graphs. Their work focuses on the covering task, which
consists of visiting all nodes of the graph, using one or several simple marking
agents. The proposed algorithms do not deal with all tasks of the foraging problem,
such as homing. However, the algorithm by Wagner et al. relies on writing integer
values on edges or vertexes of the graph, the computation of which is close to
our artificial potential field (APF) construction. It uses the same distance update
operation, 1 + min(neighboring values), but provides a very different result, as
explained below.

6 It requires that agents write both the date tv and the relative quantity of pheromone qv
in visited cells, then when reading a cell q(t) = ρt−tv .qv .
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In Wagner’s algorithm, agents build a gradient from their initial position, while
all cells are initially set to 0. Ants simply descend this gradient to explore the
environment. In our algorithm we set only one cell to value 0, the goal, which
cannot change. Then the computed APF converges to a static positive gradient
built around the goal. Conversely, Wagner’s approach builds a dynamic APF as
every cell can continually increase in value. As a consequence ants descend toward
unvisited cells, performing an efficient search.

Note that our algorithm is sub-optimal for exploration as it uses a pseudo-
random walk. We plan to extend our approach by coupling it with an efficient
exploration algorithm.

8.2 Gradient computation in grid environments

As expressed in Section 7, pheromone-dependent methods need ad-hoc mechanisms
to be applied when the environment contains obstacles and the agents are required
to find a path to the base/nest. This can be compass information or external
information (e.g. Vaughan et al. 2000).

This problem has motivated a number of variants for computing pheromone
gradients. One of these variants is the model of Panait and Luke (2004), which
combines pheromones with reinforcement learning as it builds numerical gradients.
This approach is meant to provide collaborative foraging, optionally with mobile
resources (preys). In this work, “ants” have abilities relatively similar to those of
our marking agents. They can move, perceive neighboring cells and read/write
real values. Each agent updates the amount of pheromone when visiting a cell by
using a reinforcement learning update rule (such as TD(λ) learning). Repeating
this update operation leads to the diffusion of values (rewards) set at home and at
discovered resource locations. Although this principle requires numerous visits to
the cells – or numerous agents – , it is close to the wavefront expansion exploited
in the c-marking algorithm. However, the model of Panait and Luke (2004) does
not guarantee the avoidance of building local minima.

More generally, other learning-based approaches have been proposed to take
advantage of reinforcement or evolutionary algorithms. Agents read the amount
of pheromone to update the so-called Q-values (state-action utility estimates) in
order to improve exploration or the gradient ascent (e.g. Monekosso et al. 2002).
Genetic algorithms are then used to fine tune different parameters and to optimize
agent policies (exploration versus exploitation ratio), as in (Sauter et al., 2002). It
is worth pointing out that these learning algorithms require additional time, both
to compute the propagation and evaporation dynamics and to fully converge to
the optimal policies.

Our approach for building an APF in the environment can be seen as a form
of incremental search algorithm for path planning (to the base). In particular,
we can compare to the D* algorithm (Stentz, 1995; Koenig and Likhachev, 2005)
which builds paths from the target and which is able to correct the node costs as
the environment is discovered7. However, the changes are propagated as waves in
the environment representation, while we let the agents update the values when

7 These algorithms are dedicated to real-time re-planning in dynamic and unknown envi-
ronments.
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Fig. 12 Picture of the apartment in the LORIA Lab. The ground is composed of a network of
intelligent tiles. Each tile embeds a node that is able to store, compute and display information
as well as communicate with neighboring tiles and nearby robots. LED lighting indicates that
the tiles have detected the presence of people or robots (see http://infositu.loria.fr).

they visit cells. We use a swarm strategy to update the environment, while the D*
algorithm computes the consequences of obstacle discovery immediately through
its representation.

We plan to study how the propagation mechanisms of D* could be integrated
into our approach to accelerate the APF convergence (e.g. by driving the agents
for a while) and how D* could be distributed among a set of memory-less marking
agents.

9 Towards a robotic implementation?

We now discuss how multi-agent algorithms using the marking of their environment
could be deployed in real world with mobile robots. The question is how to read
and write marks in the environment?

Several techniques for virtual marking have been proposed since the nineties. A
typical approach is to use a shared representation of the environment, that agents
can read and write through communication. The model proposed by Vaughan et
al. (2000) is an interesting example of real-world implementation. This approach,
however, changes the model to a centralized algorithm and requires robot localiza-
tion. Payton et al. (2004) proposed another way to implement pheromone-based
foraging, which requires only local communication between robots (i.e., no mark-
ing of the environment). In this approach, robots replace beacons as they can stop
and form a network able to store pheromones and compute their diffusion (also
called ‘pheromone robots’). Hoff et al. (2010) proposed two foraging algorithms
based on this principle. They also studied in simulation the problem of congestion,
which degrades performance when robot density grows (as the approach requires
numerous robots).

