

IST Semester

Networks - Part 1 -

CSMA/CA and IEEE 802.11

Département Télécommunications Services & Usages

CSMA/CA and IEEE 802.11

Speaker

- Razvan Stanica
- http://perso.citi.insa-lyon.fr/rstanica/IST-NET-WiFi.pdf

• Lab

- **CITI** [Centre of Innovation in Telecommunications and Integration of services]
- INRIA UrbaNet team

Research

- Mobile networking
- Medium access control in wireless networks
- Intelligent transportation systems

CSMA/CA and IEEE 802.11

- The plan for today
 - What makes wireless so special?
 - Carrier Sense Multiple Access with Collision Avoidance – Why? How?
 - What else is in IEEE 802.11?

Basic concepts: Networking

Basic concepts: Networking

Wireless simply means that there are no wires at the PHY layer

Basic concepts: PHY Layer

Performed Services

- Standardized mechanical and electrical interfaces
- Signal processing (equalization, training sequences)
- Coding (channel, line)
- Modulation (adding information to the EM wave)
- Carrier sense, collision detection (when possible)

Basic concepts: Wireless

EM frequency spectrum

Basic concepts: Wireless

Where wireless communication happens

Basic concepts: Wireless Spectrum

Name	f	λλ	Usage			
Low Frequency	30 KHz] 10 Km [Aeronautical & maritime navigation, metereology			
Medium Frequency	300 KHz	1 Km	AM radio			
High Frequency	3 MHz	100 m	Amateur radio (Morse code), marine, aviation, military			
Very High Frequency	30 MHz	10 m	FM radio			
Ultra High Frequency	300 MHz	1 m	Television, Cellular networks, WiFi			
Super High Frequency	3 GHz	10 cm	WiFi, Satellite transmission, Bluetooth, Wireless USB			
Extremely High Frequency	30 GHz	1 cm	Radar, Satellite sensing, Wireless HD, WiFi(?)			
Infrared	300 GHz	1 mm	Lasers, LEDs, Free Space Optical Communication			

Basic concepts: Wireless Propagation

- Everything you know from EM physics
 - Free space attenuation $P_r \sim P_t \left(\frac{\lambda}{R}\right)^2$

Basic concepts: Wireless Propagation

• As a result of the complex RF propagation, the **strength** of the received signal is highly irregular

Basic concepts: MAC layer

The topic of this class is medium access control (a part of the data link layer)

Basic concepts: MAC layer

- Why do we need a course for a sub-layer?
 - The MAC protocol decides who transmits at a given time and space
 - The number of different protocols is impressive: TDMA, CDMA, OFDMA, Token Bus, Token Ring, Aloha, etc.
 - This class is focused on Carrier Sense Multiple Access (but not 100%)

CSMA: The principle

- Listen before you talk
 - Every station senses the channel for a certain time before transmitting
 - If the channel is idle, transmission goes on
 - If the channel if busy, wait and:
 - send as soon as it becomes idle (1-persistent)
 - choose a random back-off and try again (non-persistent)
 - send with probability p when idle (p-persistent)

CSMA: The flavours

- Two major branches of protocols
 - CSMA with Collision Detection (CSMA/CD). You saw it (this morning?) in Ethernet.
 - CSMA with Collision Avoidance (CSMA/CA). Used in WiFi and ZigBee.

- How does it work?
 - It's CSMA, so we listen before we talk.
 - The CD part explains what happens when two stations start transmitting at the same time.
 - The collision detected procedure:
 - keep transmitting a jamming signal for one slot. This way everybody detects the collision.
- check if you are allowed to retransmit b= rand(0,CW-1) (retransmission limit).

CWmin=1

- double the contention window and back-off.

• How does it work?

- Ethernet uses a wired PHY
- Small signal attenuation
- Collision is detected from the first slot (5.12 μ s)

• How does it work?

Station A	i			
Station B	i			
Station C	i			

• How does it work?

Station A	i	x		
Station B	i	x		
Station C	i			

• How does it work?

Station A	i	x		
Station B	i	x		
Station C	i			

- b(A)=0, b(B)=0
- b(A)=0, b(B)=1
- b(A)=1, b(B)=0
- b(A)=1, b(B)=1

• How does it work?

