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Mixing oscillators for phase noise reduction
Paul Ferrand,Member, IEEE

Abstract—The output of oscillators is usually not stable over
time. In particular, phase variations—or phase noise—corrupts
the oscillations. In this letter, we describe a circuit thatdesigned
to average the phase noise processes and frequency offsets
in frequency-matched oscillators. The basic circuit uses the
independence of 2 phase noise processes to provide a cleaner
oscillating output with lower phase noise variance. We describe
extensions of the circuit designed to average out more than 2
oscillators, as well as a single one through delay elements.In
all the examples covered, we provide a theoretical analysisof
the resulting phase noise process when the input phase noise
processes follow a Wiener model.

I. I NTRODUCTION

Noise effects can perturb not only the amplitude but also
the phase of local oscillators. Industrial progress lead toan
increased signal-to-noise ratio (SNR) in most circuit com-
ponents [1], [2]. As improvements in SNR reduce only the
amplitude noise, phase noise processes dominate the analog
impairements of local oscillators and become one of the
major non-idealities to consider in communication systems.
They corrupt the separation of frequency bins in orthogonal
frequency division multiplexing (OFDM) signals and induce
complex inter-carrier interference [3]. They impact the estima-
tion of channel realizations [4] and beamforming techniques
[5] in multiple input, multiple output (MIMO) applications.
The relative prominence of phase noise effects also increases
with the oscillating frequency [2]—a major drawback for
mmWave applications [6].

In this letter, we detail a circuit that can improve the phase
noise performance of any electronic oscillator. The circuit
averages independent or slightly correlated phase noise effects
in order to reduce their variance over time, and thus stabilizes
the oscillator output. The oscillating signal undergoes one or
more mixing steps to sum the phase noise processes, and
a frequency dividing step to extract their average. Llopiset
al. showed that getting a high frequency oscillator through a
frequency dividing circuit could provide up to a 6dB reduction
in phase noise power spectral density (PSD) over a free
running oscillator [7]. The present analysis uses the same
mathematical mechanism to clean the output of frequency-
matched oscillators. We present the basic circuit in Sec.III and
analyze its theoretical effect on the phase noise statistics. We
then show in Sec.IV that the circuit may be extended to more
oscillators. It can also be adapted to average the phase noise
effects using a single oscillator and an analog delay line. We
derive the PSD of the phase noise process in the latter case,
and analyze the results.
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In the following, letE[·] denote the expectation of a random
variable. Letδ(·) be the Dirac delta function. Let̄z denote the
conjugate of the complex numberz. We use the notationxt to
denote a continuous-time random process with time variable
t; further indexing of the random process is denoted using a
superscript, as inxi

t.

II. SYSTEM MODEL

We consider oscillators indexed byi, all built to output a
sinusoid with a common nominal frequencyfc. Each oscillator
presents a frequency offsetfi and a zero-mean phase process
θit. Let ωi = 2π(fc + fi). The output of theith oscillator is
thus

sit = cos
(

ωit+ θit
)

. (1)

Note that we normalize the output power of the basic os-
cillators, and neglect the amplitude noise. We assume the
following:

• The frequency offset is randomly distributed with finite
varianceσ2.

• The phase processθit is a real Gaussian process wrapped
on the circle. It is modeled as

θit = θi0 +

∫ t

0

wi
τdτ mod 2π (2)

wherewi
t is a white gaussian noise process with mean

E[wi
t] = 0 and autocorrelationE[wi

t1w
i
t2 ] = 2πβδ(t2 −

t1). Such a process is called a Wiener process; one can
show thatE[θit] = θi0 and E[(θit1 − θi0)(θ

i
t2 − θi0)] =

2πβmin(t1, t2).

In communication applications, we’re interested in the phase
shift ui

t = exp
(

θit
)

. The autocorrelation of the phase shift is
[1]

Ru(t, t+ τ) = E

[

ui
tu

i
t+τ

]

= exp (−πβ|τ |) . (3)

The phase shift is thus a stationary process—its autocorrelation
is independent of the time variablet. For completeness, note
that the PSD of the phase shift process is the Fourier Transform
of its autocorrelation; it can be derived as the so-called
Lorentzian [1]

Su(ω) =
πβ

(πβ/2)2 + ω2
ω = 2πf. (4)

In this formulation,f is the frequency offset from the carrier.

III. A MIXING CIRCUIT TO AVERAGE OSCILLATORS

Independent oscillators will exhibit independent phase noise
and frequency offsets. These effects are centered on their nom-
inal frequencyfc as per (1). We will use their independence
to reduce their variance through averaging.
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cos
(

ω1t+ θ1t
)

cos
(

ω2t+ θ2t
)

(M1) HPF

(M2)

LPF

Amp.

