
TC 

Département Télécommunications 
Services & Usages 

Programmation Réseau et  

Système 

        3TC 

 
 

        PRS 

       



2 

 

 

 

PRS 

• Equipe pédagogique 
• Responsable de cours: Razvan Stanica 
• Intervenants TP: Oana Iova, Frédéric Le Mouel, 
Philippe Isorce, Mihai Popescu 

• Objectif 
• Faire le lien entre « réseaux » et « programmation » 
• Comprendre le rôle et le fonctionnement de la 
couche transport 
• Première utilisation de l’API Sockets  



3 

 

 

 

PRS 

• Structure du cours 
• 4h de cours (rappels TCP et API Sockets) 
• 2h de TD (fonctionnement TCP) 
• 8h de TP « guidé » sur l’API Sockets 
• 16h de TP sur les mécanismes TCP 
• 12h de projet – Implantation d’une couche transport 
pour un scénario donné 

• Evaluation 
• 2 TPs notés (API Sockets) 
• points bonus/malus pour les autres TPs 
• présentation du projet 
• tests du projet 



TC 

Département Télécommunications 
Services & Usages 

Transmission Control  

Protocol 

        3TC 

 
 

        PRS 

       



5 

 

 

 

TCP 

• TCP = Transmission Control Protocol 
• Basic concepts already discussed in 3TC NET  

• Pre-requisites for PRS 
• TCP header format 
• Connection management 
• TCP state machine 

• PRS objective: TCP congestion control 



6 

 

 

 

TCP 

• TCP Congestion Control 
• Slow Start 
• Congestion Avoidance 
• Fast Retransmit 
• Fast Recovery 
• Selective Acknowledgements 

• Standardized mechanisms 
• Original TCP – RFC 793 
• Additional mechanisms – RFC 1122, RFC 2581, RFC 5681 
 



7 

 

 

 

TCP 

• End-to-End Argument 
• Represents the philosophy behind TCP (and behind 
Internet) 
• Data flow rate is controlled by end hosts 
• The network does not provide any congestion or flow 
control support  

• Flow Control 
• Manage the data rate at the transmitter in order to 
not overwhelm a slower receiver 

• Congestion Control 
• Manage transmission rate in order to avoid network 
congestion collapse  



8 

 

 

 

TCP 

• TCP Vocabulary 
• Segment = the TCP payload data unit (different from 
“message”, “packet”, or “frame”) 
• Maximum Segment Size = the size of the largest 
segment that can be transmitted/received. The result 
of a negotiation between end hosts 
• Receiver Window (rwnd or awnd) = the number of 
segments a host can receive at a given moment. Used 
for flow control purposes 
• Congestion Window (cwnd) = a maximum number of 
segments that can be transmitted by a host, decided 
by congestion control mechanisms 



9 

 

 

 

TCP 

• Basic transmission principle 
• At any given time, a TCP host must not transmit a 
segment with a sequence number higher than the 
sum of the highest acknowledged sequence number 
and the minimum of cwnd and rwnd 

• Important metric 
• Round-Trip Time (RTT): the time between the 
transmission of the segment and the reception of the 
ACK. RTT can vary significantly during network 
operation, so TCP keeps an updated estimated value  



10 

 

 

 

TCP 

• Congestion detection 
• Based on the assumption that a segment lost in the 
network is the result of congestion 
• A sender starts a timer (based on its RTT estimate) 
every time it transmits a segment 
• If an ACK from the destination is not received before 
the timeout, a loss is detected 

• FlightSize 
• The amount of data that has been sent, but not yet 
acknowledged 
• A common mistake is to consider FlightSize=cwnd  



11 

 

 

 

TCP 

• Duplicate ACKs 
• In normal operation, a receiver is not allowed to 
acknowledge discontiguous segments 
• The reception of an out-of-order segment results in 
the acknowledgement of the last contiguous segment 
(a duplicate ACK) 
 

78 79 80 81 ACK 
78 

ACK 
78 

79 81 80 ACK 
79 

ACK 
80 

ACK 
81 



12 

 

 

 

TCP 

• Slow Start 
• Motivation: the end hosts do not know the state of 
the network at the beginning of their connection 
• Start with cwnd= 1 
• For every received ACK: cwnd= cwnd+ 1 
• Practically, cwnd doubles during an RTT interval 
• Despite its name, exponential increase of cwnd 
 



