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Abstract 
 
This paper deals with the multi-agent patrolling 

problem in unknown environment using two collective 
approaches exploiting environmental dynamics. After 
specifying criteria of performances, we define a first 
algorithm based only on the evaporation of a 
pheromone dropped by reactive agents (EVAP). Then 
we present the model CLInG [10] proposed in 2003 
which introduces the diffusion of the idleness of areas 
to visit. We systematically compare by simulations the 
performances of these two models on growing-
complexity environments. The analysis is supplemented 
by a comparison with the theoretical optimum 
performances, allowing to identify topologies for 
which methods are the most adapted. 

Keywords: Multi-agent patrolling, reactive multi-
agents system, digital pheromones. 

 
 

1. Introduction 
 

Patrolling consists in deploying a set of agents 
(robots) in an environment in order to visit regularly all 
the accessible places [5]. 

This problem was studied in recent years 
according to centralized, heuristic and distributed 
approaches, but always within a discrete representation 
of the environment, i.e. a graph. A vertex is a 
predetermined place that should be visited and an edge 
is a valid path linking two places. Thus, various work 
based on graph search algorithms have been proposed, 
often deriving from the problem of the traveling 
salesman (cf. [1] for a presentation of these various 
techniques and their comparison). For instance Lauri 
and Charpillet [4] proposed a solution relying on ACO 

algorithms (ants colonies optimization) which requires 
a representation of the environment through a graph. 
There are also approaches based on learning techniques 
(e.g. [8]). They consist in computing offline an optimal 
multi-agent path, which is then carried out online in the 
considered environment. Consequently, this type of 
solution is not able to self-adapt to online changes of 
the problem/environment, such as variations of the 
number of agents or moves of obstacles, etc. 

Moreover, these approaches are subject to 
combinatory explosion when the graph size becomes 
important (several hundreds of nodes) or when the 
number of deployed agents increases. 

However, nowadays, many concrete applications 
present the patrolling problem on large spaces, known 
or unknown, with a significant number of agents 
(drones deployed to supervise a strategic place, 
patrolling of buildings by mobile robots, etc.).  

So, to deal with such a configuration of the 
problem (unknown environments) we think that swarm 
intelligence could be an efficient approach. It is 
generally based on the marking of the environment, 
inspired by the ants’ pheromone drop, which defines an 
indirect calculation and means of communication 
among the agents [2]. 

These digital pheromones rely on two processes 
calculated by the environment: the diffusion and the 
evaporation of information (pheromone’s quantity). 

The diffusion process enables the propagation of 
the information by effect of vicinity, while evaporation 
allows removing gradually the information. 

Sempé et al. [10] proposed in 2003 an algorithm 
named CLInG exploiting the propagation of 
information, which is close to the diffusion process, 
showing the interest of an approach based on an active 
environment. However this approach appears relatively 
expensive as it exploits processes of propagation and 



 

of counting in the environment (idleness evaluation). 
Thus we propose in this article another algorithm based 
only on the evaporation of a digital pheromone laid 
down by agents, named EVAP model. 

Our objective is to compare these two collective 
techniques, which are based on an active environment, 
but having different complexity, in order to better 
understand the functioning and the performances of 
these stigmergic principles. 

The article is organized as follows. Section 2 
defines the patrolling problem and gives the 
performance criteria. In section 3 we present the EVAP 
model, and in section 4 the CLInG model. Section 5 
presents experimentation of both models, where they 
are compared and analyzed on environments with an 
increasing complexity. In section 6 we synthesize these 
results to draw the interest of the two approaches. 
Finally this work ends with a conclusion and presents 
some perspectives. 

 
2. The multi-agent patrolling problem 

 
Patrolling consists in deploying several agents, 

generally in a fixed number, in order them to visit the 
strategic places of an area periodically. It aims at 
obtaining reliable information, seeking objects, 
watching over places in order to defend them for any 
intrusion, etc. 

An efficient patrol in an environment (possibly 
dynamic) needs the delay between two visits of the 
same place to be minimal. Related works on multi-
agent patrol strategies consider that the environment is 
known, two-dimensional and that it can be reduced to a 
graph G (V, E) (V the set of the nodes to be visited, E 
the arcs defining the valid paths between nodes). 

