Physical Carrier Sense in Vehicular Ad-hoc Networks

Razvan Stanica, Emmanuel Chaput, André-Luc Beylot

University of Toulouse Institut de Recherche en Informatique de Toulouse

IEEE 8th International Conference on Mobile Ad-hoc and Sensor Systems Valencia - 20 October 2011

Université de Toulouse

□ Safety Communication in Vehicular Networks

Particularities of the VANET Control Channel

□ The Importance of the Carrier Sense Range

Adaptive Carrier Sense Threshold

Razvan Stanica

University of Toulouse

IEEE MASS 2011

Physical Carrier Sense in Vehicular Ad-hoc Networks

VANET objective: Building an accurate image of the exterior world

Cooperative Awareness Message (CAM)

Decentralised Environmental Notification (DEN)

Safety Applications

□ Intersection Collision Warning

Emergency Electronic Brake Lights

Approaching Emergency Vehicle

Lane Change Assistant

Left-Turn Collision Warning

Safety V2V	Control Channel	Carrier Sense Range	Adaptive CS
Razvan Stanica	University of Toulouse		IEEE MASS 2011
Physical Carrier Sense in Vehicular Ad-hoc Networks			

USA Spectrum Allocation

CH172	CH174	CH176	CH178	CH180	CH182	CH184
5.860	5.870	5.880	5.890	5.900	5.910	5.920
G5SC4	G5SC3	G5SC1	G5SC2	G5CC		
Europe Spectrum Allocation						

□ Service channels (SCH) – non-safety (usually IP-based) applications

□ <u>Control channel (CCH) – safety applications</u>

Safety beaconing

A beacon expires if the next CAM is produced

□ No exposed terminals

□ Practically no internal contention on the CCH

□ MAC delay automatically considered in the expiration probability

□ Metric of interest: reception probability

Reduce Beaconing Frequency

Reduce Beaconing Frequency

Increase Data Rate

- **Reduce Beaconing Frequency**
- Increase Data Rate
- **Control Transmission Power**

- **Reduce Beaconing Frequency**
- Increase Data Rate
- **Control Transmission Power**
- Modify Back-off Mechanism

- **Reduce Beaconing Frequency**
- Increase Data Rate
- **Control Transmission Power**
- Modify Back-off Mechanism
- Adapt Carrier Sensing

Carrier Sense in IEEE 802.11

□ MAC Layer – Network Allocation Vector

- based on the RTS/CTS handshake
- unusable on the broadcast CCH

PLCP Layer – Clear Channel Assignment

- header detection
- energy detection

Safety V2V	Control Channel	Carrier Sense Range	Adaptive CS
Razvan Stanica	University of Toulouse		IEEE MASS 2011

Carrier Sense Range						
Safety V2V	Control Channel	Carrier Sense Range	Adaptive CS			
Kazvan Stanica University of Toulouse IEEE MASS 2011						
Physical Carrier Sense in Vehicular Ad-hoc Networks						

Transmission Power Control

Carrier Sense Threshold Control

Carrier Sense vs. Transmission Power

Why Not Use the Minimum Carrier Sense Threshold?

Why Not Use the Minimum Carrier Sense Threshold?

Vehicular Density

- □ More neighbours longer back-off
- □ More neighbours more expired beacons
- □ More neighbours more collisions

Vehicular Density

- □ More neighbours longer back-off
- □ More neighbours more expired beacons
- □ More neighbours more collisions

Adaptive Carrier Sense Threshold

Low CSt value under low density

□ High CSt value under high density

D Beacon-based density estimation – λ

 \Box CSt= f(λ)

Simulation Study

□ JiST/SWANS framework

□ Street Random Waypoint mobility model

□ Three different real maps from TIGER database

□ Medium and high vehicular density

Safety V2V	Control Channel	Carrier Sense Range	Adaptive CS		
Razvan Stanica	University	IEEE MASS 2011			
Physical Carrier Sense in Vehicular Ad-hoc Networks					

Beaconing Reception Probability for different Densities and CS Thresholds

Safety V2V	Control Channel	Carrier Sense Range	Adaptive CS		
Razvan Stanica	University	IEEE MASS 2011			
Physical Carrier Sense in Vehicular Ad-hoc Networks					

Impact of the Carrier Sense Range

Safety V2V	Control Channel	Carrier Sense Range	Adaptive CS		
Razvan Stanica	University	IEEE MASS 2011			
Physical Carrier Sense in Vehicular Ad-hoc Networks					

Adaptive vs. Best Fixed CSt

Physical Carrier Sense in Vehicular Ad-hoc Networks

Adaptive vs. Best Fixed CSt

Adaptive vs. Best Fixed CSt

Vehicular Density	Adaptive Mechanism	CSt= -95 dBm	CSt= -85 dBm	CSt= -75 dBm
25 veh/lane/km	91.02%	86.42%	89.88%	88.64%
35 veh/lane/km	86.12%	78.38%	84.27%	81.81%
45 veh/lane/km	81.41%	69.76%	76.32%	80.20%

Safety V2V	Control Channel	Carrier Sense Range	Adaptive CS	
Razvan Stanica	University	IEEE MASS 2011		
Physical Carrier Sense in Vehicular Ad-hoc Networks				

Distribution of CSt for the Adaptive Mechanism

Conclusion

□ The properties of the CCH need to be taken into account when studying V2V communication

□ The carrier sense mechanism represents the basis for CSMA/CA channel access techniques and should receive more attention

□ Carrier sense threshold control is more powerful than transmission power control on the VANET CCH

□ A simple adaptive mechanism can bring important performance improvement in IEEE 802.11p networks

Razvan Stanica

University of Toulouse

IEEE MASS 2011

Physical Carrier Sense in Vehicular Ad-hoc Networks

Physical Carrier Sense in Vehicular Ad-hoc Networks

Razvan Stanica, Emmanuel Chaput, André-Luc Beylot

University of Toulouse Institut de Recherche en Informatique de Toulouse

IEEE 8th International Conference on Mobile Ad-hoc and Sensor Systems Valencia - 20 October 2011

Université de Toulouse

