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Chapter 6
Transport Protocols (TCP/UDP) : headers,
mechanisms and algorithms
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Agenda

- General overview of transport protocols in IP
- UDP
- TCP

- TCP Connection management

- Congestion management, flow control
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" - Transport of application datas

- IP is always used to route the packets

- TCP — Transport Control Protocol

- Reliable transport protocol
- Connected mode

- UDP - User Datagram Protocol
- Non reliable protocol
- Non connected

Telnet

FTP

SMTP

NFS

SNMP

DNS

TCP

UDP

IP

MAC / PHY




- A port is defined by a unique number and is used to identifiy an
application for the transport layer (TCP, UDP, ...)
- RFC 1700 : port 1 - 1023 are standardized ports
but ports > 1024 are free of use

- [etc/services : is a list of all the ports and their use

™ ]

- Examples : rore |
Application Port Transport Layer
FTP 20 Networkin Layer
Telnet 23 Link Layer

e



Connection?

end-to-end establishment for client—server information exchang
-@IP___and @IP |

- applications are identified by port_ __and port

are used to identify the hosts

source destination

destination

- Itis a socket!
- Example : (18.26.0.36, 1069) et (128.10.2.3, 25)

Ports Ports
' Connection '
Transport Layer < > Transport Layer
Networking Layer Networking Layer
Link Layer Link Layer
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UDP

User Datagram Protocol (RFC 768)
- Basic mechanism for the end-to-end transport
- Non reliable service
- Non-connected mode
- Based on IP (Protocol field: 17)

- Allow the use of the ports only

- Simple header of 8 bytes

0 15 16 32

Port UDP source Port UDP destination

Total Length (bytes) CRC (optionnal)

Data (Application and associated header)
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dow it works?

- IP is only focused on the routing

- UDP allows the end-to-end transport and the use of ports

- UDP allows the IP fragmentation but without any guarantee that,
the destination will be able to reassemble the packets

- UDP does not provide additionnal mechanisms for :
retransmission, timeout, acknowledgement, application data .
fragmentation (max. 64 bytes), congestion, etc. .

-> If reliability is required, the mechanisms are provided by t
application

- Examples :
- DNS, TFTP, traceroute, ...
- Video Streaming, Network gaming, ...




TCP

Transmission Control Protocol (RFC 793)

- TCP is based on a connection: to allow an end-to-end segmenm
exchange, the 2 hosts should open a connection A

- Reliable transport (using additionnal mechanisms like: .
retransmission, duplication management, timeout, ...)

- Mechanisms to improve performances: flow control .
management, sliding window, Naggle, Clark, ... "

- IP is used to route the segments to the sourche (Protocol
field: 6)




TCP

- TCP can do the fragmentation for the application data. The size of 1 Il

the fragments are managed by TCP. Segments are transmitted
successively.

- When a segment is sent, TCP used a timer to wait an

acknowledgement from the destination. When the timer reaches 0 §§&
and there is no ACK: the packet is lost = retransmission.

- Each time TCP receives a segment, it send an ACK .

- The header and the data of a TCP segment are protected using a CRC

- TCP puts in order the segments received before to transmit it to the
application (through the use of the ports)

- TCP provides a flow control (using local buffer)




Reliability of TCP

=Basic mechanisms:

- For each segment, TCP uses an ACK

- Explicit ACK for the last k bytes received, waiting for the k+

- Using a timer to detect loss, congestion

Source

Segment 1

ACK 1
Segment 2

ACK 2

T
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Destination

Segment 1
ACK 1

Segment 2
ACK 2

Source

Segment 1

Timer enable

Packet
loss
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ACK1shoukibe4«~”’f’#//,’

received
Timer expiration

Retransmissior
of Segment 1

Tempo. armé

\>

ACK 1
Timer disable

_

Destination

Segment 1
ACK 1

Segment 1
ACK 1




TCP header (20 bytes)

TCP Port source TCP Port destination
Sequence
ACK

_enght| Reserved
CRC Urgent Flag

oeter? | Padding
Padding

Data

Sequence : Provide the position of the current byte in the flow of bytes
transmitted from this host to the destination

Ack : the next byte waited (then, acknowledgement of the previous bytes)
Length (4 bits) : Header length because of options (32 bit-words)
Window : Number of bytes that the host can receive (flow control)

CRC : Security for the header + the data




TCP header (20 bytes)

TCP Port source TCP Port destination
Sequence
ACK

_enght| Reserved
CRC Urgent Flag

e | Padding
Padding

Data

Code (6 bits) :
URG :the 'urgentflag'is used
ACK :to declare the use of the ACK field
PSH :the application data should be deliver as soon as possible .

RST :Connection restart

SYN : During the establishment connection phase, to declare the initial value of the Sequence field
END :End of the segments transmission (closing the connection)

Urgent flag: Segment should be transported as urgent

Options : Mainly the MSS (Maximum Segment Size), used by the sender to declare
to the remote host the maximum segment size (in bytes), he is able to receive




Connection management

- TCP is a connected-based transport protocol = Before to sends
and/or to receive segments, it is requested to open a
connection...and to close it at the end of the segments
exchange:

- 3 steps for establishment .

