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Foreword

These notes are written for the third edition of the course INFO5147: Selected

Topics in Information Theory that I am teaching at École Normale Supérieure

(ENS) de Lyon during the fall of 2020. The course is divided in two parts:

theoretical foundations and applications. These lecture notes cover only the first

part.

The objective of the first part is to level the ground to study information the-

ory outside the classical framework of communications theory. The motivation

for studying information theory outside its most prominent application domain

is to widen and strengthen its connections with other disciplines and mathe-

matical theories, in particular, real analysis, measure theory, probability theory,

optimization, game theory, and statistics. In my opinion, this choice provides a

more general look to the theory and might inspire new applications in different

fields. Certainly, by adopting this choice, information theory can be truly appre-

ciated and embraced as a developing mathematical theory whose impact on pure

and applied sciences is yet to be discovered.

These lecture notes are certainly incomplete and do not pretend to be a mono-

graph on information theory. In the current form, they are probably useful only

for having a written support for my lectures. This said, the course covers a variety

of elementary topics which turn out to be part of two essential building blocks of

information theory. The first building block is la théorie de la mesure (measure

theory), which developed around a problem formulated by Henri Léon Lebesgue

during his studies on integration at ENS: le problème de la mesure (the problem

of measure). To tackle the problem of measure and establish the foundations of

measure theory, the first lecture is devoted to the algebra of sets and integration

from the point of views of Darboux, Riemann and Lebesgue. The second lecture

extends the notions of measure developed by Lebesgue beyond Euclidian spaces

to measurable spaces in which a general integration theory is presented. The

central object of study in this lecture is the Radon-Nikodym derivative, which is

a corner stone in the definition of most information measures.

The second building block is probability theory and thus, the third lecture con-

sists in an introduction to probability theory from the perspective of measure

theory. That is, real-valued random variables are defined as measurable func-

tions with respect to abstract measurable spaces and the Borel σ-field in R. The

focus is on fundamental notions of independence, expectation, conditional inde-
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pendence and their connection to Lebesgue’s integral. Using this connection, the

notions of exponential families and exponential tilting are reviewed. The fourth

lecture concentrates on central limit theorems and saddle point approximations

for calculating probability density functions (pdf) and cumulative distribution

functions (cdf) independently on whether or not a closed-form exists for the pdf.

After the reviews on measure theory and probability theory, the course fo-

cuses on topics that were introduced by Claude E. Shannon in his seminal paper

a mathematical theory of communications, published in 1948. The fifth lecture

discusses the notion of information and wedge this notion to a positive real-valued

function. Using this function, often referred to as the information function, this

lecture presents a thorough exposition of information, relative information, infor-

mation density, entropy and relative entropy. Mutual information is presented as

a special case of relative entropy. The sixth lecture introduces the notion of con-

centration inequality and reviews classical and recent results in this topic. Using

concentration inequalities, the concept of typicality and joint-typicality, which

are due to Shannon, are presented in their most general forms. Both asymptotic

and non-asymptotic typicality are reviewed.

Armed with the knowledge of information measures and knowledge about

phenomena such as concentration of measure, the last two lectures of the first

part are devoted to hypothesis testing and the analysis of the probability of

error on hypothesis discrimination. The problem is studied considering both a

finite and countable set of observations. In both cases, fundamental limits on the

probability of error are presented.

Part of these lecture notes are inspired on scribed notes taken by some stu-

dents during the lectures. Nonetheless, those scribed notes were only a starting

point and have been entirely rewritten. I am particularly thankful to Quentin De-

schamps, Julien Devevey, Nemo Fournier, Jean-Yves Franceschi, Charles Gassot,

Rémy Grünblatt, Victor Mollimard, Jérémy Petithomme, Pegah Pournajafi, De-

nis Rochette, Xuan Thang, Herménégilde Valentin, and Lucas Venturi. I would

also like to thank the PhD students at l’École Doctorale de Lyon and Postdocs

at INRIA who have provided comments on these lecture notes. I am thankful to

Dadja Anade, Selma Belhadj-Amor, Lélio Chetot, Nizar Khalfet, David Kibloff,

and Victor Quintero.

During the reading of this notes, you will certainly bump into errors, typos

and unclear statements that are certainly my fault. Please let me know about

this. Thank you!

Enjoy the course, enjoy the reading, enjoy ENS.

