N |
. / I
Sk
Networking v0.9
2012
Fabrice Valois, fabrice.valois@insa-lyon.fr
uuo Département Téelécommunications

Services & Usages


mailto:fabrice.valois@insa-lyon.fr

Application

Where are we?

_______________________________________________________

telnet

Transport

Network

Data Link




Back to your memory :-)

Host01 Host02
Eth1 (192.168.1.3) ‘ Eth0 (192.168.0.1) Eth0 (192.168.0.

Mynet (192.168.0.0)

Host11 Host12

Eth0 (192.168.11) EthO (192.168.1.2)

. . :

Onet (192.168.1.0)

Y |
—;ﬁ-



Chapter 6
Transport Protocols (TCP/UDP) : headers,
mechanisms and algorithms

membre ge

Usivemsi o= Lyon Département Téelécommunications
Services & Usages



Agenda

- General overview of transport protocols in IP
- UDP
- TCP

- TCP Connection management

- Congestion management, flow control

ak
=

=2

B




" - Transport of application datas

- IP is always used to route the packets

- TCP — Transport Control Protocol

- Reliable transport protocol
- Connected mode

- UDP - User Datagram Protocol
- Non reliable protocol
- Non connected

Telnet

FTP

SMTP

NFS

SNMP

DNS

TCP

UDP

IP

MAC / PHY




- A port is defined by a unique number and is used to identifiy an
application for the transport layer (TCP, UDP, ...)
- RFC 1700 : port 1 - 1023 are standardized ports
but ports > 1024 are free of use

- [etc/services : is a list of all the ports and their use

™ ]

- Examples : rore |
Application Port Transport Layer
FTP 20 Networkin Layer
Telnet 23 Link Layer

e



Connection?

end-to-end establishment for client—server information exchang
-@IP___and @IP |

- applications are identified by port_ __and port

are used to identify the hosts

source destination

destination

- Itis a socket!
- Example : (18.26.0.36, 1069) et (128.10.2.3, 25)

Ports Ports
' Connection '
Transport Layer < > Transport Layer
Networking Layer Networking Layer
Link Layer Link Layer

0
s




UDP

User Datagram Protocol (RFC 768)
- Basic mechanism for the end-to-end transport
- Non reliable service
- Non-connected mode
- Based on IP (Protocol field: 17)

- Allow the use of the ports only

- Simple header of 8 bytes

0 15 16 32

Port UDP source Port UDP destination

Total Length (bytes) CRC (optionnal)

Data (Application and associated header)




= U D P

dow it works?

- IP is only focused on the routing

- UDP allows the end-to-end transport and the use of ports

- UDP allows the IP fragmentation but without any guarantee that,
the destination will be able to reassemble the packets

- UDP does not provide additionnal mechanisms for :
retransmission, timeout, acknowledgement, application data .
fragmentation (max. 64 bytes), congestion, etc. .

-> If reliability is required, the mechanisms are provided by t
application

- Examples :
- DNS, TFTP, traceroute, ...
- Video Streaming, Network gaming, ...




TCP

Transmission Control Protocol (RFC 793)

- TCP is based on a connection: to allow an end-to-end segmenm
exchange, the 2 hosts should open a connection A

- Reliable transport (using additionnal mechanisms like: .
retransmission, duplication management, timeout, ...)

- Mechanisms to improve performances: flow control .
management, sliding window, Naggle, Clark, ... "

- IP is used to route the segments to the sourche (Protocol
field: 6)




TCP

- TCP can do the fragmentation for the application data. The size of 1 Il

the fragments are managed by TCP. Segments are transmitted
successively.

- When a segment is sent, TCP used a timer to wait an

acknowledgement from the destination. When the timer reaches 0 §§&
and there is no ACK: the packet is lost = retransmission.

- Each time TCP receives a segment, it send an ACK .

- The header and the data of a TCP segment are protected using a CRC

- TCP puts in order the segments received before to transmit it to the
application (through the use of the ports)

- TCP provides a flow control (using local buffer)




Reliability of TCP

=Basic mechanisms:

- For each segment, TCP uses an ACK

- Explicit ACK for the last k bytes received, waiting for the k+

- Using a timer to detect loss, congestion

Source

Segment 1

ACK 1
Segment 2

ACK 2

T
_

Destination

Segment 1
ACK 1

Segment 2
ACK 2

Source

Segment 1

Timer enable

Packet
loss

\\‘

ACK1shoukibe4«~”’f’#//,’

received
Timer expiration

Retransmissior
of Segment 1

Tempo. armé

\>

ACK 1
Timer disable

_

Destination

Segment 1
ACK 1

Segment 1
ACK 1




TCP header (20 bytes)

TCP Port source TCP Port destination
Sequence
ACK

_enght| Reserved
CRC Urgent Flag

oeter? | Padding
Padding

Data

Sequence : Provide the position of the current byte in the flow of bytes
transmitted from this host to the destination

Ack : the next byte waited (then, acknowledgement of the previous bytes)
Length (4 bits) : Header length because of options (32 bit-words)
Window : Number of bytes that the host can receive (flow control)

CRC : Security for the header + the data




TCP header (20 bytes)

TCP Port source TCP Port destination
Sequence
ACK

_enght| Reserved
CRC Urgent Flag

e | Padding
Padding

Data

Code (6 bits) :
URG :the 'urgentflag'is used
ACK :to declare the use of the ACK field
PSH :the application data should be deliver as soon as possible .