13 

 

 

 

TCP 

• Slow Start Threshold (ssthresh) 
• Important TCP parameter 
• Decides the moment when the host goes from Slow 
Start to Congestion Avoidance 
• Arbitrary initial value (usually very high) 
• ssthresh must follow the congestion level 
• After a lost segment (detected through a timeout or 
duplicate ACK): ssthresh= FlightSize/2 
• After the retransmission: cwnd= 1 
 
 



14 

 

 

 

TCP 

• Congestion Avoidance 
• The TCP host enters in this mode when  
cwnd > ssthresh 
• cwnd= cwnd+ 1/cwnd 
• For each RTT: cwnd= cwnd+ 1 
  



15 

 

 

 

TCP 

• Congestion Avoidance 
• Motivation: the exponential increase of Slow Start is 
too aggressive 
• Once a congestion has been detected, the 
transmitter tries to avoid reaching the congested state 
once again 
• A static approach can miss the opportunity of an 
increased throughput 
• The slow cwnd increase can delay the next 
congestion, while still testing for transmission 
opportunities  
  



16 

 

 

 

TCP 

• Fast Retransmit 
• A timeout is a clear indication of network congestion, 
but can be very long 
• A duplicate ACK can have different reasons: 
congestion, segments following different paths, re-
ordered ACKs 
• Considering a segment lost after the first duplicate 
ACK is too aggressive 
• TCP considers a segment lost after 3 duplicate ACKs 
(that means 4 consecutive ACKs of the same segment) 



17 

 

 

 

TCP 

• Fast Retransmit 
• The usual operation mode 
• Retransmit lost message 
• Calculate FlightSize= min(rwnd,cwnd) 
• ssthresh= FlightSize/2 
• Enter Slow Start: cwnd= 1 



18 

 

 

 

TCP 

• Fast Retransmit 
• This mechanism generally eliminates half of the TCP 
timeouts 
• This yields roughly a 20% increase in throughput 
• It does not work when the transmission window is 
too small to allow the reception of three duplicate 
ACKs 



19 

 

 

 

TCP 

• Fast Recovery 
• The reception of duplicate ACKs also means that 
network connectivity exists, despite a lost segment 
• Entering Slow Start is not optimal in this case, as the 
congested state might have disappeared 
• The mechanism allows for higher throughput in case 
of moderate congestion 
• Complement of Fast Retransmit 



20 

 

 

 

TCP 

• Fast Recovery 
• Mode entered after 3 duplicate ACKs 
• As usual, set ssthresh= FlightSize/2 
• Retransmit lost packet 
• Window inflation: cwnd= ssthresh+ ndup (number of 
duplicate ACKs received) 
• This allows the transmission of new segments 
• Window deflation: after the reception of the missing 
ACK (one RTT later) 
• Skip Slow Start, enter Congestion Avoidance 



21 

 

 

 

TCP 

• Typical TCP Saw-tooth Pattern  



22 

 

 

 

TCP 

• Selective Acknowledgements 
• The receiver can only acknowledge contiguous 
segments 
• No ACK for segments correctly received after a lost 
segments 
• The sender has no feed-back regarding correctly 
received segments: retransmit or not? 
• Ideally, the sender should retransmit only the 
missing segments 
• With SACK, the receiver provides this feed-back to 
the sender  



23 

 

 

 

TCP 

• Delayed ACK 
• RFC 1122 
• Reduce overhead by combining multiple ACKs in one 
segment 
• Delay an ACK by up to 500 ms 
• For a stream of full-sized incoming segments, an ACK 
is sent every second segment 
• Can be interesting for piggy-backing: data and ACK in 
the same segment 



24 

 

 

 

TCP 

• Nagle’s algorithm 
• RFC 896 
• Small packet problem 
• Combine small outgoing data and send one single 
segment 
• If segment with un-received ACK, keep buffering 
output data until a full size segment can be sent 
• Poor interaction with delayed ACKs  



25 

 

 

 