Samir M. Perlaza

August 20, 2020.
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Theoretical Foundations





1 Algebra of Sets

1.1 Notation

A set is a collection of objects referred to as elements. In the following, sets are

denoted by caligraphic letters, e.g., A,B, C, . . . and the elements of a given set

are listed within braces “{}”. When the number of elements in a set is finite,

they can be listed explicitly, e.g., {0, 1} is the set of binary digits. Note that

the use of ellipses “. . .” is rather common when the elements follow a particular

pattern, e.g., {0, 1, 2, 3, . . . , 9} denotes the set of decimal digits, which contains

ten elements. Some particular notations, different from calligraphic letters, are

also used to denote some special sets. For instance,

• ∅ , {} is the empty set, a set without elements;

• R is the set of all real numbers;

• N , {1, 2, . . . , } is the set of natural numbers; and

• Z , {. . . ,−2,−1, 0, 1, 2, . . . , } is the set of integers.

Given a set, there exists a specific notation that allows specifying whether

or not an element belongs to the set. This notation establishes a relation of

membership between elements and sets.

Definition 1.1 (Membership). An element a that is in A is said to belong

to A, which is denoted by a ∈ A. The opposite is denoted by a /∈ A.

From Definition 1.1, it follows that 0 /∈ N; 1 ∈ N; and π 6∈ N.

When the number of elements of a set is too big for explicitly listing all the el-

ements, using ellipses is not necessarily a good choice. This is due to the fact that

identifying the right pattern of the elements is left up to the reader, who might

guess the right pattern or any other. Consider for instance the set {3, 5, 7, . . . , },
which might be interpreted as the set of odd natural numbers bigger than two;

or the set of prime numbers. This said, an alternative consists in using an ex-

plicit description of the elements such that any ambiguity is eliminated, e.g.,

{x : “description of x” }. In this case, it is always recommended to explicit a

set O containg all possible elements to which the “description” applies, e.g.,

{x ∈ O : “description of x” }. Using this notation, some other special sets, for

which notations different from calligraphic letters are used, can be defined:
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• C , {a+
√
−1b : a ∈ R and b ∈ R} is the set of complex numbers; and

• Q ,
{
p
q ∈ R : p ∈ Z, q ∈ Z and q 6= 0

}
is the set of rational numbers.

A special notation is used for some subsets in R, namely, the intervals. That

is, given two real numbers a and b such that a < b, an interval is a set of one of

the following forms:

[a, b] , {x ∈ R : a 6 x 6 b}, (1.1)

]a, b] , {x ∈ R : a < x 6 b}, (1.2)

[a, b[ , {x ∈ R : a 6 x < b}, and (1.3)

]a, b[ , {x ∈ R : a < x < b}. (1.4)

Intervals and more elaborated subsets of R are studied in Section 1.3.

The cardinality of a set, which is a measure on the number of elements in the

set, can be finite or infinite.

Definition 1.2 (Cardinality). The cardinality of a setA is a measure on the

number of elements, denoted by |A|, and satisfies either |A| ∈ N, |A| = 0,

or |A| = +∞.

Without any surprise, sets whose cardinality is finite or infinite are referred to

as finite sets or infinite sets, respectively. The case of the empty set is an example

of a finite set, i.e., |∅| = 0. The set of natural numbers satisfies |N| =∞, whereas

the set of binary digits |{0, 1}| = 2. The notion of cardinality implies that the

elements of some sets can be counted. This holds clearly when the cardinality is

finite, nonetheless, even when the cardinality is infinite in some cases the elements

of a set can be counted. This observation leads to distinguishing between two

types of sets: countable and uncountable sets.

Definition 1.3 (Countable and uncountable sets). A set A is said to be

countable if and only if there exists an injective function f : A → N. When

such a function f exists and it is also bijective, the set A is said to be

countably infinite. Otherwise, the set A is said to be uncountable.

Note that the sets ∅, N, Z and Q are countable. More specifically, ∅ is finite,

whereas N, Z and Q are countably infinite. Alternatively, the sets R and C are

uncountable, and thus infinite. Every finite set is countable and thus, the des-

ignation “finite” is preferred instead of “countable” in this case. Nonetheless,

the designation “countable” is often reserved to mean both finite and “count-

ably infinite” sets. Every uncountable set is infinite and thus, the designation

“uncountably infinite” is often avoided to make room for “uncountable”.

Two sets can be compared in a similar way as two real numbers are compared.

The following definition introduces the notation for these comparisons.
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Definition 1.4 (Comparison). Given two sets A and B,

• the set A is said to be a subset of B, denoted by A ⊆ B or B ⊇ A, if

and only if for all a ∈ A, it holds that a ∈ B;

• the set A is said to be a proper subset of B, denoted by A ⊂ B or

B ⊃ A , if and only if A ⊆ B and there exists at least one element

b ∈ B such that b /∈ A;

• the set A is said to be identical to B, denoted by A = B, if and only if

A ⊆ B and A ⊇ B. The opposite is denoted by A 6= B.

