Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications

University of Toulouse Institut de Recherche en Informatique de Toulouse

Razvan Stanica, Emmanuel Chaput, André-Luc Beylot

IEEE Consumer Communications and Networking Conference Las Vegas - 10 January 2011

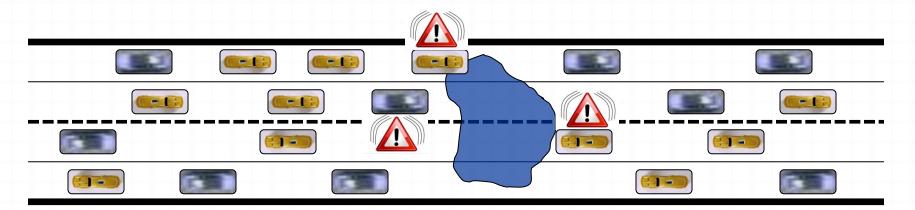
Université de Toulouse

Broadcast Scalability in IEEE 802.11

□ Influence of the Minimum Contention Window

Adaptive Contention Window

Conclusion


Razvan Stanica

University of Toulouse

CCNC 2011

Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications

VANET objective: Building an accurate image of the exterior world

□ Broadcast communication (beaconing, event notification) using IEEE 802.11p

Scalability		
	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

Reduce Beaconing Frequency

Scalability		
	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

Reduce Beaconing Frequency

Strict requirements from applications

Scalability		
	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

Reduce Beaconing Frequency

Strict requirements from applications

Decrease Transmission Power

Scalability		
	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

Reduce Beaconing Frequency

Strict requirements from applications

Decrease Transmission Power

Minimal coverage area

Scalability		
	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

Reduce Beaconing Frequency

Strict requirements from applications

Decrease Transmission Power

Minimal coverage area

□ Increase Data Rate

Scalability	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

Reduce Beaconing Frequency

Strict requirements from applications

Decrease Transmission Power

Minimal coverage area

□ Increase Data Rate

Reduced reception probability

Scalability		
	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

Contention Window in unicast IEEE 802.11

```
□ If channel free – send directly
```

□ If channel busy – back off for n idle slots

- □ n= random (0, CW)
- **Initially CW= CW_{min}**
- □ If collision CW= CW*2

Scalability	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

broadcast Contention Window in unicast IEEE 802.11

```
□ If channel free – send directly
```

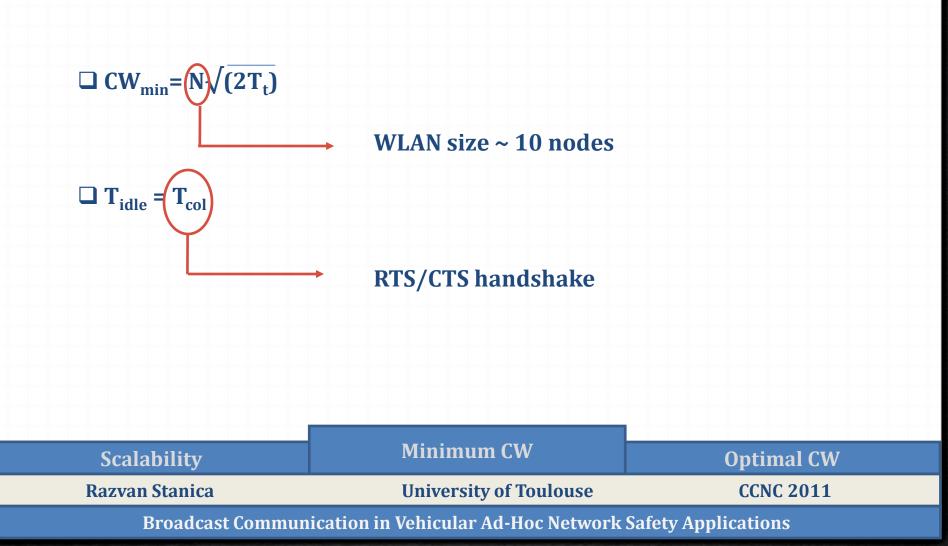
□ If channel busy – back off for n idle slots

□ n= random (0, CW)


Initially CW= CW_{min}

☐ If collision – CW= CW*2

Scalability	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		


Bianchi et al. (1996):

$$\Box CW_{\min} = N\sqrt{(2T_t)}$$

Scalability	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

VANET control channel 100% broadcast

Cooperative Awareness Message (beaconing)