Several criteria may be used in order to evaluate 
the efficiency of a patrolling strategy. We adopt those 
based on the node idleness computing, which 
corresponds to the time elapsed from the last visit by 
an agent. The following criteria, relative to idleness 
and presented in [5], can be calculated either at the 
node level or at the graph level: 
• Instantaneous Node Idleness (INI): Number of time 

steps elapsed while the node is not visited. This 
criterion is computed for every node. 

• Instantaneous Graph Idleness (IGI): Average of 
Instantaneous Node Idleness of each node at a given 
time. This criterion is computed at the graph level 

• Instantaneous Worst Idleness (IWI): Highest INI 
computed at a given time, graph level criterion. 

As it was emphasized in the introduction, in this 
paper we tackle the multi-agent patrolling problem in 
unknown environments, i.e. for which we do not have 
a graph of the areas to visit. So, we consider the space 
to patrol as a vast empty grid, which have a granularity 

defined by the area an agent can perceive at a given 
time. 

More precisely, the environment is a matrix where 
each cell may be free, occupied by an agent or 
unreachable (obstacle/wall). So two agents cannot 
occupy the same cell at the same moment. 

Patrolling is simulated with a constant time step 
that enables every agent to do an elementary action: 
move to one of the four neighboring cells. The 
definition of idleness presented above for the nodes of 
graphs is retained and applied to each cell that must be 
visited. 

This paper focuses on the generic patrolling 
problem which consists in minimizing the average 
idleness of accessible cells. We also take into account 
to minimize the worst idleness. 

 
3. EVAP: model based on deposit and 

evaporation of information 
 
3.1. Evaporation process 

 
The swarm intelligence principle, inspired by the 

study of social insects [2], is based on the collective 
organization of the agents through their indirect 
communications in the environment. These 
communications are based on the deposit and the 
diffusion of a chemical substance which allows agents 
to cooperate through the environment. So, the 
computational model, called digital pheromones, needs 
to define an active environment allowing both 
evaporation and diffusion process. This indirect way of 
communication is particularly interesting to deal with 
tasks in initially unknown environments (e.g. foraging 
[6], path-planning [7], coverage, exploration ...). 

So, we propose a new algorithm for multi-agent 
patrolling in unknown environment, named EVAP, 
which relies on the evaporation process of a 
pheromone dropped by the agents. This model only 
uses the evaporation process to exploit the remaining 
quantity of pheromone as an indicator of the time 
elapsed since the last visit of a cell (representing the 
idleness). Thus, we define the agents behavior as a 
descent of the pheromone gradient (i.e. moving 
towards the cells containing the less pheromone 
quantity). 

The evaporation process of the pheromone in a 
cell is expressed by the following geometrical series on 
the quantity: 

qn+1 = qn * (1 – ρ) 
This process enables the creation of an oriented 

gradient following the cells visit chronology. It only 
requires ρ ∈ (0, 1) and q0 > 0. In fact qn decreases for 
any ρ value in (0, 1), so the model is independent from 
ρ parameter. In the experiments ρ = 0.001. 



 

3.2. Algorithm 
 

The following-gradient-flow behaviour allows 
agents to explore the most formerly visited (or not 
visited at all) cells. An agent can perceive over its four 
neighbouring cells (noted Neighbourhood in the 
algorithms) for which it can read the pheromone 
quantity. Then, it moves towards the one containing 
the minimum value and drops Qmax value. 

In case several neighbouring cells contain the 
same amount of pheromone, the agent chooses to move 
randomly among them. However, to avoid too erratic 
trajectories, if the current direction can be kept, the 
agent chooses, according to a probability p, to maintain 
it. 

 

EVAP Agent ALGORITHM  
 

m = min(PheroQ (Neighborhood)) 
For each cell c of Neighborhood Do 
  If PheroQ(c) = m Then 

  NeighborsList ← NeighborsList + c 
  EndIf 
EndFor 
nextCell ← cell to which we are heading 
If nextCell ∈ NeighborsList  
and random(1) < p Then 
  moveTo(nextCell) 
Else 
  moveTo(random(NeighborsList)) 
EndIf 
DropPheromones(Qmax) 
 

EVAP Environment ALGORITHM  
 

For each cell c of environment Do 
  If PheroQ(c) > 0 Then 
    ComputeEvapPhero(c)  
  EndIf  
EndFor 

 

The EVAP model can be seen as an extension of 
the Yanovski et al. algorithm [12] to grid 
environments. Indeed, the algorithm in [12] uses a 
pheromone which is dropped on the edges of a given 
graph necessarily both oriented and eulerian. The 
principle of the EVAP agent behavior is the same as 
the gradient descent described in [12]. 