RST :Connection restart

SYN : During the establishment connection phase, to declare the initial value of the Sequence field
END :End of the segments transmission (closing the connection)

Urgent flag: Segment should be transported as urgent

Options : Mainly the MSS (Maximum Segment Size), used by the sender to declare
to the remote host the maximum segment size (in bytes), he is able to receive




Connection management

- TCP is a connected-based transport protocol = Before to sends
and/or to receive segments, it is requested to open a
connection...and to close it at the end of the segments
exchange:

- 3 steps for establishment .

- 4 steps for closing

- The establishment phase allows the 2 hosts to declare the
initial values for the Sequence field




Connection establishment

Client Server

Segment Transmission
Port Number (server) Segment Reception on
N° Seq. Init (SYN seq.= x) \b the specified port
SYN seq.= x

Segment transmission using a
Sequence number for the Server

Segment Reception / and ACK of the received segment

SYN seq.= y, ACK x+1 SYN seq.=y, ACK x+1

Segment Transmission

ACK y+1 \
Segment Reception

ACK y+1

- If there is no response from the server?
- a timer is used, then several connection establishment
requests are sent




To close a connection

Client Server

Segment Transmission
END seq.= x \> Segment Reception

END seq.= x
To confirm to the client
Segmerxg&a“s;“i“b“ that the connection is
X+
Segment Reception / (send also notification CIosedZ and... -
ACK x+1 to the application) To avoid the remote applicak
to send another END reque

(the applocation closes

. the connexion)
Segm:rétKij;eptlon / Segment Transmission
END séq.=y, ACK x+1
(the application closes =y

the connection)

Segment Transmission

ACK y+1 \
Segment Reception

ACK y+1

- full-duplex transmission (4 steps)

- END: end of the segments transmission from the sender




Half-closed connection

Client Serveur

Segment Transmission
END seq.= x \ Segment Reception

END seq.= x

Segment Transmission

+
Segment Transmission / ACK x+1

ACK x+1 (Notification to the application)

Segments Transmission

/ ACK ...

Segments Reception
ACK ...

(the application closed

egment Reception Segment Transmission

ACK x+1 END seq.= y, ACK x+1
(the application closed

the connection)

Segment Transmission

ACK y+1 \
Segment Reception

ACK y+1




Segment Size and
the MSS option

- Default value of the data length:
- locally: 1460 bytes

- if the segment is routed to a different subnetwork
- max segment size=536 bytes
(packet size = 20 (IP) + 20 (TCP) + MSS (Data))

- During the connection establishment, SYN can be used to notify a
desired segment size in reception

- Note that the optimal MSS value is the MTU value

)
'F1INSh




Sliding window

- Allow the transmission of several segments before to receive ACKs

- The size of the window is dynamically adapted according to the host
capacity

- Can be used to freeze a transmission (Field window=0)

- Basic idea of the sliding window mechanism:
- Window size ¥ when the receiver is congested (no ACK)
- Window size N when the receiver acknowledges segments .

TCP flow

=

HAEEEEREENEEE

Data send,
ACK not yet received

Last byte which can be
send according the
current window size

Data send,
ACK received




dynamically adapted to:
- the network congestion
- the packet loss
- the load of the destination

#Segments send

- slow-start mechanism: )

Segment loss

RTT (Round Trip Time




Congestion avoidance
(cont'd)

- Local management of the window size (never transmitted)

- Self-adaptation of the slow-start mechanism allowing to find the r@
optimal value of the window according to the network congestiong ™%

- Initially:
- Transmission of 1 Segment / Waiting for ACK .
- Exponential increase of the window size —
- Transmission of 2 Segments / Waiting for ACK .

- No ACK - the window is set to the initial value

- Then, new transmission of segments following an exponential increase of the
window size (current value of the congestion), then linear increase of the window
size to determine a new congeston value




TCP : Finite State Machine

appli: ouverture passive

send: rien
appli: ouverture
L send:SYN
/ LISTEN
recv: SYNM
send: SYN.ACK send:SYN
reov:RST
i l:close
[: SYN_RCVD }.._—r_t_.c_y_.__S_Y:I‘_'{_ ---—{ SYN_SENT )pr—.
o send: SYN,ACK ou hmeout

.,

recv: SYN ACK
send: ACK

n:cxh

send:rien \

Legend (EsTABLISHED oot _f CL;);EWAIT_]'
: send: ACK ! = !

Server appl:close '
. send:FIN ! !
Client // : fiscl |
. . - d] 1ICI05C
Connection establishment ﬂPP}llEﬁ%/ : HE.E’d;mr |
Active/passive closing ? - ! :
T S ; :

Closing without exchange

o e e g T i

Active closing



- ATCP connection is active until the use of an explicit END segment (e r
the client/server reboots)

- Warning: Neither link failure nor a route failure closes a TCP
connection !

- In the point of view of performance, there is a dedicated timer for
connection: the keepalive timer.

ak
oy

=2

‘5




General remarks (cont'd)

- Several implementations of TCP are available:

- TCP Reno: exponantial slow-start, management of duplicate
ACK's (segments loss)

- TCP Vegas: linear increase of the sliding window, RTT evaluation
for all the tranmistted segments for timer adaptation

-TCP New Reno (used in Linux > 2.6.8): if duplicate ACKs are receivec
then retransmission of the segments without to wait the timeout, e
introduction to a Selective ACK




Where are we?

_______________________________________________________

telnet

Application

Transport

Network

Data Link




	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

