Urban Mobility Flows from Mobile Phone Data

Diala Naboulsi, <u>Razvan Stanica</u>, Marco Fiore

INSA Lyon INRIA UrbaNet

Urban Modelling Symposium Lyon

About Me

Associate professor with the Telecom department at INSA Lyon

Researcher at CITI lab, a joint INSA-INRIA research unit

Member of the INRIA UrbaNet team, focused on wireless networks in urban environments

1

INSA Lyon

Urban Mobility Flows from Mobile Phone Data

Context

- **Datasets**
- Methodology
- Mobility Flows

INSA Lyon

Urban Mobility Flows from Mobile Phone Data

Our motivation

Global mobile data traffic grew 81% in 2013*

526M mobile devices and connections were added in 2013*

Global mobile data traffic is expected to increase nearly 11-fold by 2018*

* Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018

Razvan Stanica		INSA Lyon
3	Urban Mobility Flows from Mobile Phone Data	15.10.2014

Our motivation

Global mobile data traffic grew 81% in 2013*

□ 526M mobile devices and connections were added in 2013*

Global mobile data traffic is expected to increase nearly 11-fold by 2018*

A need to enhance current wireless infrastructure

* Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018

Razvan StanicaINSA Lyon3Urban Mobility Flows from Mobile Phone Data15.10.2014

Our approach

Understand human dynamics

Understand customers' demand

□ Adapt networking services

Razvan Stanica

4

INSA Lyon

Urban Mobility Flows from Mobile Phone Data

Understand human dynamics

Understand customers' demand

Adapt networking services

Razvan Stanica

4

INSA Lyon

Analyse mobile phone data

Urban Mobility Flows from Mobile Phone Data

Data

Orange Data for Development Challenge 2013

Anonymized Call Detail Records (CDR) of Orange customers in Ivory Coast

Data interval: 05/12/2011 - 22/04/2012

Razvan Stanica	

5

INSA Lyon

Urban Mobility Flows from Mobile Phone Data

Datasets

D1: Hourly antenna-to-antenna aggregated calls

D2: Small subset of individual trajectories with a high spatial resolution

D3: Large subset of individual trajectories with a reduced spatial resolution

D4: Individual communication subgraph

Razvan Stanica

INSA Lyon

Urban Mobility Flows from Mobile Phone Data

□ Goal: Understand how people move over time in a typical day in an urban environment

Razvan Stanica		INSA Lyon	
7	Urban Mobility Flows from Mobile Phone Data	15.10.2014	

Goal: Understand how people move over time in a typical day in an urban environment - Abidjan

Razvan Stanica		INSA Lyon
8	Urban Mobility Flows from Mobile Phone Data	15.10.2014

□ Goal: Understand how people move over time in a typical day in an urban environment – Dataset D2

Consecutive calls from the same base station are filtered out

Urban Mobility Flows from Mobile Phone Data

Goal: Understand how people move over time in a typical day in an urban environment – Dataset D2

- Consecutive calls from the same base station are filtered out
- Hourly O/D matrices
- A movement duration is variable
- Each movement is assigned a weight of $1/\Delta t$, where Δt is the movement duration

Razvan	Stanica
--------	---------

INSA Lyon

Urban Mobility Flows from Mobile Phone Data

Goal: Understand how people move over time in a typical day in an urban environment

- Reduced number of movements in dataset D2
- The only period with all antennas present: 2 weeks in April
- Idea: aggregate D2 movements from multiple similar days
- Questions: what is "similar"? what is "typical"?

Razvan Stanica

INSA Lyon

Urban Mobility Flows from Mobile Phone Data

Typical behavior

□ The notion of snapshot: representation of the load generated by mobile users on the access network during a certain time period

Urban Mobility Flows from Mobile Phone Data

Typical behavior

□ This allows us to calculate distances between snapshots to detect similar user distributions

* D. Naboulsi, R. Stanica, M. Fiore – "Classifying Call Profiles in Large-Scale Mobile Traffic Datasets", Proc. Infocom 2014

Razvan Stanica		INSA Lyon
13	Urban Mobility Flows from Mobile Phone Data	15.10.2014

Typical behavior

U We obtain clusters of snapshots, and can distinguish typical and outlying **behaviors**

Mobility flows

We aggregate data from D2 to increase the mobility information
Smallest geographic area: the cell covered by a base station

Razvan Stanica		INSA Lyon
15	Urban Mobility Flows from Mobile Phone Data	15.10.2014

Mobility flows

U We also aggregate spatially (per region), to filter some of the noise

To summarize

Promising use of Call Detail Records

□ Mobile phone data gets richer and richer (your smartphone connects without your knowledge)

□ Not (yet) capable of providing a "standardized" O/D matrix

A different reasoning, in terms of flows, might be better suited

INSA Lyon

Urban Mobility Flows from Mobile Phone Data

Urban Mobility Flows from Mobile Phone Data

Diala Naboulsi, <u>Razvan Stanica</u>, Marco Fiore

INSA Lyon INRIA UrbaNet

Urban Modelling Symposium Lyon