 
3.3. Interest of the swarm intelligence 

 
In an early work on the graph coverage problem, 

Wagner et al. [11] emphasized drawbacks of reactive 
approaches using marking of visited nodes. They 
showed that sub-optimal exploration can be generated 
for certain topologies when using only one agent. This 
problem comes from the very limited perceptions of 
agents. It can be explained as following. 

Suppose that an agent has visited three 
consecutive nodes of the following graph while 
dropping pheromones. It now faces to the choice 
between two not yet explored nodes: 

 
It is obvious that a random behavior may conduct 

to the following “wrong” choice: 

 
The initial marking created a gradient that forces 

the agent to cross already visited cells before going 
back and continuing its exploration task. This 
phenomenon may happen every time a similar choice 
happens: 

 
A means to avoid this kind of problem is to give to 

agents a perception further than the immediate nodes, 
in order to avoid paths returning to already visited 
cells. For this purpose, we will see that CLInG uses the 
environment to attract agents towards the not-yet-
visited nodes. For EVAP, we keep a limited perception 
as we assume that cooperation between agents can 
reduce the problem. If two agents visit in a short delay 
a node which requires a choice between two possible 
routes; if the first one makes the “bad” choice, the 
second one will necessary make the good choice, i.e. to 
continue the exploration because it will follow a not 
yet explored path: 

 
We notice that the more agents there are, the most 

this drawback will be attenuated (see section 5). We 
show through the experiments conducted in section 5 
that this limit exists only for specific topographies. In 
those cases, CLInG proves to be a good solution. 

 
4. CLInG: model based on information 

diffusion 
 
4.1. Approach based on idleness diffusion 

 
Sempé et al. [9] [10] proposed a patrolling 

algorithm which supposes that agents are reactive (like 
EVAP) and that the environment calculates two 
following information: 

- the Idleness of each cell 
- the diffusion of maximal Idleness values 
At each iteration, the environment calculates the 

idleness of each accessible cell by incrementing its 
value by 1 unity. The idleness of a cell is reset to zero 
when it is visited. 

The originality of algorithm CLInG is adding 
second information into the environment by the 
diffusion of the maximum idleness. Propagating makes 



 

a second gradient that guides the agents to cells of 
interests (the most formerly visited). 

More formally, a cell i carries a propagated 
idleness OPi besides its individual idleness Oi. The 
gradient created by the propagated idleness is shared 
by the whole collectivity, cf. Figure 1. 

 
Figure 1. Propagated Idleness 

 

The propagated idleness of a cell depends on the 
propagated idleness of its neighbors and its individual 
idleness. It is equivalent to a function that takes into 
account the idleness and the presence of agents on the 
way. 

( )( )[ ]jifOOP ii ,max,max=  
with j the neighboring cells of i, and f  the 
propagation function : 

( ) ( )jIOPjif j ., βα −−=   

                   If ( ) min. OPjIOPj ≥−− βα  

    minOP=  If minOPOPj >  

    1−= jOP   Otherwise 
α  is the coefficient of propagation. Its value is 

important (for example 30 in the experiments) in order 
to create a short distance gradient that does not risk to 
attract all the agents to a maximum idleness cell. 

I(j) is the interception function that stops a 
propagation whenever it meets an agent. I(j) equals to 
1 if there is an agent in cell j, otherwise 0. This factor 
also restrains the gathering of agents from the same 
way (the order of magnitude of β  is 10), cf. details in 
[9] [10]. 

OPmin is a threshold that assures the propagated 
idleness forms always a gradient and remains positive 
due to the fact that the individual idleness is always 
positive. The behavior of each agent consists in 
following the gradient of maximal idleness (cf. 
illustration Figure 1). This is a dual approach of the 
previous algorithm (EVAP), but this time, the 
information in the neighboring cells can come from 
further cells. 

The propagation of the maximum idleness allows 
exploiting the inherent environment’s properties and to 
transform objective information into subjective one 
which can be used directly by the agents. The 
algorithm provides thus an organization among the 
agents according to the distribution of the idleness in 
the environment. 

