
Notes on Java Programming
Java Interfaces
IST JAV 2012
© S. Frénot

I) Interfaces description
Whereas inheritance indicates what is an object, interfaces are used to capture additional capabilities to
an object. For instance if I write the following class,

public class Foo extends MathematicalShape

 implements Cloneable, Serializable, Printable, Viewable {

}

An instance of this class will have the following possible representation.

The class Foo embeds the behavior of MathematicalShape and Object classes and provides specific
abilities on View, Print... These additional abilities are sometimes called additional behaviors which are
out of the main goal of the class. The interface mechanism is a way of expressing those abilities
independently from the class mechanism.

An interface is a structure that only declares concerns without implementing them. For instance a
concerns that describes something that can be cooked should be captured in a Cookable interface. This
interface may be expressed like this.

package test;

public interface Cookable {

 void describeIngredients();

 void describeRecepies();

 void startCooking();

}

"It is permitted, but discouraged as a matter of style, to redundantly specify the public
and/or abstract modifier for a method declared in an interface."
http://docs.oracle.com/javase/specs/jls/se7/html/jls-9.html#jls-9.4

Foo

MathematicalShape

Object

Serializable

Cloneable

Printable

Viewable

http://docs.oracle.com/javase/specs/jls/se7/html/jls-9.html#jls-9.4

II) Interface implementation
We understand that a class that implements this interface should represent something that is Cookable
and that must answer to three questions through method invocations. A class that implements an
interface must either define the body of each method, or having some of its parent class defining them,
or being abstract.

The following three collection of code illustrate this.

public class Chicken implements Cookable {

 public void describeIngredients() {

 System.out.println(“Hello”);

 }

 public void describeRecepies() {

 // Do nothing

 }

 public void startCooking() {

 // Do manythings

 }

}

public abstract class Vegetables implements Cookable {

 public void describeRecepies () {

 // I don't like vegetables

 }

}

public class KobeBeef extends Beef implements Cookable {

 // Every thing else is defined in the Beef class

 public void startCooking() {

 System.out.println(“Do we really need to cook the beef of kobe ?”);

 }

}

III) Interface usage
The interface mechanism is a powerful typing mechanism that enable a clean separation of concerns
between independent concept that may be grouped together within a class. They are much like
alternative facets of the same object. The cast and instanceof operators enable to understand what is
really our instance.

Some examples :
// Direct Object

Object o = new Object(); // The left and right part of the = sign are of the same
 // types.

Object tmp = (Object) o; // We can cast reference of some type to another.
 // Two 'names' / 'references' points to the same

 // object of class Object

System.out.println(tmp instanceof Object); // tmp and o are instanceof Object class

System.out.println(tmp.toString()); // toString is a direct method of Object class

// Hierarchy object

Object o = new KobeBeef(); // The right part is a child type of the left part. No cast is mandatory
 // But I cannot invoke any method of the KobeBeef type.
 // Since the o ref is of class Object I can only invoke method from the
 // class Object. o.toString() is valid. o.startCooking() does not compile

KobeBeef kb = (KobeBeef) o; // Now I have two refs on the KobeBeef instance. One of the kind Object and
 // one of the kind KobeBeef. Since the left part is more specific than the
 // right part I had to explicitly cast the reference into the desired type

System.out.println(o instanceof Object); //true
System.out.println(o instanceof KobeBeef); //true
System.out.println(kb instanceof KobeBeef); //true
System.out.println(kb instanceof Object); //true

// Interface Object

Cookable c = new KobeBeef(); // The class is a KobeBeef, but I only want to see it as a Cookable thing

System.out.println(c instanceof Object); //true
System.out.println(c instanceof KobeBeef); //true
System.out.println(c instanceof Cookable); //true

A final remark for the moment; instanceof and cast may be capture with a try/catch code block that
captures ClassCastException. The next two codes are functionally equivalent.

public void areYouARealBeefOfKobeWithException (Object o) {

 KobeBeef kb = null;

 try {

 kb = (KobeBeef)o;

 } catch(ClassCastException e) {

 System.out.println(“Humm “+o+ “seems to be a fake”);

 }

}

function areYouARealBeefOfKobeWithInstanceOf (Object o) {

 KobeBeef kb = null;

 if !(o instanceof KobeBeef) {

 System.out.println(“Humm “+o+ “seems to be a fake”);

 } else {

 kb = (KobeBeef)o;

 }

}

Although these two codes are semantically equivalent, the CastException approach cost much more in
Cpu cycle than the instanceof operator. In some cases it may influence your program. The instanceof
may also have performance issue when the inheritance graph becomes too complex, typically when
reaching 8 levels of depth. http://dl.acm.org/citation.cfm?id=583821

http://dl.acm.org/citation.cfm?id=583821

III) Next week exercice
The following code provides a simplified ClassRoom management system.

package cr;

public class Student {

 private String name;

 public Student(String name) {

 this.name = name;

 }

}

package cr;

public class ClassRoom {

 public static void main(String[] arg) {

 Student [] students = new Student [10];

 for (int i=0; i<15; i++) {

 students[i] = new Student(String.valueOf(i));

 }

 }

}

This code compiles, but exception rises when the student array is filled with new Students. The array []
operator is limited to ten entries.

1) Design a class, called Bundle, that must store an undefined number of Students. The class has
an internal array structure.

2) Design a second class called Bundle2 that must store an undefined number of any kind of
Object instances. The class is designed as a linked List

http://en.wikipedia.org/wiki/Linked_list#Singly_linked_list.

3) Design a Crowd interface that gather methods from the Bundle and Bundle2 classes, and use it
in the ClassRoom example.

You must provide three different projects that contains the various classes for each questions.

Project 1 : Student.java, ClassRoom.java, Bundle.java

Project 2 : Student.java, ClassRoom.java, Bundle2.java

Project 3 : Student.java, ClassRoom.java, Bundle.java, Bundle2.java, Crowd.java

This exercise will be evaluated.

http://en.wikipedia.org/wiki/Linked_list#Singly_linked_list

	I) Interfaces description
	II) Interface implementation
	III) Interface usage
	III) Next week exercice