Decentralized Environment Notification

No RTS/CTS

□ No ACK – No collision detection

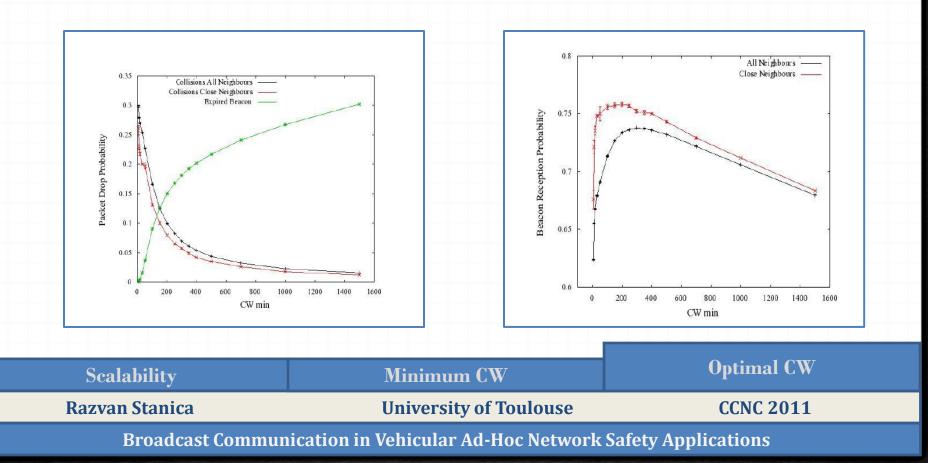
 \Box CW = CW_{min}

Scalability	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

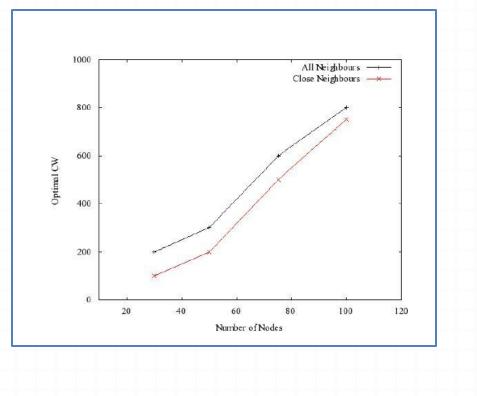
Simulation scenario

□ JiST/SWANS framework

Street Random Waypoint Mobility Model

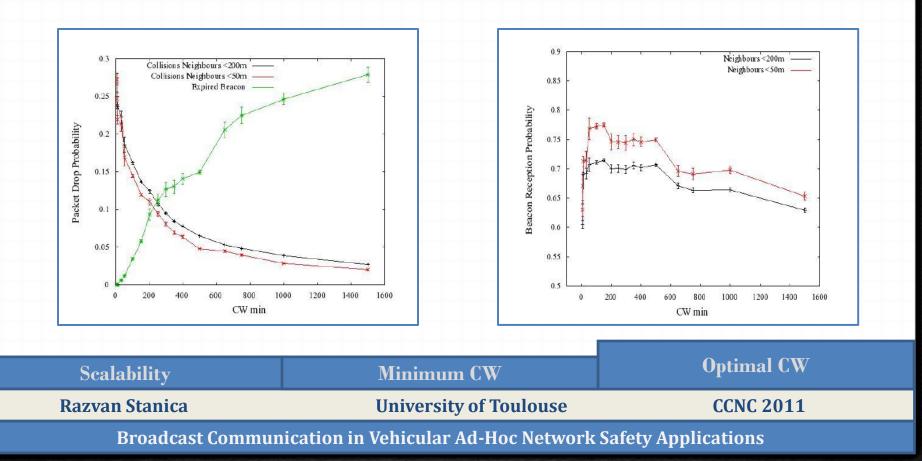

□ Beaconing frequency 10 Hz (beacons can expire)

Road Topology: Intersection


Scalability	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications		

Fully connected network

50 static nodes (12.5 cars/lane/km)
Free Space radio propagation model


Fully connected network

Scalability	Minimum CW	Optimal CW
Razvan Stanica	University of Toulouse	CCNC 2011
Broadcast Commun	ication in Vehicular Ad-Hoc Network	Safety Applications

Large mobile network

12.5 cars/lane/km Probabilistic Radio Propagation with Shadowing

Local Density Estimation

□ Native method to estimate local density in VANET: beaconing

 $\Box CW = \lambda^* \check{N}$

 $\hfill \hfill \tilde{N}$ – estimation of the number of neighbors in the last T seconds

Ex: Intersection scenario, 25 veh/lane/km, 10 beacons/s

CW	P _{rec50}	P _{rec200}
7 (fixed)	67.07	63.85
λ=2 (adapti	/e) 79.89	73.05
Scalability	Minimum CW	Optimal C

Conclusions

Contention window: very important in IEEE 802.11

□ IEEE 802.11p – many amendments at the physical layer

□ MAC layer (IEEE 802.11e) – good for multimedia applications in WLAN

□ VANET safety applications should be considered

Razvan Stanica

University of Toulouse

CCNC 2011

Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications

Broadcast Communication in Vehicular Ad-Hoc Network Safety Applications

University of Toulouse Institut de Recherche en Informatique de Toulouse

Razvan Stanica, Emmanuel Chaput, André-Luc Beylot

IEEE Consumer Communications and Networking Conference Las Vegas - 10 January 2011

Université de Toulouse

