Local Density Estimation for Contention Window Adaptation in Vehicular Networks

Razvan Stanica, Emmanuel Chaput, André-Luc Beylot

University of Toulouse Institut de Recherche en Informatique de Toulouse

22nd Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Toronto - 12 September 2011

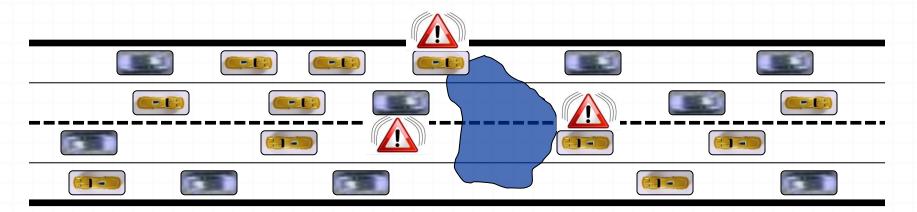
Université de Toulouse

□ Safety Communications in Vehicular Networks

Minimum Contention Window on the VANET Control Channel

Solutions for Local Density Estimation

Comparative Results for Adaptive CW Mechanisms


Razvan Stanica

University of Toulouse

PIMRC 2011

Local Density Estimation for Contention Window Adaptation in Vehicular Networks

VANET objective: Building an accurate image of the exterior world

Cooperative Awareness Message (CAM)

Decentralised Environmental Notification (DEN)

USA Spectrum Allocation

CH172	CH174	CH176	CH178	CH180	CH182	CH184
5.860	5.870	5.880	5.890	5.900	5.910	5.920
G5SC4	G5SC3	G5SC1	G5SC2	G5CC		
Europe Spectrum Allocation						

Service channels (SCH) – non-safety (usually IP-based) applications

Control channel (CCH) – safety applications

Safety V2V	Minimum CW	Adaptive Mechanisms	Results	
Razvan Stanica	University of Toulouse		PIMRC 2011	
Local Density Estimation for Contention Window Adaptation in Vehicular Networks				

IEEE 802.11p on the CCH

- □ 100% broadcast communication
- □ No RTS/CTS handshake
- **No ACK message**
- **Collisions can not be detected**
- BEB mechanism deactivated
- □ Always use the minimum value for CW

Safety V2V	Minimum CW	Adaptive Mechanisms	Results	
Razvan Stanica	University of Toulouse		PIMRC 2011	
Local Density Estimation for Contention Window Adaptation in Vehicular Networks				

Contention Window in unicast IEEE 802.11

```
□ If channel free – send directly
```

□ If channel busy – back off for n idle slots

- □ n= random (0, CW)
- \Box Initially CW= CW_{min}
- □ If collision CW= CW*2

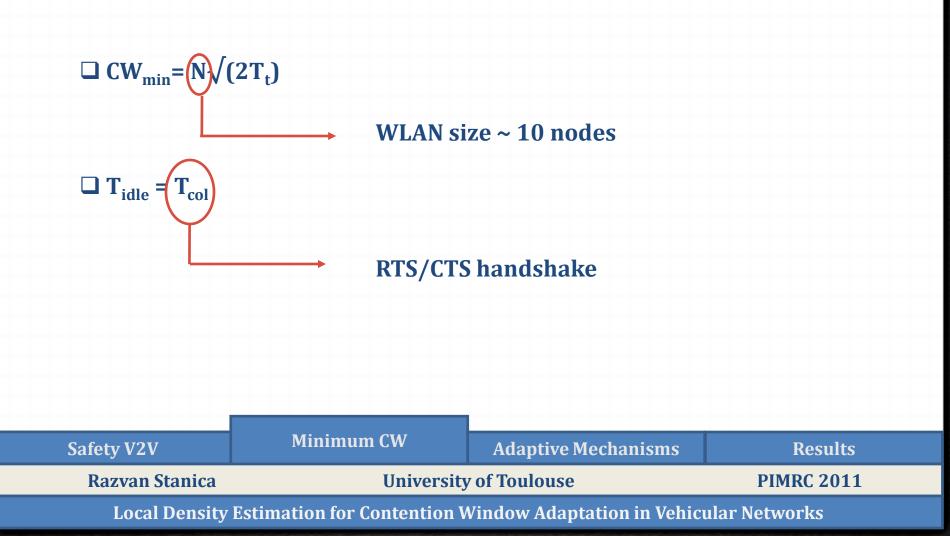
broadcast Contention Window in unicast IEEE 802.11

```
□ If channel free – send directly
```

□ If channel busy – back off for n idle slots

- □ n= random (0, CW)
- \Box Initially CW= CW_{min}

☐ If collision – CW= CW*2


Bianchi et al. (1996):

$$\Box CW_{min} = N\sqrt{(2T_t)}$$

Safety V2V	Minimum CW	Adaptive Mechanisms	Results	
Razvan Stanica	University	PIMRC 2011		
Local Density Estimation for Contention Window Adaptation in Vehicular Networks				

Bianchi et al. (1996): Saturated complete networks

Uses received beacons to estimate density

 \Box CW= λ N

Lost beacons can impact the result

Uses sequence numbers to estimate PER

□ If PER < PER_{min} – increase CW

□ If PER > PER_{max} - decrease CW

Compatibility problem with privacy framework based on pseudonyms

Idle Time

Estimate T_{col} using the number of lost messages

- \Box If $T_{col} > \alpha T_{idle}$ increase CW
- $\Box \text{ If } T_{\text{idle}} > \alpha T_{\text{col}} \text{decrease CW}$