4.2. Algorithm 
 

CLInG Agent ALGORITHM 
 

m = max(Propagated_I (NeighboringCells)) 
For each cell c of NeighboringCells Do 
  If Propagated_I (c) = m Then 

       ListNeighbors  ListNeighbors + c 
     End If 

End For 
moveTo (Random(ListNeighbors)) 
Idleness(currentCell)  0 
 

CLInG Environment ALGORITHM 
 

For each cell c of Environment Do 
  Calculate Idleness(c)  
End For 
For each cell c of Environment Do 
  Calculate Propagated_I(c)  
End For 

 
5. Simulations and analysis 

 
5.1. Methodology 

 
The simulations were implemented in NetLogo. 

The conditions of simulation, perceptions and moves 
are strictly the same for the two algorithms. 

The experiments of the 2 models were performed 
in 5 environments with growing complexity, taken or 
adapted from [1] and [11], cf. Figure 2 (obstacles in 
black). Topology A is an open-field environment 
which means that agents are free for any movement. 
Environment B is a spiral enabling a corridor with dead 
ends. Environment C allows constraining the 
environment by a density of obstacle cells, generated 
randomly (we used a density of 20%, without isolated 
cells). Environment D represents a corridor 
overlooking 8 rooms. At last, E presents 6 rooms 
which have imbricate entries, that we name 6-rooms. 
More generally we define the n-rooms problem as n 
rooms with imbricate entries. 

 

 
Figure 2. Experimental topologies 

 

We tested the algorithms with different population 
sizes by doubling systematically the number of agents: 
1, 2, 4, 8, 16, 32 and 64. We aim at evaluating 
performances and collective skills of both models. 



 

Every simulation is executed during 3000 iterations 
(4000 for environments D and E) and 10 times to 
compute means values. 

 
5.2. Simple environments 

 
Non-obstacle environment (Map A) 

Figure 3 shows performances with 8 agents, during 
the first 1000 iterations, in a 20x20 cells environment 
(agents are initially randomly located). This plot 
illustrates the average idleness and the worst idleness 
of both studied methods (CLInG and EVAP). We note 
apparently that both average idleness values are rapidly 
stable and identical, and moreover, very close to the 
optimum theoretical value (represented by the 
horizontal line). 

 

 
Figure 3. Non-obstacle topology, 8 agents, 1000 it. 

 

The theoretical optimum idleness values are 
calculated as follows: Let c be the number of 
accessible cells of the environment. Considering one 
agent moving towards a new cell at each iteration, then 
it visits all cells in c-1 iterations. Thus, the idleness of 
the departure cell will reach c-1. For n agents, the 
optimum maximum idleness is (c/n)-1. The optimum 
average idleness is therefore ((c/n)-1))/2 (as idleness 
values are linearly distributed between 1 and the 
optimum value). 

 

 

Figure 4. Non-obstacle topology, average IGI 
 

Figure 4 illustrates the average idleness of both 
methods for a variation of the agents number. In both 
cases, the doubling of agents improves the 
performances linearly. For each configuration, we 
notice that the obtained values almost correspond to 

the theoretical optimum value. It is clear that CLInG  
and EVAP have the same effectiveness for this 
topology, except the single agent case. This result is 
also verified with bigger environments. 
 
Spiral environment (Map B) 

Figure 5 illustrates the average and the worst 
idleness values with 4 agents in a 20x20 cells spiral 
environment, over 3000 iterations (agents are initially 
randomly located). Regarding to the worst idleness 
values, EVAP is slightly better despite the fact that it 
does not become stable. As in the previous topology, 
the average idleness values are very close to the 
optimum value and relatively stable. 

 

 
Figure 5. Spiral topology, 4 agents 3000 iteration 

 

Figure 6 shows that EVAP is a bit more efficient 
that CLInG on average idleness for a small number of 
agents (up to 4). This is clear for one and two agents, 
where EVAP almost attains the theoretical optimum 
value. It is important to note that for algorithm EVAP, 
we obtained this optimum performance for p=1, the 
probability of keeping the current direction when there 
is a choice between several cells with equal quantity of 
pheromone. Figure 7.a shows the regularity of the 
pheromone deposit (the gradient) and as a consequence 
the optimum paths followed by agents. This emergent 
solution is equivalent to the unique cycle strategy 
proposed in [1][3] for patrolling in a graph. 