TCP 

• TCP Versions 
• TCP Tahoe: Slow Start, Congestion Avoidance, Fast 
Retransmit 
• TCP Reno: Fast Recovery 
• TCP New Reno: Modified Fast Recovery (window 
inflation) 
• Many other proposals exist: Vegas, Hybla, BIC, 
Westwood, … 



26 

 

 

 

TCP 

• TCP Cubic 
• Current state of the art 
• Window size no longer controlled by received ACKs 
• cwnd computed as a cubic function of time since the 
last congestion 
• Three phases: 

• aggressive increase until ssthresh (similar to slow 
start) 
• slow probing for higher window 
• aggressive probing for higher window 



27 

 

 

 

TCP 

• Beyond the End-to-End Argument 
• The way routers decide to drop packets impacts the 
functioning of TCP 
• Advanced techniques can be implemented inside the 
network 

• Random Early Detection 
• RED manages router queues and drops packets 
based on a queue threshold 
• Once the queue is over the threshold, the router 
drops packets with a certain facility 
• Only the affected TCP senders will enter Slow Start or 
Congestion Avoidance, slowing the network down 
before the actual congestion   



28 

 

 

 

TCP 

• Explicit Congestion Notification 
• ECN is based on a queue threshold parameter, just as 
RED 
• As opposed to RED, ECN only marks packets instead 
of dropping them 
• Routers mark 2 bits in the IP header (Type of Service 
field) to signal whether congestion is occurring 
• Through cross-layer mechanisms, TCP can learn this 
information and reduce the congestion window 
• ECN avoids packet drops and reduces the delay 
created by retransmissions 



29 

 

 

 

TCP 

• QUIC – Quick UDP Internet Connections 
• User space implementation of a transport protocol 
• Released by Google in 2013 
• From January 2017, implemented in the Chrome 
browser and the Google Search and You Tube 
applications 
• Currently transports between 5% and 10% of the 
Internet traffic 
• 5% reduction in search time 
• 15% reduction in video rebuffering  



30 

 

 

 

TCP 

• QUIC – Motivations 
• Classic functioning: HTTP/2 – TLS – TCP 
• Transport Layer Security (TLS) – extra overhead 
• Data transmitted after 2xRTT  



31 

 

 

 

TCP 

• QUIC – Principles 
• Save the context of already known servers/clients 
• Results in 0-RTT connection in 85% of the cases 



32 

 

 

 

TCP 

• QUIC – Principles 
• Multiple streams transmitted over the same 
connection (similar mechanisms in TCP) 
• Streams are controlled both independently (flow 
controlled) and per connection 
• A large part of the transport layer information is 
encrypted 
• Unique identifier, even for retransmissions, easing 
RTT estimation 
• TCP congestion control mechanisms 



33 

 

 

 

TCP 

• QUIC – Problems 
• Not always better performance than TCP (e.g. when 
a lot of packets are delivered in disorder) 
• 2x CPU consumption compared with TCP 
• TCP unfriendly 
 



34 

 

 

 

TCP 

• Implementation 
• At the transport layer, an active application is 
identified by the 5-tuple: (protocol, @IPsource, Portsource, 
@IPdest, Portdest)  

 

• A client needs to know @IPserver and Portserver in order 
to send a connection request 
 
• The Portclient can be allocated dynamically by the 
operating system 



35 

 

 

 

TCP 

• Socket 
• Application programming interface (API) for 
communication between processes  
• When processes are run on different machines, a 
socket becomes the basis of network communications 
• Support for both TCP and UDP 
• Bidirectional communication using functions such as 
read()/write() or send()/recv() 
• A socket is represented as a file handler in Unix 
systems 
 



36 

 

 

 

TCP 

• Socket API 
• A series of libraries 
 

• sys/socket.h – core socket functions and data 
structures 
• netinet/in.h – IP, TCP and UDP data structures 
• sys/un.h – data structures for local 
communications 
• arpa/inet.h – functions for manipulating IP 
addresses  
• netdb.h – functions for translating protocol and 
host names 

 



37 

 

 

 

TCP 

• Socket API 
• A series of functions 

• socket() 
• bind() 
• listen() 
• connect() 
• accept() 
• send() / write() 
• recv() / read() 
• close() 
• select() 
• poll() 



38 

 

 

 

TCP 

• TCP communication 



39 

 

 

 

TCP 

• UDP communication 