Compatibility problem with privacy framework based on pseudonyms

Stop Time

Based on relationships from traffic flow theory

□ Measure the time a vehicle is stopped

 $\Box CW = (T_{stop} / T_{update})(CW_{max} - CW_{min}) + CW_{min}$

A vehicle could stop for other reasons, unrelated to the traffic state

Speed Based

Using speed information can be useful in intermediate states

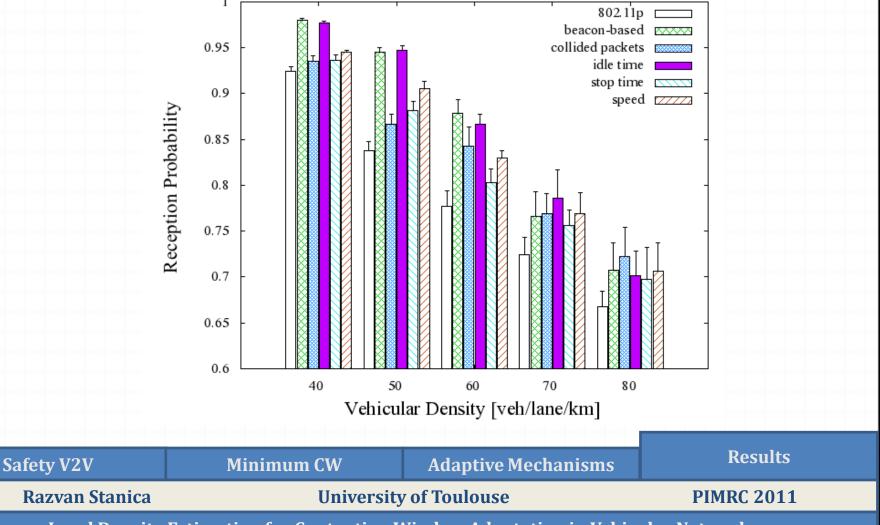
□ Measure vehicular jerk (the derivative of the acceleration)

□ CW= (|jerk| /speed/D_{max})(CW_{max}-CW_{min})+ CW_{min}

□ Jerk is not currently measured by vehicles

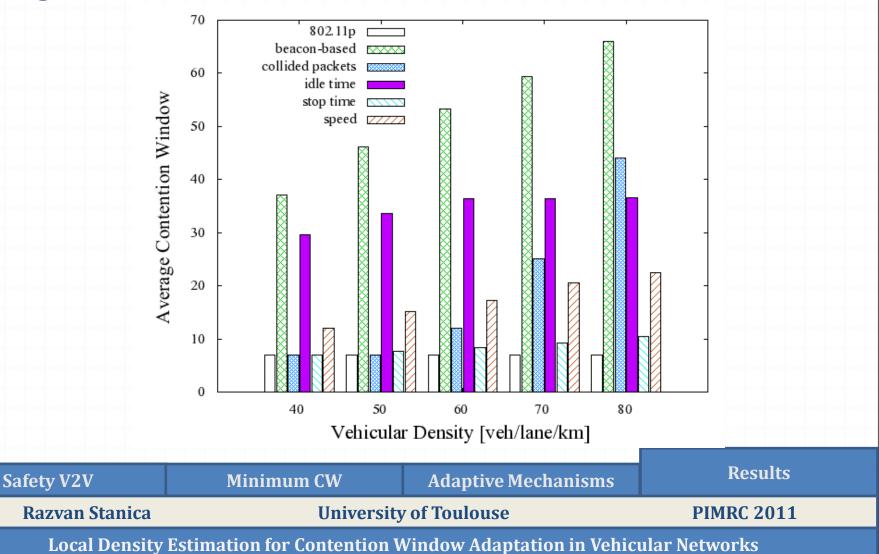
Simulation Study

□ JiST/SWANS framework


□ Street Random Waypoint mobility model

□ Three different real maps from TIGER database

□ Medium and high vehicular density


Safety V2V	Minimum CW	Minimum CW Adaptive Mechanisms		
Razvan Stanica	University	University of Toulouse		
Local Density Estimation for Contention Window Adaptation in Vehicular Networks				

Beaconing Reception Probability at less than 200m from the Sender

Local Density Estimation for Contention Window Adaptation in Vehicular Networks

Average Contention Window for the different Mechanisms

Observations

□ All the mechanism show an important improvement over the current version of the standard

□ The same results can be obtained using different strategies

□ Solutions based on traffic flow theory are efficient when the vehicular density increases

□ These heuristics are quite simple and they could be straightforwardly integrated in the standard

Safety V2V	Minimum CW Adaptive Mechanisms		Results	
Razvan Stanica	University of Toulouse		PIMRC 2011	
Local Density Estimation for Contention Window Adaptation in Vehicular Networks				

Conclusion

□ The properties of the CCH need to be taken into account when studying V2V communication

□ The contention window of the back-off mechanism is a very important parameter for MAC layer congestion control

□ This work compares the performance of five adaptive mechanisms specially conceived for VANETs

Razvan Stanica

University of Toulouse

VTC Fall 2011

Why VANET Beaconing is More than Simple Broadcast

Local Density Estimation for Contention Window Adaptation in Vehicular Networks

Razvan Stanica, Emmanuel Chaput, André-Luc Beylot

University of Toulouse Institut de Recherche en Informatique de Toulouse

22nd Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Toronto - 12 September 2011

Université de Toulouse