 

 
Figure 6. Spiral topology, average IGI 

 

 Gradients in Figure 7.b show the idleness 
propagations in CLInG (the highest values are the 
lightest). It appears that these gradients are not regular 
and may generate noise in agents search (cf. section 6).  



 

 
Figure 7. Map B (screenshot) 

a) Pheromone Values of EVAP (max is light) 
b) Propagated Idleness of CLInG (max is light) 

 
Environment with obstacle density (Map C) 

We measured performances of both models with 4 
agents in a 20x20 cells environment having 20% 
obstacles (agents are initially randomly located). 
Concerning the average idleness, both methods are 
close to the theoretical optimum value, with a slight 
advantage to CLInG algorithm. This advantage appears 
clearly in Figure 8 with the worst idleness measures. 
However this distance declines when the number of 
agents increases. 

In the following sub-section, we consider more 
complex topologies in order to identify those creating 
the most important distance between the two methods. 

 

 
Figure 8. 20% obstacles topology, average IWI 
 

5.3. Complex environments 
 

Corridor – rooms (Map D) 
We study now the behavior of both models 

towards complex environments composed of several 
rooms. We first start with map D topology (agents 
always start at the entrance of the corridor: the room at 
the bottom). 

Figure 9 illustrates the performances in average 
and worst idleness on map D for the particular case of  
using a single agent. In fact, this case shows that the 
average and worst idleness of EVAP converges to the 
optimum performance at the same time. CLInG is a 
little less competitive and do not stabilize to a constant 
performance. Whenever we increase the population 
size, we note, however, that the performance of two 
methods are identical and remain close to the 
theoretical optimum values, without being stable. 

 
Figure 9. Corridor-rooms topology, 1 agent, 4000 it 

 

Globally the simulations with this topology do not 
show a real difference of performance between both 
models. On the other hand, we show below that 
"imbricate" rooms constitute a topology discriminating 
the performance. 

 
Imbricate rooms (Map E) 

Figure 10 presents the performances in average 
and worst idleness of 4 agents in a 20x20 cells 
environment consisting of six imbricate rooms (cf. 
topology in Figure 11). The agents are initially all 
located at the same place (right bottom corner of the 
environment). 

 

Figure 10. 6-rooms topology, 4 agents, 2000 it. 
 

Over 2000 iterations, two distinct phases appears 
clearly for EVAP model. We observe in Figure 10, up 
to iteration 830, that the average idleness, as well as 
the worst idleness, is higher than CLInG values. This 
can be explained by the fact that agents have a first 
phase of exploration, which consists in getting into the 
rooms for the first time (cf. Figure 11.a). 

Then, a second phase, which consists in re-visiting 
the rooms, is more efficient due to the fact that the 
pheromone leads the agents directly to the most distant 
rooms - the more formerly visited - (cf. Figure 11.b).  

The difficulty for EVAP is situated at the doors 
separating two rooms. An agent who explores a room 
and arrives close to a door has an equal probability to 
continue the room exploration or to enter in the next 
room. If it chooses to continue the exploration, it risks 
to not pass again close the door and therefore to ignore 



 

the unvisited room. We find here the problem 
identified by Wagner [11], due to the local vision of 
agents, of the choice between two nodes with equal 
interest (cf. details in section 3.3). 

CLInG does not suffer this problem because the 
unexplored rooms propagate a strong idleness which 
ensures that agents, close to a door, will be attracted by 
the unvisited room. This propagation allows agents to 
get into rooms following an optimum way from the 
first exploration (cf. Figure 11.c). 

 

 
Figure 11. EVAP and CLInG, Map E (screenshot) 

 

As we mentioned in section 3.3, the problem of 
the choice between several nodes, for the EVAP 
model, is reduced proportionately to the number of 
agents. The measures presented in Figure 12 verify this 
hypothesis (variation of agents number for an identical 
configuration). 

 

 
Figure 12. 6-rooms topology, average IGI 

 

Concerning the EVAP model, it is interesting to 
focus on the exploration phase, which corresponds to 
the formation of a global information. Indeed, the order 
of rooms exploration, induced by the topology, build a 
gradient of pheromone which is necessarily oriented 
following this order. So, once the gradient is formed, 
an agent will get into the rooms efficiently while 
generating systematically the inverse gradient. That 
allows it to alternate getting in and getting out in an 
optimum way. This explains the system converges to a 
stable performance. 