1
2 cos (ω

′t+ θ′t)

Fig. 1. The averaging circuit. “HPF” and “LPF” denote a high-pass and low-pass filter respectively, and “Amp.” an amplifier. At the steady state, we have
an oscillating output with angular frequencyω′ = (ω1 + ω2)/2 and phase noise processθ′

t
= (θ1

t
+ θ2

t
)/2.

A. Description of the circuit

Consider the circuit represented on Fig.1. At the output of
the first mixer (M1), the signals1t is

s1t =
1

2
cos

(

(ω1 + ω2)t+ (θ1t + θ2t )

)

+
1

2
cos

(

(ω1 − ω2)t+ (θ1t − θ2t )

)

.

(5)

The output of the high-pass filter thus removes the low
frequency signal oscillating around(f1 − f2) and keeps the
signal oscillating around(f1 + f2). Beginning at the second
mixer (M2) is a frequency dividing circuit [8] that moves the
signal back to the nominal oscillator frequencyfc. At the
steady state, the output of the second mixer is

s2t =
1

4
cos

(

ω′t+ θ′t

)

cos

(

(ω1 + ω2)t+ (θ1t + θ2t )

)

=
1

8
cos

(

(ω1 + ω2 + ω′)t+ (θ1t + θ2t + θ′)

)

+
1

8
cos

(

(ω1 + ω2 − ω′)t+ (θ1t + θ2t − θ′t)

)

.

(6)

The signal goes through a lowpass filter and an amplifier
scaling it back to half the nominal power output of the
oscillators. Overall, the steady state equation for the system

ω′t+ θ′t = (ω1 + ω2 − ω′)t+ (θ1t + θ2t − θ′t), (7)

from which we deduce

θ′t =
θ1t + θ2t

2
andω′ =

ω1 + ω2

2
. (8)

The highpass filter ramp does not have to be very sharp—in
essence, it has to discriminate between the|f1 + f2| ≈ 2fc
and |f1 − f2| ≈ 0. The value offc is typically large, in
the order of 1–100 GHz is most communication applications.
Similarly, the lowpass filter has to discriminate between4fc
and fc. Regenerative dividers are doable with a very low
amount of phase noise [9]. Assuming good mixers and high-
pass filters, the overall phase noise added by the circuit should
be negligible with respect to the noise processes of the original
oscillators.

B. Theoretical analysis

As seen in (8), the frequency offset of the resulting signal is
the average of the frequency offsets of the original oscillators.
Assuming these frequency offsets are drawn from a random
process with meanfc varianceσ2, the resulting process has
the same mean and half the variance. The resulting variable

frequency offset thus has varianceσ2/2 in our setting. If the
frequency offsets are uniformly distributed infc ± fo, the
resulting random variable follows a Bates distribution with
n = 2 on the same support [10]. If they are assumed normally
distributed, the resulting random variable is also normal with
half the variance.

We make a similar argument for the phase noise process.
The mean of the resulting phase noise process can be com-
puted as

E[θ′t] = E
[

θ1t
]

/2 + E
[

θ2t
]

/2 =
θ10 + θ20

2
= θ′0 (9)

and the process auto-correlation is

E
[

(θ′t1 − θ′0)(θ
′
t2 − θ′0)

]

=

1

4

(

E
[

(θ1t1 − θ10)(θ
1
t2 − θ10)

]

+ E
[

(θ1t1 − θ10)(θ
2
t2 − θ20)

]

+E
[

(θ2t1 − θ20)(θ
1
t2 − θ10)

]

+ E
[

(θ2t1 − θ20)(θ
2
t2 − θ20)

]

)

Since the original phase noise processes are independent, the
cross-correlation terms are null and the resulting processhas
half the auto-correlation of the original one. In all performance
measures, this translates into a 3 dB reduction in the noise
variance and improves the phase stability of the oscillators.
Note at this point that the variance reducing effect is not con-
ditioned on any particular phase noise model and only relies
on independence—or rather lack of correlation—between the
phase noise processes. For processes following the Wiener
model of Sec.II, the auto-correlation of the resulting process
is thus

E
[

(θ′t1 − θ′0)(θ
′
t2 − θ′0)

]

= πβmin(t1, t2). (10)

IV. EXTENDING THE BASIC CIRCUIT

The basic oscillator averaging technique can be applied in
other configurations. In this section we show how to average
more than 2 oscillators by expanding the mixing stage and
going through ann-frequency divider. We also discuss the
possibility of averaging the oscillator with a delayed version
of itself.

A. Averaging an arbitrary number of oscillators

With theoretical components, there is no limit to how many
oscillators we may average in this fashion. As an example,
Fig.2 shows the mixing stage with 4 oscillators. Before the
highpass filtering operation, and considering perfect mixers,
the output would contain 3 terms whose frequency is close to
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ω3t+ θ3t
)
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ω4t+ θ4t
)

HPF 1
8 cos (ωt+ θt)

Fig. 2. Mixing stage designed to average 4 oscillators. At the output,ω =∑
4

i=1
ωi andθt =

∑
4

i=1
θi
t
.

cos (ωt+ θt) LPF

Mul. Amp.

