
TC

Département Télécommunicatons
Services & Usages

Networking v0.9
2012

Fabrice Valois, fabrice.valois@insa-lyon.fr

mailto:fabrice.valois@insa-lyon.fr

2

Applicatons

htp
fp telnet

dnssmtp

tcp udpTransport

ip igmp

Network

icmp

Physical
Interface rarp

Data Link

arp
K
e
r
n
e
l

U
s
e
r

s
p
a
c
e

Applicaton

Transport

Network

Data Link

Where are we?

igmp

Back to your memory :-)

Eth0 (192.168.0.1)Eth1 (192.168.1.3) Eth0 (192.168.0.2)

Host01

Host11

Host02

Host12

Mynet (192.168.0.0)

Onet (192.168.1.0)

Eth0 (192.168.1.2)Eth0 (192.168.1.1)

TC

Département Télécommunicatons
Services & Usages

Chapter 6
Transport Protocols (TCP/UDP) : headers,
mechanisms and algorithms

5

Agenda

- General overview of transport protocols in IP

- UDP

- TCP

- TCP Connecton management

- Congeston management, fow control

- End-to-end segments management
- Transport of applicaton datas
- IP is always used to route the packets

- TCP – Transport Control Protocol
- Reliable transport protocol
- Connected mode

- UDP – User Datagram Protocol
- Non reliable protocol
- Non connected

6

Transport Protocols

MAC / PHY

IP

TCP UDP

Telnet FTP SMTP NFS SNMP ... DNS

7

What is a port?

- Provide an access to a service (smtp, e.g.) and to an applicaton (mail)

- A port is defned by a unique number and is used to identfy an
applicaton for the transport layer (TCP, UDP, ...)

- RFC 1700 : port 1 → 1023 are standardized ports
 but ports > 1024 are free of use

- /etc/services : is a list of all the ports and their use

- Examples :

Applicaton Port
FTP 20
Telnet 23
SNMP 161

Transport Layer

Networkin Layer

Link Layer

FTP Telnet

Ports

8

Connecton?

→ end-to-end establishment for client–server informaton exchange

- @IP
source

 and @IP
destnaton

 are used to identfy the hosts

- applicatons are identfed by port
source

 and port
destnaton

→ It is a socket!

- Example : (18.26.0.36, 1069) et (128.10.2.3, 25)

Transport Layer

Networking Layer

Link Layer

FTP Telnet

Ports

Transport Layer

Networking Layer

Link Layer

FTP Telnet

Ports

Connection

9

UDP

User Datagram Protocol (RFC 768)
- Basic mechanism for the end-to-end transport
- Non reliable service
- Non-connected mode
- Based on IP (Protocol feld: 17)

→ Allow the use of the ports only

- Simple header of 8 bytes

Port UDP source Port UDP destination

0 15 16 32

Total Length (bytes) CRC (optionnal)

Data (Application and associated header)

10

UDP
- How it works?

- IP is only focused on the routng

- UDP allows the end-to-end transport and the use of ports

- UDP allows the IP fragmentaton but without any guarantee that
the destnaton will be able to reassemble the packets

- UDP does not provide additonnal mechanisms for :
retransmission, tmeout, acknowledgement, applicaton data
fragmentaton (max. 64 bytes), congeston, etc.

→ If reliability is required, the mechanisms are provided by the
applicaton

- Examples :
- DNS, TFTP, traceroute, ...
- Video Streaming, Network gaming, ...

11

TCP

Transmission Control Protocol (RFC 793)

- TCP is based on a connecton: to allow an end-to-end segment
exchange, the 2 hosts should open a connecton

- Reliable transport (using additonnal mechanisms like:
retransmission, duplicaton management, tmeout, ...)

- Mechanisms to improve performances: fow control
management, sliding window, Naggle, Clark, ...

- IP is used to route the segments to the sourche (Protocol
feld: 6)

12

TCP

- How to be reliable?

- TCP can do the fragmentaton for the applicaton data. The size of
the fragments are managed by TCP. Segments are transmited
successively.

- When a segment is sent, TCP used a tmer to wait an
acknowledgement from the destnaton. When the tmer reaches 0
and there is no ACK: the packet is lost → retransmission.

- Each tme TCP receives a segment, it send an ACK

- The header and the data of a TCP segment are protected using a CRC

- TCP puts in order the segments received before to transmit it to the
applicaton (through the use of the ports)

- TCP provides a fow control (using local bufer)

13

Reliability of TCP

- Basic mechanisms:

- For each segment, TCP uses an ACK

- Explicit ACK for the last k bytes received, waitng for the k+1

- Using a tmer to detect loss, congeston

Source Destination

Segment 1

Segment 1

ACK 1

ACK1 should be
received

Source Destination

Segment 1

Segment 1

ACK 1

ACK 1

Segment 2

Segment 2

ACK 2

ACK 2

Packet
loss

Timer enable

Timer expiration

Retransmission
of Segment 1

Segment 1

ACK 1

ACK 1

Tempo. armé

Timer disable

14

TCP header (20 bytes)

Sequence : Provide the positon of the current byte in the fow of bytes
transmited from this host to the destnaton

Ack : the next byte waited (then, acknowledgement of the previous bytes)

Length (4 bits) : Header length because of optons (32 bit-words)

Window : Number of bytes that the host can receive (fow control)

CRC : Security for the header + the data

TCP Port source TCP Port destination
0 1516 32

Sequence

ACK

Data

Lenght. Window

CRC Urgent Flag

CodeReserved

(Options)
Padding

15

TCP header (20 bytes)