6. Discussion 
 
6.1. Model complexity 

 
The objective of the previous section was to 

measure the interest of introducing the propagation of 
information compared to a model which only uses the 
evaporation process. Indeed, CLInG can be defined as 
the algorithm EVAP (idleness playing the role of the 
pheromone) augmented with the diffusion of 
information through the environment.  

We identified topologies where CLInG proves to 
be more effective due to this propagation of 
information. However this process has a cost. The 
difference of algorithms complexity is in the 
calculation performed by environment at each iteration. 
More precisely, in EVAP, for c cells containing the 
pheromone, it takes c evaporation operations (eq. 1). 
Thus for a nn ×  cells environment, it takes at most n2

 

evaporation operations. The environment of CLInG is 
much costly since it needs n2 idleness calculation 
operations plus n2 spread operations. In practice, 
CLInG proves to be twice as costly in execution times. 

 
6.2. Exploration and patrol 

 
The simulations carried out on complex 

environments (corridor and imbricate rooms) revealed 
two functioning phases, in particular for EVAP. 
Initially, the system performs a first exploration of the 
environment, then, it changes brutally for more stable 
and effective behaviour. 

These two phases also exist for CLInG but, 
generally, the first phase is shorter than the EVAP one. 
It is due to attractions induced by the not yet explored 
areas (see Figure 9 and Figure 10). It is interesting to 
pay attention that in both methods the system self-
organizes via the marking of the environment, and 
converges towards an effective patrolling (possibly 
optimal, see EVAP on map B). 

 
6.3. Advantages and drawbacks of models 

 
EVAP is an effective solution for average 

complexity environments (non-obstacle, spiral, 
corridor-rooms). We have shown that the deposit and 
the evaporation of a pheromone guarantee a low 
average idleness. 

On the other hand, considering the worst idleness, 
CLInG proves generally to be more efficient than 
EVAP, except for spiral and corridor topologies when 
the number of agents is low. 

More generally, a surprise of this study is the good 
performances, even optimal, for mono-agent patrolling. 
It shows that marking the environment can constitute a 



 

good solution for mono-agent problems, while 
guaranteeing scalability on the agent number. Indeed, 
the average idleness decreases linearly with the number 
of agents, and makes it possible to be more efficient on 
the exploration phase. 

The study has shown that CLInG is more efficient 
than EVAP on complex environments composed of 
imbricate rooms, particularly if the number of agents is 
low. The difference of performances reduces gradually 
when the number of agents increases. This is the 
consequence of using a swarm approach (see Figure. 
12 and section 3.3). 

The information propagated in CLInG model 
naturally generates complexity in the system. While 
attracting agents towards zones of interest, this process 
can also generate noise, for example by attracting 
several agents to the same cell. It explains why CLInG 
does not reach to stabilize to a stationary global 
behavior (as observed on the spiral topology). 

 
7. Conclusion 

 
In this article, we have tackled the multi-agent 

patrolling problem in unknown environments. 
Algorithm CLING [9], one of the rare propositions, 
exploits the marking of the environment and the 
diffusion of information. We proposed a simpler model 
(EVAP) exploiting only the evaporation of a 
pheromone (no diffusion). The experimental study on 
environments with growing complexity has shown that 
the propagation of information is efficient only with 
some environment topologies. For this reason, we have 
identified the N-imbricate-rooms problem which 
defines a new case study for this problem. 

We have shown that EVAP model is less efficient 
for the initial exploration phase but then converges to 
an average performance identical to CLInG. This 
difference of performance is reduced when the 
population increases, showing the collective nature of 
the proposed models. So, the propagation process is 
proved to be an accelerator of the exploration phase of 
the multi-agent patrolling. Moreover, this experimental 
study has indicated that these algorithms could 
constitute a competitive solution for the mono-agent 
patrolling problem. 

We plan as perspectives of this work to go deep in 
the study of CLInG parameters’ role, to add energy 
limitation and dynamic obstacles variants. Finally, we 
will implement EVAP in a multi-robot simulator to 
evaluate the model on more realistic environments. 
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