1
2 cos (ω

′t+ θ′t)

Fig. 3. Frequency dividing stage. The Mul. block multipliesthe frequency
by n− 1 [11].

DC, 4 terms close to2fc and one term—the term of interest—
whose frequency is close to4fc. The highpass filter in this case
has to discriminate between2fc and4fc.

In the dividing stage, then-frequency divider shown on
Fig.3 is similar to the circuit presented on Fig.1—with an ad-
ditional frequency multiplier in the feedback loop. Frequency
multipliers and their possible drawbacks are described in detail
in [11]. The goal of the frequency multiplier is to take the
system to the following steady-state equation:

w′ = w − (n− 1)w′ θ′t = θt − (n− 1)θ′t (11)

When the number of oscillators is a power of 2, stacking
standard2-dividers is also an option; it can lead to circuits
with lower phase noise overall [12].

B. Averaging the oscillator with itself

Improvements in phase noise performance may be extracted
even when the original phase noise processes are not indepen-
dent. A typical case consists in averaging an oscillator with
its own output delayed by someδ > 0. Assuming the original
phase noise process decorrelates with time, the performance
of the averaged oscillator should improve asδ increases. Let
the initial phase noise processθt follow the Wiener model of
Sec.II. The averaged process is no longer a Wiener process;
we can characterize the process and its power spectrum as
follows.

Proposition 1. Let φt = (θt + θt−δ)/2 be defined as the
average of two delayed Wiener processes, and letvt = eφt .
The auto-correlation ofvt is

Rv(t, t+ τ) =

{

exp
(

−πβ |τ |
2

)

|τ | < δ

exp
(

−πβ
(

|τ | − δ
2

))

|τ | ≥ δ
(12)

and its PSD function is

Sv(ω) =
exp (−πβδ/2)

(πβ)2 + ω2

(

2πβ cos(ωδ)− 2ω sin(ωδ)
)

−
exp (−πβδ/2)

(πβ/2)2 + ω2

(

πβ cos(ωδ)− 2ω sin(ωδ)
)

+
πβ

(πβ/2)2 + ω2
.

(13)
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Fig. 4. PSD for an oscillator following the Wiener model, theoscillator
averaged with itself as described in Sec. IV-B for differentdelay values. An
average of two such independent oscillators using the circuit described in
Sec.III.

Remark. SinceRv(t, t + τ) does not depend ont, vt is a
stationary process. Whenδ is small, we recover the spectrum
of the original process in (4). Whenδ is large, the exponential
terms vanish and the resulting spectrum corresponds to a
Wiener process with half the variance of the original process.

Proof: We detail the proof in the appendix.

V. PERFORMANCE ANALYSIS

In this section, we apply the results derived in this letter
using practical values for the oscillator phase noise perfor-
mances, e.g. from [2] and [13]. We plot first the PSD for a
phase noise process following the Wiener model in Fig.4; the
basic oscillator used in this example is based on a voltage
controlled oscillators with a wide tuning range—e.g. 0.1–
65.8 GHz in [15]. We show the improvements obtained by
averaging two independent oscillators using our basic circuit
in Sec.III, and an oscillator averaged with delayed version
of itself using the circuit in Sec.IV-B. Since larger delays
decrease the correlation between the phase noise processesat
the output of an oscillator, the performance of the independent
oscillators may be obtained through the delay circuit by using
a very large delay. In both cases and under the Wiener
model, the averaging circuit concentrates the phase noise
oscillations closer to the carrier. The phase noise is thus overall
of lower frequency and thereby easier to track over time
in most communication applications. We see that the delay
circuit distorts the PSD function at higher frequencies, and can
concentrate phase noise effects closer to the carrier depending
on the variance of the original oscillator and the length of the
delay line. Such a behavior is also reproduced on Fig.5, which
shows the PSD over a 5 MHz bandwith. The circuit greatly
reduces the phase noise variance at periodic offsets from the
carrier. This may in turn improve the performance of multi-
carrier systems operating with such oscillators. Increasing the
delay further reduces the period between the drops in Fig.5;
the PSD function slowly tends to the independent case for
larger delays.
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Fig. 5. PSD for an oscillator following the Wiener model overa 5 MHz
bandwith, an average of two such independent oscillators using the circuit
described in Sec.III, and an oscillator averaged with itself with a delay of
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VI. CONCLUSION

In this letter, we described a circuit which averages out
phase noise processes in local oscillators. We showed that this
circuit can be adapted to average multiple oscillators, as well
as delayed versions of the same oscillator. We provided an
analysis of the phase noise process at the output, assuming
that the input oscillators followed the Wiener model described
in Sec.II. In follow-up works, we plan to analyze the practical
performance of such circuits.

