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PRS 

• Equipe pédagogique 
• Responsable de cours: Razvan Stanica 
• Intervenants TP: Oana Iova, Frédéric Le Mouel, 
Philippe Isorce, Mihai Popescu 

• Objectif 
• Faire le lien entre « réseaux » et « programmation » 
• Comprendre le rôle et le fonctionnement de la 
couche transport 
• Première utilisation de l’API Sockets  
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PRS 

• Structure du cours 
• 4h de cours (rappels TCP et API Sockets) 
• 2h de TD (fonctionnement TCP) 
• 8h de TP « guidé » sur l’API Sockets 
• 16h de TP sur les mécanismes TCP 
• 12h de projet – Implantation d’une couche transport 
pour un scénario donné 

• Evaluation 
• 2 TPs notés (API Sockets) 
• points bonus/malus pour les autres TPs 
• présentation du projet 
• tests du projet 
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TCP 

• TCP = Transmission Control Protocol 
• Basic concepts already discussed in 3TC NET  

• Pre-requisites for PRS 
• TCP header format 
• Connection management 
• TCP state machine 

• PRS objective: TCP congestion control 
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TCP 

• TCP Congestion Control 
• Slow Start 
• Congestion Avoidance 
• Fast Retransmit 
• Fast Recovery 
• Selective Acknowledgements 

• Standardized mechanisms 
• Original TCP – RFC 793 
• Additional mechanisms – RFC 1122, RFC 2581, RFC 5681 
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TCP 

• End-to-End Argument 
• Represents the philosophy behind TCP (and behind 
Internet) 
• Data flow rate is controlled by end hosts 
• The network does not provide any congestion or flow 
control support  

• Flow Control 
• Manage the data rate at the transmitter in order to 
not overwhelm a slower receiver 

• Congestion Control 
• Manage transmission rate in order to avoid network 
congestion collapse  
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TCP 

• TCP Vocabulary 
• Segment = the TCP payload data unit (different from 
“message”, “packet”, or “frame”) 
• Maximum Segment Size = the size of the largest 
segment that can be transmitted/received. The result 
of a negotiation between end hosts 
• Receiver Window (rwnd or awnd) = the number of 
segments a host can receive at a given moment. Used 
for flow control purposes 
• Congestion Window (cwnd) = a maximum number of 
segments that can be transmitted by a host, decided 
by congestion control mechanisms 
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TCP 

• Basic transmission principle 
• At any given time, a TCP host must not transmit a 
segment with a sequence number higher than the 
sum of the highest acknowledged sequence number 
and the minimum of cwnd and rwnd 

• Important metric 
• Round-Trip Time (RTT): the time between the 
transmission of the segment and the reception of the 
ACK. RTT can vary significantly during network 
operation, so TCP keeps an updated estimated value  
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TCP 

• Congestion detection 
• Based on the assumption that a segment lost in the 
network is the result of congestion 
• A sender starts a timer (based on its RTT estimate) 
every time it transmits a segment 
• If an ACK from the destination is not received before 
the timeout, a loss is detected 

• FlightSize 
• The amount of data that has been sent, but not yet 
acknowledged 
• A common mistake is to consider FlightSize=cwnd  
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TCP 

• Duplicate ACKs 
• In normal operation, a receiver is not allowed to 
acknowledge discontiguous segments 
• The reception of an out-of-order segment results in 
the acknowledgement of the last contiguous segment 
(a duplicate ACK) 
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TCP 

• Slow Start 
• Motivation: the end hosts do not know the state of 
the network at the beginning of their connection 
• Start with cwnd= 1 
• For every received ACK: cwnd= cwnd+ 1 
• Practically, cwnd doubles during an RTT interval 
• Despite its name, exponential increase of cwnd 
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TCP 

• Slow Start Threshold (ssthresh) 
• Important TCP parameter 
• Decides the moment when the host goes from Slow 
Start to Congestion Avoidance 
• Arbitrary initial value (usually very high) 
• ssthresh must follow the congestion level 
• After a lost segment (detected through a timeout or 
duplicate ACK): ssthresh= FlightSize/2 
• After the retransmission: cwnd= 1 
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TCP 

• Congestion Avoidance 
• The TCP host enters in this mode when  
cwnd > ssthresh 
• cwnd= cwnd+ 1/cwnd 
• For each RTT: cwnd= cwnd+ 1 
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TCP 

• Congestion Avoidance 
• Motivation: the exponential increase of Slow Start is 
too aggressive 
• Once a congestion has been detected, the 
transmitter tries to avoid reaching the congested state 
once again 
• A static approach can miss the opportunity of an 
increased throughput 
• The slow cwnd increase can delay the next 
congestion, while still testing for transmission 
opportunities  
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TCP 

• Fast Retransmit 
• A timeout is a clear indication of network congestion, 
but can be very long 
• A duplicate ACK can have different reasons: 
congestion, segments following different paths, re-
ordered ACKs 
• Considering a segment lost after the first duplicate 
ACK is too aggressive 
• TCP considers a segment lost after 3 duplicate ACKs 
(that means 4 consecutive ACKs of the same segment) 
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TCP 

• Fast Retransmit 
• The usual operation mode 
• Retransmit lost message 
• Calculate FlightSize= min(rwnd,cwnd) 
• ssthresh= FlightSize/2 
• Enter Slow Start: cwnd= 1 
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TCP 

• Fast Retransmit 
• This mechanism generally eliminates half of the TCP 
timeouts 
• This yields roughly a 20% increase in throughput 
• It does not work when the transmission window is 
too small to allow the reception of three duplicate 
ACKs 
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TCP 