- 4 steps for closing

- The establishment phase allows the 2 hosts to declare the
initial values for the Sequence field




Connection establishment

Client Server

Segment Transmission
Port Number (server) Segment Reception on
N° Seq. Init (SYN seq.= x) \b the specified port
SYN seq.= x

Segment transmission using a
Sequence number for the Server

Segment Reception / and ACK of the received segment

SYN seq.= y, ACK x+1 SYN seq.=y, ACK x+1

Segment Transmission

ACK y+1 \
Segment Reception

ACK y+1

- If there is no response from the server?
- a timer is used, then several connection establishment
requests are sent




To close a connection

Client Server

Segment Transmission
END seq.= x \> Segment Reception

END seq.= x
To confirm to the client
Segmerxg&a“s;“i“b“ that the connection is
X+
Segment Reception / (send also notification CIosedZ and... -
ACK x+1 to the application) To avoid the remote applicak
to send another END reque

(the applocation closes

. the connexion)
Segm:rétKij;eptlon / Segment Transmission
END séq.=y, ACK x+1
(the application closes =y

the connection)

Segment Transmission

ACK y+1 \
Segment Reception

ACK y+1

- full-duplex transmission (4 steps)

- END: end of the segments transmission from the sender




Half-closed connection

Client Serveur

Segment Transmission
END seq.= x \ Segment Reception

END seq.= x

Segment Transmission

+
Segment Transmission / ACK x+1

ACK x+1 (Notification to the application)

Segments Transmission

/ ACK ...

Segments Reception
ACK ...

(the application closed

egment Reception Segment Transmission

ACK x+1 END seq.= y, ACK x+1
(the application closed

the connection)

Segment Transmission

ACK y+1 \
Segment Reception

ACK y+1




Segment Size and
the MSS option

- Default value of the data length:
- locally: 1460 bytes

- if the segment is routed to a different subnetwork
- max segment size=536 bytes
(packet size = 20 (IP) + 20 (TCP) + MSS (Data))

- During the connection establishment, SYN can be used to notify a
desired segment size in reception

- Note that the optimal MSS value is the MTU value

)
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Sliding window

- Allow the transmission of several segments before to receive ACKs

- The size of the window is dynamically adapted according to the host
capacity

- Can be used to freeze a transmission (Field window=0)

- Basic idea of the sliding window mechanism:
- Window size ¥ when the receiver is congested (no ACK)
- Window size N when the receiver acknowledges segments .

TCP flow
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Data send,
ACK not yet received

Last byte which can be
send according the
current window size

Data send,
ACK received




dynamically adapted to:
- the network congestion
- the packet loss
- the load of the destination

#Segments send

- slow-start mechanism: )

Segment loss

RTT (Round Trip Time




Congestion avoidance
(cont'd)

- Local management of the window size (never transmitted)

- Self-adaptation of the slow-start mechanism allowing to find the r@
optimal value of the window according to the network congestiong ™%

- Initially:
- Transmission of 1 Segment / Waiting for ACK .
- Exponential increase of the window size —
- Transmission of 2 Segments / Waiting for ACK .

- No ACK - the window is set to the initial value

- Then, new transmission of segments following an exponential increase of the
window size (current value of the congestion), then linear increase of the window
size to determine a new congeston value




TCP : Finite State Machine

appli: ouverture passive

send: rien
appli: ouverture
L send:SYN
/ LISTEN
recv: SYNM
send: SYN.ACK send:SYN
reov:RST
i l:close
[: SYN_RCVD }.._—r_t_.c_y_.__S_Y:I‘_'{_ ---—{ SYN_SENT )pr—.
o send: SYN,ACK ou hmeout

.,

recv: SYN ACK
send: ACK

n:cxh

send:rien \

Legend (EsTABLISHED oot _f CL;);EWAIT_]'
: send: ACK ! = !

Server appl:close '
. send:FIN ! !
Client // : fiscl |
. . - d] 1ICI05C
Connection establishment ﬂPP}llEﬁ%/ : HE.E’d;mr |
Active/passive closing ? - ! :
T S ; :

Closing without exchange

o e e g T i

Active closing



- ATCP connection is active until the use of an explicit END segment (e r
the client/server reboots)

- Warning: Neither link failure nor a route failure closes a TCP
connection !

- In the point of view of performance, there is a dedicated timer for
connection: the keepalive timer.
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General remarks (cont'd)

- Several implementations of TCP are available:

- TCP Reno: exponantial slow-start, management of duplicate
ACK's (segments loss)

- TCP Vegas: linear increase of the sliding window, RTT evaluation
for all the tranmistted segments for timer adaptation

-TCP New Reno (used in Linux > 2.6.8): if duplicate ACKs are receivec
then retransmission of the segments without to wait the timeout, e
introduction to a Selective ACK
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