Code (6 bits) :
URG : the 'urgent fag' is used
ACK : to declare the use of the ACK feld
PSH : the applicaton data should be deliver as soon as possible
RST : Connecton restart
SYN : During the establishment connecton phase, to declare the inital value of the Sequence feld
END : End of the segments transmission (closing the connecton)

Urgent fag: Segment should be transported as urgent

Optons : Mainly the MSS (Maximum Segment Size), used by the sender to declare
to the remote host the maximum segment size (in bytes), he is able to receive

TCP Port source TCP Port destination
0 1516 32

Sequence

ACK

Data

Lenght. Window

CRC Urgent Flag

CodeReserved

(Options)
Padding

16

Connecton management

- TCP is a connected-based transport protocol ⇒ Before to send
and/or to receive segments, it is requested to open a
connecton...and to close it at the end of the segments
exchange:

- 3 steps for establishment
- 4 steps for closing

- The establishment phase allows the 2 hosts to declare the
inital values for the Sequence feld

17

Connecton establishment

Client Server

Segment Transmission
Port Number (server)

N° Seq. Init (SYN seq.= x)
Segment Reception on

the specified port
SYN seq.= x

Segment transmission using a
Sequence number for the Server
and ACK of the received segment

SYN seq.= y, ACK x+1Segment Reception
SYN seq.= y, ACK x+1

Segment Transmission
ACK y+1

Segment Reception
ACK y+1

- If there is no response from the server?
→ a tmer is used, then several connecton establishment

 requests are sent

18

To close a connecton

- full-duplex transmission (4 steps)

- END: end of the segments transmission from the sender

Client Server

Segment Transmission
END seq.= x Segment Reception

END seq.= x

Segment Transmission
ACK x+1

(send also notification
to the application)

Segment Reception
ACK x+1

Segment Transmission
ACK y+1

Segment Reception
ACK y+1

(the applocation closes
the connexion)

Segment Transmission
END séq.= y, ACK x+1

Segment Reception
ACK x+1

(the application closes
the connection)

To confirm to the client
that the connection is
closed, and...
To avoid the remote application
to send another END request.

19

Half-closed connecton
Client

-
Serveur

Segment Transmission
END seq.= x Segment Reception

END seq.= x

Segment Transmission
ACK x+1

(Notification to the application)Segment Transmission
ACK x+1

Segment Transmission
ACK y+1

Segment Reception
ACK y+1

(the application closed
the connection)

Segment Transmission
END seq.= y, ACK x+1

Segment Reception
ACK x+1

(the application closed
the connection)

Segments Reception
ACK ...

Segments Transmission
ACK ...

20

Segment Size and
the MSS opton

- Default value of the data length:

- locally: 1460 bytes

- if the segment is routed to a diferent subnetwork
→ max segment size=536 bytes

 (packet size = 20 (IP) + 20 (TCP) + MSS (Data))

- During the connecton establishment, SYN can be used to notfy a
desired segment size in recepton

- Note that the optmal MSS value is the MTU value

21

Sliding window

- Allow the transmission of several segments before to receive ACKs

- The size of the window is dynamically adapted according to the host
capacity

- Can be used to freeze a transmission (Field window=0)

- Basic idea of the sliding window mechanism:
- Window size  when the receiver is congested (no ACK)
- Window size  when the receiver acknowledges segments

TCP fow

Data send,
ACK received
Data send,

ACK received

Data send,
ACK not yet received

Last byte which can be
send according the

current window size

22

Congeston avoidance

- Based on the work of Van Jacobson (1988)

- Without knowledge of the network state, without informaton of the
destnaton load, based only on the ACK received, the throughput is
dynamically adapted to :

- the network congeston
- the packet loss
- the load of the destnaton

- slow-start mechanism: #Segments send

RTT (Round Trip Time)

Segment loss

23

Congeston avoidance
(cont'd)

- Local management of the window size (never transmited)

- Self-adaptaton of the slow-start mechanism allowing to fnd the
optmal value of the window according to the network congeston:

- Initally:
- Transmission of 1 Segment / Waitng for ACK

- Exponental increase of the window size
- Transmission of 2 Segments / Waitng for ACK

- …
- No ACK → the window is set to the inital value
- Then, new transmission of segments following an exponental increase of the

window size (current value of the congeston), then linear increase of the window
size to determine a new congeston value

- ...

24

TCP : Finite State Machine

Legend
Server
Client
Connecton establishment
Actve/passive closing
Symmetric closing
Closing without exchange

Actve closing

Passive closing

25

General remarks

- A TCP connecton is actve untl the use of an explicit END segment (or
the client/server reboots)

- Warning: Neither link failure nor a route failure closes a TCP
connecton !

- In the point of view of performance, there is a dedicated tmer for
connecton: the keepalive tmer.

26

General remarks (cont'd)

- Several implementatons of TCP are available:
- TCP Reno: exponantal slow-start, management of duplicate

 ACK's (segments loss)
- TCP Vegas: linear increase of the sliding window, RTT evaluaton

 for all the tranmisted segments for tmer adaptaton
-TCP New Reno (used in Linux > 2.6.8): if duplicate ACKs are received

then retransmission of the segments without to wait the tmeout,
introducton to a Selectve ACK

27

Applicatons

htp
fp telnet

dnssmtp

tcp udpTransport

ip igmp

Network

icmp

Physical
Interface rarp

Data Link

arp
K
e
r
n
e
l

U
s
e
r

s
p
a
c
e

Applicaton

Transport

Network

Data Link

Where are we?

igmp

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