• Fast Recovery 
• The reception of duplicate ACKs also means that 
network connectivity exists, despite a lost segment 
• Entering Slow Start is not optimal in this case, as the 
congested state might have disappeared 
• The mechanism allows for higher throughput in case 
of moderate congestion 
• Complement of Fast Retransmit 
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TCP 

• Fast Recovery 
• Mode entered after 3 duplicate ACKs 
• As usual, set ssthresh= FlightSize/2 
• Retransmit lost packet 
• Window inflation: cwnd= ssthresh+ ndup (number of 
duplicate ACKs received) 
• This allows the transmission of new segments 
• Window deflation: after the reception of the missing 
ACK (one RTT later) 
• Skip Slow Start, enter Congestion Avoidance 
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TCP 

• Typical TCP Saw-tooth Pattern  
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TCP 

• Selective Acknowledgements 
• The receiver can only acknowledge contiguous 
segments 
• No ACK for segments correctly received after a lost 
segments 
• The sender has no feed-back regarding correctly 
received segments: retransmit or not? 
• Ideally, the sender should retransmit only the 
missing segments 
• With SACK, the receiver provides this feed-back to 
the sender  
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TCP 

• Delayed ACK 
• RFC 1122 
• Reduce overhead by combining multiple ACKs in one 
segment 
• Delay an ACK by up to 500 ms 
• For a stream of full-sized incoming segments, an ACK 
is sent every second segment 
• Can be interesting for piggy-backing: data and ACK in 
the same segment 
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TCP 

• Nagle’s algorithm 
• RFC 896 
• Small packet problem 
• Combine small outgoing data and send one single 
segment 
• If segment with un-received ACK, keep buffering 
output data until a full size segment can be sent 
• Poor interaction with delayed ACKs  
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TCP 

• TCP Versions 
• TCP Tahoe: Slow Start, Congestion Avoidance, Fast 
Retransmit 
• TCP Reno: Fast Recovery 
• TCP New Reno: Modified Fast Recovery (window 
inflation) 
• Many other proposals exist: Vegas, Hybla, BIC, 
Westwood, … 
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TCP 

• TCP Cubic 
• Current state of the art 
• Window size no longer controlled by received ACKs 
• cwnd computed as a cubic function of time since the 
last congestion 
• Three phases: 

• aggressive increase until ssthresh (similar to slow 
start) 
• slow probing for higher window 
• aggressive probing for higher window 
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TCP 

• Beyond the End-to-End Argument 
• The way routers decide to drop packets impacts the 
functioning of TCP 
• Advanced techniques can be implemented inside the 
network 

• Random Early Detection 
• RED manages router queues and drops packets 
based on a queue threshold 
• Once the queue is over the threshold, the router 
drops packets with a certain facility 
• Only the affected TCP senders will enter Slow Start or 
Congestion Avoidance, slowing the network down 
before the actual congestion   
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TCP 

• Explicit Congestion Notification 
• ECN is based on a queue threshold parameter, just as 
RED 
• As opposed to RED, ECN only marks packets instead 
of dropping them 
• Routers mark 2 bits in the IP header (Type of Service 
field) to signal whether congestion is occurring 
• Through cross-layer mechanisms, TCP can learn this 
information and reduce the congestion window 
• ECN avoids packet drops and reduces the delay 
created by retransmissions 
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TCP 

• QUIC – Quick UDP Internet Connections 
• User space implementation of a transport protocol 
• Released by Google in 2013 
• From January 2017, implemented in the Chrome 
browser and the Google Search and You Tube 
applications 
• Currently transports between 5% and 10% of the 
Internet traffic 
• 5% reduction in search time 
• 15% reduction in video rebuffering  
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TCP 

• QUIC – Motivations 
• Classic functioning: HTTP/2 – TLS – TCP 
• Transport Layer Security (TLS) – extra overhead 
• Data transmitted after 2xRTT  
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TCP 

• QUIC – Principles 
• Save the context of already known servers/clients 
• Results in 0-RTT connection in 85% of the cases 
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TCP 

• QUIC – Principles 
• Multiple streams transmitted over the same 
connection (similar mechanisms in TCP) 
• Streams are controlled both independently (flow 
controlled) and per connection 
• A large part of the transport layer information is 
encrypted 
• Unique identifier, even for retransmissions, easing 
RTT estimation 
• TCP congestion control mechanisms 
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TCP 

• QUIC – Problems 
• Not always better performance than TCP (e.g. when 
a lot of packets are delivered in disorder) 
• 2x CPU consumption compared with TCP 
• TCP unfriendly 
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TCP 

• Implementation 
• At the transport layer, an active application is 
identified by the 5-tuple: (protocol, @IPsource, Portsource, 
@IPdest, Portdest)  

 

• A client needs to know @IPserver and Portserver in order 
to send a connection request 
 
• The Portclient can be allocated dynamically by the 
operating system 
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TCP 

• Socket 
• Application programming interface (API) for 
communication between processes  
• When processes are run on different machines, a 
socket becomes the basis of network communications 
• Support for both TCP and UDP 
• Bidirectional communication using functions such as 
read()/write() or send()/recv() 
• A socket is represented as a file handler in Unix 
systems 
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TCP 

• Socket API 
• A series of libraries 
 

• sys/socket.h – core socket functions and data 
structures 
• netinet/in.h – IP, TCP and UDP data structures 
• sys/un.h – data structures for local 
communications 
• arpa/inet.h – functions for manipulating IP 
addresses  
• netdb.h – functions for translating protocol and 
host names 
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TCP 

• Socket API 
• A series of functions 

• socket() 
• bind() 
• listen() 
• connect() 
• accept() 
• send() / write() 
• recv() / read() 
• close() 
• select() 
• poll() 
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TCP 

• TCP communication 
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TCP 

• UDP communication 


