In-flight Localisation of Micro-UAVs using Ultra-Wide Band

Stéphane D'Alu, Oana Iova, Olivier Simonin, Hervé Rivano

INSA Lyon, Inria, Université de Lyon, CITI Lab. France

Demo presentation

Goal: self-maintained formation flight using inter-drone distances

- 5 UAVs (2 flying, 3 grounded)
- measurements and control by Ultra-Wide Band [\[4\]](#page-0-0)

Implementation:

- Distance measurement using UWB time of flight
- **–** SDS-TWR to avoid clock synchronisation
- **–** Medium sharing using a token-based algorithm
- Position estimation using Crazyflie Kalman filter

Hardware:

- Crazyflie
- DWM1000 (loco deck)
- Laser ranger for Z axis

Problems and goals

- Perform localisation without using an external costly localisation system (Indoor: motion capture [\[3\]](#page-0-1), Outdoor: global navigation satellite system [\[1\]](#page-0-2))
- Perform distance measurements inside the swarm using Ultra-Wide Band time of flight

• Manage radio access to the medium (avoiding packet collisions inside the swarm)

References

[1] M. Andrianarison, M. Sahmoudi, and R.Jr. Landry. "New Strategy of Collaborative Acquisition for Connected GNSS Receivers in Deep Urban Environments". In: *Positioning* 9 (2018), pp. 23–46.

[2] M. Pelka et al. "Evaluation of time-based ranging methods: Does the choice matter?" In: *2017 14th Workshop on Positioning, Navigation and Communications (WPNC)*. Oct. 2017, pp. 1–6.

[3] James A. Preiss et al. "Crazyswarm: A Large Nano-Quadcopter Swarm". In: *IEEE/RSJ International Conference on Intelligent Robots and Systems IROS*. 2016, pp. 3449–3450.

[4] Tingcong Ye et al. "Experimental impulse radio IEEE 802.15. 4a UWB based wireless sensor localization technology: Characterization, reliability and ranging". In: *IET Irish Signals and Systems Conference*. 2011.

Distance measurement

Method: propogation time (Time-of-Flight) of exchanged packets

Theoretically possible with 1 packet

In practice use of multiple packets [\[2\]](#page-0-3) to: • cancel clock offset

• minimise error due to clock drift

 $with \quad \lambda =$

 \overline{c}

Source of errors in Time-of-Flight

• Clock synchronization • Frequency drift

 \Rightarrow requires pico-second synchronized clocks for centimeter precision

Resilience of UWB technology to multi-path interference

Distance measurements start to be altered after the path loss breakpoint

Height = 12 cm, UWB channel = 2 ($f \simeq 4$ GHz) \Rightarrow breakpoint ≈ 2.41 m.

 \Rightarrow UAVs do not usually need to fly at such low distances, this should not be a problem.

f

Impact of UAVs' orientation

Differences are due to:

- Antenna specific radiation pattern
- Antenna influenced by surrounding hardware

Similar results, normal distribution centered on expected distance

 \Rightarrow Orientation effect is negligible

UWB Network communication

Symmetrical Double-Sided Two-Way Ranging (SDS-TWR)

Benefits:

Proposition of medium sharing using a token-based algorithm

Goal: avoid collisions due to the high number of packets exchanged between UAVs \Rightarrow schedule the order in which UAVs perform their set of distance measurements ⇒ take packet loss into account