Station A	i	x	x		
Station B	i	x			
Station C	i				

 On Ethernet, a small back-off can solve collisions quickly with high probability

- Works great on Ethernet. Why not use it on WiFi?
 - Wired

signal power

Wireless – no CD while transmitting!

CSMA/CA: The origins

Wireless needs something different

- Aloha
 - AlohaNet: first wireless packet network ('70s)
 - no carrier sense, just transmit
 - no ACK message means back-off
- Slotted Aloha
 - stations are synchronized
 - transmissions can only start at the beginning of a slot

CSMA/CA: The origins

Wireless needs something different

- Aloha is not efficient too many collisions as the load increases.
- The idea of using missing ACKs to schedule retransmissions is valid (and used in CSMA/CA).

 However, missing ACKs are not collision detection. They are just a mechanism for error control – Automatic Repeat reQuest (ARQ)

CSMA/CA: The origins

Wireless needs something different

- CSMA/CA appears in the '80s, originally as a MAC protocol in the Apple LocalTalk network.
- It becomes the basis of the IEEE 802.11 standard, a.k.a. WiFi.
- It is the most successful wireless communications technology up to date.

A station that wants to transmit

- Listen the channel (carrier sense)
- If channel is idle, transmit
- If channel is busy, choose a random back-off
- During back-off, time becomes slotted
- If a slot is idle, decrement the back-off timer
- If a slot is busy, freeze the back-off timer
- When the timer reaches 0, transmit
- If no ACK message is received, double the contention window and restart the procedure

b= rand(0,CW-1)

CWmin= **32**

A station that wants to transmit

- Listen the channel (carrier sense)
- If channel is idle, transmit
- If channel is busy, choose a random back on
- During back-off, time becomes slotted
- If a slot is idle, decrement the back-off timer
- If a slot is busy, freeze the back-off timer
- When the timer reaches 0, transmit
- If no ACK message is received, double the contention window and restart the procedure

CW_{min}= 32

b = rand(0 CW-1)

Why does it work?

• The relatively high value for CW is essential.

Station A	i			
Station B	i			
Station C				

Why does it work?

i= idle, t= transmission,W= wait for ACK,x= collision detected

• The relatively high value for CW is essential.

Station A	i	t	t	t	t	t	w	w	Х	
Station B	i	t	t	t	t	t	w	W	х	
Station C										

- On Ethernet, a collision was detected in maximum 5.12 μs
- On WiFi, a missing ACK (not necessarily a collision), is detected after several ms

Why does it work?

i= idle, t= transmission,w= wait for ACK,x= collision detected

• The relatively high value for CW is essential.

Station A	i	t	t	t	t	t	w	W	Х	
Station B	i	t	t	t	t	t	w	W	х	
Station C										

- Using CW_{min}, on CSMA/CD we have a 50% probability for another collision.
- Using CW_{min}, on CSMA/CA we have a 3,125% probability for another collision.

CSMA/CA: The problems

Great, this solves everything!

• Not exactly: hidden terminals

and
cannot
hear each other

Common scenarios

- sends DATA to
- wants to access the channel but hears the DATA from
- waits the end of DATA, then senses the channel idle and transmits
- collision between DATA and ACK

- sends DATA to
- wants to access the channel and senses it idle and transmits
- collision between DATA and DATA

CSMA/CA: The problems

• The RTS/CTS handshake

- The collision probability between hidden nodes increases with the size of the messages
- The idea: use two short control messages to reserve the medium: Request-to-Send (RTS) and Clear-to-Send (CTS)

 RTS and CTS contain information about the duration of the following transmission (DATA+ACK)

CSMA/CA: The problems

The RTS/CTS handshake

The RTS/CTS handshake is also known as virtual carrier sense.

IEEE 802.11: The beginnings

Wi Fi)

 In 1985, the US Federal Communications Commission (FCC) created the Industrial, Scientific and Medical band (ISM) for non-licensed applications (2,4GHz)

- In 1990 the IEEE establishes the 802.11 committee
- The IEEE 802.11 standard was finalized in 1997 and became the de-facto standard for WLAN

IEEE 802.11: Evolutions

- Higher data rate: 11 Mbps (b), 54 Mbps (g), 100+ Mbps (n) 500+ Mbps (ac)
- Use of different frequencies (a 5GHz, ad 60GHz)
- Use of multiple antennas (n, ac)
- Integrating Quality of Service (e)
- Dedicated environments: mesh (s), vehicular (p)
- Security enhancements (i)