More recently, several studies investigated the possibility of writing chemical
substances, even real pheromones, to mark the environment (Kowadlo and Russell,
2008; Purnamadjaja and Russell, 2010). It is however difficult to envisage applying
such a solution to manage gradient construction due to substance volatility and to
its environmental impact. In 2007, Garnier et al. (2007) proposed to display lumi-
nous trails in order to emulate pheromone deposit. The approach requires to set a
video projector over the robots and to centralize the environment representation.

In these days of ubiquitous and cheap computing, the implementation of swarm
and collective systems has become more realistic. A wireless network can be de-

http://infositu.loria.fr
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ployed allowing robots to explore the environment using mark-based algorithms,
see for instance (Mamei and Zambonelli, 2005) for an application of synthetic
pheromone spreading. Another approach consists of installing in the floor a lat-
tice of RFID or ‘intelligent tiles’ (Fig. 12) that allows robots to read and write
information in the environment. See for instance (Johansson and Saffiotti, 2009;
Herianto and Kurabayashi, 2009) and the iTiles model (Pepin et al., 2009).

A case study we plan to consider is the deployment of mobile robots in indoor
environments where the ground is composed of intelligent tiles (Fig.12). Robots
have to perform different tasks such as searching for objects and assisting people.
In this context, robots do not know the location of obstacles such as furniture and
objects. One challenge is to study how the environment can help robots in building
routes, finding objects, etc.

10 Conclusions and future work

The study and the rewriting of the wavefront computation proposed by Bar-
raquand et al. (1992) for path-planning has allowed us to define an efficient multi-
agent foraging algorithm in finite grid environments.

We have shown that a set of simple agents can build the artificial potential
field (APF) corresponding to the wavefront expansion only by reading and writing
values in the environment. We proved that this distributed and asynchronous
construction converges to the optimal APF in finite time.

We then defined a foraging algorithm exploiting this APF construction, that
is, agents that search for and transport resources in unknown environments. The
originality of our approach is to simultaneously build the wavefront APF while
foraging, without depending on free parameters, contrary to pheromone-based
approaches. This algorithm provides an efficient homing strategy, as agents simply
need to follow the APF. By coloring return paths, agents are able to recover
resource locations with a deterministic behavior. This defines a complete foraging
algorithm that we called c-marking agents.

Simulation experiments showed the efficiency of the approach and in particular
that cooperation can lead to superlinear performance. We compared our approach
to a pheromone-based model, the ant algorithm. Results showed that our approach
is more time efficient and scalable to the size of the environment. Another signif-
icant feature of our algorithm is its ability to operate in complex environments,
such as a maze or an environment involving concave obstacles.

We now plan to study the robustness of our approach, and its ability to adapt
to changes in dynamical environments, as ants do.

In order to improve the c-marking algorithm efficiency we think that the
pseudo-random exploration can be enhanced by adapting some of the existing
strategies used in covering tasks (Wagner et al. 2000; Glad et al. 2008). We are
currently extending our approach to show that the proposed algorithm can be gen-
eralized to the construction of other potential fields and used with other problems
or applications.

We will also test our approach using real robots interacting with an active
floor, such as the iTiles. This is an important challenge as we seek new ways to
bring bio-inspired algorithms to robots in real-world scenarios.
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in the dark: cooperative trail following in uncertain localization space. In Proc.
of the 4th International Conference on Autonomous Agents (Agents’00), pages
187–194. ACM Press, New York.

Wagner, I., Lindenbaum, M., and Bruckstein, A. M. (1998). Efficiently searching a
graph by a smell-oriented vertex process. Annals of Mathematics and Artificial
Intelligence, 24:211–223.

Wagner, I., Lindenbaum, M., and Bruckstein, A. M. (2000). MAC vs. PC: Deter-
minism and randomness as complementary approaches to robotic exploration
of continuous unknown domains. International Journal of robotics Research,
19(1):12–31.

Winfield, A. (2009). Towards an engineering science of robot foraging. In Dis-
tributed Autonomous Robotic Systems 8, Proceedings of the 9th International
Symposium on Distributed Autonomous Robotic Systems (DARS 2008), pages
185–192. Springer, Berlin Heidelberg, Germany.

Zhu, Q., Yan, Y., and Xing, Z. (2006). Robot path planning based on artificial
potential field approach with simulated annealing. In Proceedings ISDA’06 Sixth
International Conference on Intelligent Systems Design and Applications, vol.
2, pages 622–627. IEEE Computer Society Press, Los Alamitos, CA.


	Introduction
	Barraquand et al. wavefront computation
	Computation with memory-less agents
	Extension to collaborative foraging
	c-marking agents: colorings the paths
	Evaluation of the algorithm (c-marking agents)
	Comparison with a pheromone-based model
	Related work
	Towards a robotic implementation?
	Conclusions and future work