From Definition 1.4, the following holds:

∅ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C. (1.5)

1.2 Basic Operations

1.2.1 Unions and Intersections

Union and intersection are two operations performed between two sets. These

operations are analogous to operations such as addition and subtraction in R.

These operations are defined hereunder.

Definition 1.5 (Unions and Intersections). Given two subsets A and B of

O,

• the union of the sets A and B, denoted by A∪ B, is a set that contains

all the elements of A and B, i.e.,

A ∪ B , {a ∈ O : a ∈ A ∨ a ∈ B} ; and (1.6)

• the intersection of the sets A and B, denoted by A ∩ B, is a set that

contains the common elements between A and B, i.e.,

A ∩ B , {a ∈ O : a ∈ A ∧ a ∈ B} . (1.7)

The union and the intersection of sets satisfy the following properties.

Theorem 1.6 (Properties). Let A, B and C be some sets. Then, the follow-

ing holds:

• Commutative Property

A ∪ B = B ∪ A and (1.8)

A ∩ B = B ∩ A. (1.9)
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• Associative Property

A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C) and (1.10)

A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C) . (1.11)

• Distributive Property

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) and (1.12)

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) . (1.13)

• Idempotent Property

A ∩A = A (1.14)

A ∪A = A (1.15)

Proof The proof of these statements follow immediately from the fact that

conjunction and disjunction are logic operations that exhibit the commutative,

associative, distributive and idempotent properties.

Proof of (1.8): Let x be an element of A ∪ B. Then,

x ∈ A ∪ B ⇐⇒ x ∈ A ∨ x ∈ B (1.16)

⇐⇒ x ∈ B ∨ x ∈ A (1.17)

⇐⇒ x ∈ B ∪ A, (1.18)

where the implication in (1.17) holds given the fact that disjunction is a com-

mutative operation.

Proof of (1.9): Let x be an element of A ∩ B. Then,

x ∈ A ∩ B ⇐⇒ x ∈ A ∧ x ∈ B (1.19)

⇐⇒ x ∈ B ∧ x ∈ A (1.20)

⇐⇒ x ∈ B ∩ A, (1.21)

where the implication in (1.20) holds given the fact that conjunction is a com-

mutative operation.

Proof of (1.10): Let x be an element of (A ∪ B) ∪ C. Then,

x ∈ (A ∪ B) ∪ C ⇐⇒ (x ∈ A ∪ B) ∨ x ∈ C (1.22)

⇐⇒ (x ∈ B ∨ x ∈ A) ∨ x ∈ C (1.23)

⇐⇒ x ∈ A ∨ x ∈ B ∨ x ∈ C (1.24)

⇐⇒ x ∈ A ∨ (x ∈ B ∨ x ∈ C) (1.25)

⇐⇒ x ∈ A ∨ x ∈ B ∪ C (1.26)

⇐⇒ x ∈ A ∪ (B ∪ C). (1.27)

Note that (1.24) implies also that x ∈ (A ∪ B) ∪ C ⇐⇒ x ∈ A ∪ B ∪ C. Hence,

A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C).
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Proof of (1.11): Let x be an element of (A ∩ B) ∩ C. Then,

x ∈ (A ∩ B) ∩ C ⇐⇒ (x ∈ A ∩ B) ∧ x ∈ C (1.28)

⇐⇒ (x ∈ B ∧ x ∈ A) ∧ x ∈ C (1.29)

⇐⇒ x ∈ B ∧ x ∈ A ∧ x ∈ C (1.30)

⇐⇒ x ∈ A ∧ (x ∈ B ∧ x ∈ C) (1.31)

⇐⇒ x ∈ A ∧ x ∈ B ∩ C (1.32)

⇐⇒ x ∈ A ∩ (B ∩ C). (1.33)

Note that (1.30) implies also that x ∈ (A ∩ B) ∩ C ⇐⇒ x ∈ A ∩ B ∩ C. Hence,

A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C).
Proof of (1.12): Let x be an element of (A ∪ B) ∩ C. Then,

x ∈ (A ∪ B) ∩ C ⇐⇒ x ∈ (A ∪ B) ∧ x ∈ C (1.34)

⇐⇒ (x ∈ A ∨ x ∈ B) ∧ x ∈ C (1.35)

⇐⇒ (x ∈ A ∧ x ∈ C) ∨ (x ∈ B ∧ x ∈ C) (1.36)

⇐⇒ (x ∈ A ∩ C) ∧ (x ∈ B ∩ C) (1.37)

⇐⇒ x ∈ (A ∩ C) ∪ (B ∩ C). (1.38)

Proof of (1.13): Let x be an element of (A ∩ B) ∪ C. Then,

x ∈ (A ∩ B) ∪ C ⇐⇒ x ∈ (A ∩ B) ∨ x ∈ C (1.39)