Wi Fi)

IEEE 802.11: Introduction

BSS association

- Scanning STA looks for (chooses) an AP nearby
 - · Passive: just wait for the periodic AP beacon
 - Active: probe APs for beacons
- Authentication STA proves to have access
 - Open: skip this phase
 - Secure: challenge by the AP, the STA needs to have a shared key to respond correctly
- Association STA enters the BSS
 - STA -> AP: association request
 - AP -> STA: association response
 - AP informs old AP via the DS in case of roaming

IEEE 802.11: Introduction

802.11 is not only about the MAC

IEEE 802.11: PHY Basics

Modulation – gives us the data rate

- To decode a more complex modulation, we need a higher signal strength
- Trade-off between data rate and transmission range

CSMA/CA implementation = Distributed Coordination Function (DCF)

- four types of InterFrame Space (IFS)
 - Short InterFrame Space (SIFS) used to separate transmissions belonging to a same dialogue (before a CTS or an ACK)
 - Point coordination InterFrame Space (PIFS) for data in the contention-free period (see later), to preempt any contention-based traffic
 - Distributed InterFrame Space (DIFS) standard IFS, used to separate transmissions of different dialogues
 - Extended InterFrame Space (EIFS) used by a station that received an erroneous frame
- SIFS < PIFS < DIFS < EIFS

Scenarios

Scenarios

Scenarios

- NAV = Network Allocation Vector = Virtual Carrier Sense
- The RTS/CTS handshake is optional in IEEE 802.11

Broadcast messages

- Broadcast= one transmitter, multiple receivers
- If all receivers transmit CTS or ACK after SIFS, collisions are unavoidable
- Broadcast messages are transmitted only once using the minimum CW, and their transmission is unreliable (no ACK)

 Why do we still get collisions with Collision Avoidance?

- CA mitigates collisions, but it does not eliminate them
- The collision probability depends on
 - the number of contending stations
 - the size of the contention window
- A higher CW reduces the collision probability, but increases the delay introduced by back-off

- The DCF is:
 - A very strong MAC protocol in the context of a WLAN (an AP and 10-20 stations)
 - The most successful wireless technology in the world
 - The cheapest wireless technology on the market

- But the DCF is too:
 - Only a MAC layer solution among others (cellular networks use CDMA or OFDMA)
 - A mediocre protocol when mobility is considered
 - · An unusable technology under high node density

- But the DCF is too:
 - Only a MAC layer solution among others (cellular networks use CDMA or OFDMA)
 - A mediocre protocol when mobility is considered
 - · An unusable technology under high node density

An example – multi-hop networks

exposed terminal – a tremendous reduction in throughput

- sends RTS to
- sends CTS to
- receives RTS from

 and refrain from transmitting to
 ...but transmission from
 to
 would not cause a collision!

- There is more than DCF in IEEE 802.11
 - Point Coordination Function (PCF)
 - Contention-Free frame transfer protocol
 - Based on polling made by the access point
 - Coexists with DCF

How does PCF work?

IEEE 802.11: Frame Format

• The 802.11 frame

Preamble PLCP

MAC Data

• The MAC Data

Frame Control	Duration	Address1	Address2	Address3	Sequence Control	Address4	Frame Body	CRC
------------------	----------	----------	----------	----------	---------------------	----------	---------------	-----

CRC

IEEE 802.11: Frame Format

- Why do we need 4 addresses?
 - The Frame Control field contains (among others) two bits named To DS and From DS
 - The value of To DS and From DS gives the meaning of the 4 addresses

To DS	From DS	Address1	Address2	Address3	Address4
0	0	Destination	Source	BSSID	N/A
0	1	Destination	BSSID	Source	N/A
1	0	BSSID	Source	Destination	N/A
1	1	Receiver	Transmitter	Destination	Source

CSMA/CA and IEEE 802.11

Bibliography

- IEEE 802.11 Working Group, "802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE, 2007
- **G. Bianchi**, *"Performance Analysis of the IEEE 802.11 Distributed Coordination Function",* IEEE Journal on Selected Areas in Communication, March 2000
- S. Xu, T. Saadawi, "Does the IEEE 802.11 MAC protocol work well in multi-hop wireless ad hoc networks?", IEEE Communications Magazine, June 2001
- A. Colvin, "CSMA with Collision Avoidance", Computer Communications, October 1983