In particular, we did not model the impact of non-idealities
in the components on the resulting phase noise process. Am-
plifiers are a major source of both amplitude noise and phase
noise in oscillator designs [16]. Our additional amplifying step
is a frequency divider, and analog frequency dividers lead
to very low additional phase noise [9], [12] On the other
hand, nonlinear mixers can decrease the performance of the
averaging circuit and will leak harmonics of their strongest
mixing modes in practical implementations. This translateinto
frequency images around2fc in our basic circuit. This effect
has been demonstrated in part in [7]. These frequency images
may be strongly reduced by additional filtering steps between
the mixing operations, at the expense of increased amplitude
noise. A comprehensive analysis of the phase noise induced
by mixers and overallN -frequency dividers can be found in
[11] and may provide guidelines to evaluate this trade-off.The
authors of [11] also show that using the frequency dividing
circuit at less-than-maximal amplitude provides additional gain
in phase-noise reduction.

Finally, our analysis of the resulting phase noise process
was also based on the steady-state solution of the system.
In practical systems, the output oscillation will go through a
transient phase before reaching the steady state. The duration
of this transient phase in nonetheless low with state-of-the-art
solutions—the settling time has been measured at less than 10
ns for a similar circuit [14]. Practical implementations are now
necessary to assess whether this hold for the circuit presented
in this work.

APPENDIX

The auto-correlation ofvt is defined as

Rv(t, t+ τ) = E

[

e
1
2
(θt−θt+τ+θt−δ−θt+τ−δ)

]

. (14)

For Wiener processes,θt − θt+τ follows a Gaussian distri-
bution [1]. Here w compare two instances of the process on
different time spans:[t, t+ τ ] and [t− δ, t− δ + τ ]. Assume
first thatτ > 0.

a) If τ < δ: the process instances in the time spans
[t, t + τ ] and [t − δ, t− δ + τ ] are independent. In this case,
we haveRv(t, t+ τ) = E

[

e(T1+T2)
]

, whereT1 andT2 are 2
independent zero-mean Gaussian random variables both with
variancesπβτ/2. IdentifyingRv(t, t+ τ) as the characteristic
function of a Gaussian random variable, we can write that
Rv(t, t+ τ) = exp(− 1

2πβτ) whenτ < δ.
b) If τ ≥ δ: the process instances are not independent

and they partly overlap. The process instances in the time
spans[t − δ, t] and [t + τ − δ, t + τ ] are independent; the
process instances in the time span[t, t+τ−δ] on the other hand
are identical. In this case,Rv(t, t + τ) = E

[

e(T1+T2+2T3)
]

whereT1, T2 and T3 are zero-mean, independent Gaussian
random variables representing the aforementioned process
instances. BothT1 and T2 have varianceπβδ/2; T3 has
variance πβ(τ − δ)/2. As before, we can conclude that
Rv(t, t + τ) = exp

(

−πβ
(

τ − δ
2

))

when τ ≥ δ. The proof
follows along the same lines whenτ < 0. The auto-correlation
is thus written as in (12).

We now derive the PSD. Since the process is stationary, we
can drop the time variable and writeRv(t, t + τ) asRv(τ).
The PSD is then

Sv(ω) =

∫ ∞

−∞

Rv(τ)e
ωτdτ (15)

The integral can be split in 4 parts, as in

Sv(ω) =

∫ −δ

−∞

eπβ(τ+δ/2)e−ωτdτ +

∫ 0

−δ

eπβτ/2e−ωτdτ

+

∫ δ

0

e−πβτ/2e−ωτdτ +

∫ ∞

δ

e−πβ(τ−δ/2)e−ωτdτ.

Each integral can be solved analytically, leading to

Sv(ω) =
eδπβ/2

πβ − ω
e−δ(πβ−ω) +

1− e−δ(πβ/2−ω)

πβ/2− ω

+
1− e−δ(πβ/2+ω)

πβ/2 + ω
+

eδπβ/2

πβ + ω
e−δ(πβ+ω)

Now, through basic Euler angle relations, we can group the
relevant terms two-by-two and simplify them as

eδπβ/2

πβ − ω
e−δ(πβ−ω) +

eδπβ/2

πβ + ω
e−δ(πβ+ω)

=
e−δπβ/2

(πβ)2 + ω2

(

πβ
(

eωδ + e−ωδ
)

+ ω
(

eωδ − e−ωδ
)

)

=
e−δπβ/2

(πβ)2 + ω2

(

2πβ cos(ωδ)− 2ω sin(ωδ)

)

Proceeding similarly for the remaining terms and summing
them results in (12).
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