⇐⇒ (x ∈ A ∧ x ∈ B) ∨ x ∈ C (1.40)

⇐⇒ (x ∈ A ∨ x ∈ C) ∧ (x ∈ B ∨ x ∈ C) (1.41)

⇐⇒ (x ∈ A ∪ C) ∧ (x ∈ B ∪ C) (1.42)

⇐⇒ x ∈ (A ∪ C) ∩ (B ∪ C). (1.43)

Proof of (1.14): Let x be an element of A ∩A. Then,

x ∈ A ∩A ⇐⇒ x ∈ A ∧ x ∈ A (1.44)

⇐⇒ x ∈ A. (1.45)

Proof of (1.15): Let x be an element of A ∪A. Then,

x ∈ A ∪A ⇐⇒ x ∈ A ∨ x ∈ A (1.46)

⇐⇒ x ∈ A, (1.47)

which completes the proof.

1.2.2 Complements and Differences

Often, operations among sets are performed with respect to a set that contains

all the elements involved in the operation. Such a “reference” set is known as the

universal set and it is often denoted by O. Taking this into account, operations

such as the complement of a set can be defined.
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Definition 1.7 (Complements). Given two subsets A and B of the set O,

• the complement of the set A with respect to O, denoted by Ac, is a set

that contains all the elements in O except those in A, i.e.,

Ac , {a ∈ O : a 6∈ A} ; (1.48)

• the difference of the sets A and B, denoted by A \ B, is a set that

contains all the elements of A except those in B, i.e.,

A \ B , {a ∈ A : a 6∈ B} ; (1.49)

Definition 1.7 highlights the relevance of determining a universal set for cal-

culating the complement of a set. In the following, unless it is clear from the

context, a universal set is always specified. Note for instance that the comple-

ment of A with respect to the universal set is Ac = O \A, whereas with respect

to B, it is B \ A.

The simple operations of unions, intersections and complements establish the

foundations of the algebra of sets. The following results are easily obtained from

Definition 1.4, Definition 1.5 and Definition 1.7. Nonetheless, for the sake of

completeness, a proof is provided.

Theorem 1.8. Given a subset A of a set O, it holds that a ∈ A if and only

if a /∈ Ac, where the complement is with respect to O.

Proof The proof is an argumentum ad absurdum. That is, let a be an element

of A. Then, if a ∈ Ac, then, a ∈ A∩Ac = ∅, which is an absurdity. On the other

hand, let a be an element of Ac. Then, if a ∈ A, then, a ∈ A ∩ Ac = ∅, which

is also an absurdity as in the previous case. Hence, a ∈ A if and only if a 6∈ Ac.

This completes the proof.

Theorem 1.9. Given two subsets A and B of a set O, such that A ⊆ B, it

follows that Ac ⊇ Bc, where the complement is with respect to O.

Proof Let x be an element of A. Hence, from the assumption that A ⊆ B, the

following implications hold:

x ∈ A ⇒ x ∈ B and (1.50)

x /∈ B ⇒ x /∈ A. (1.51)

Now, assume that x ∈ Bc. Hence, from Theorem 1.8, it holds that x /∈ B. Hence,

from (1.51), it follows that x /∈ A, which implies x ∈ Ac (Theorem 1.8). Therefore

Bc ⊆ Ac, which completes the proof.
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Theorem 1.10. Given two subsets A and B of a set O, it holds that

A \ B = A ∩ Bc, (1.52)

where the complement is with respect to O.

Proof From Definition 1.7, the following holds:

A \ B = {a ∈ A : a 6∈ B} (1.53)

= {x ∈ O : x ∈ A ∧ x /∈ B} follows from A ⊆ O (1.54)

= {x ∈ O : x ∈ A ∧ x ∈ Bc} follows from Theorem 1.8 (1.55)

= A ∩ Bc, (1.56)

which completes the proof.

The difference of sets is not commutative, nonetheless, there exists an inter-

esting connection between difference of sets and complements, as shown by the

following theorem.

Theorem 1.11. Given the subsets A and B of O, it holds that

A \ B , Bc \ Ac, (1.57)

where the complement is with respect to O.

Proof Using Theorem 1.10, the following holds:

A \ B = A ∩ Bc (1.58)

= Bc ∩ (Ac)
c

(1.59)

= Bc \ Ac, (1.60)

which completes the proof.

1.2.3 De Morgan’s Laws

The following identities were introduced by Augustus de Morgan and play a key

role in the algebra of sets.

Theorem 1.12 (de Morgan Laws). Let A and B be two subsets of O. Then,

A ∪ B = (Ac ∩ Bc)c and (1.61)

A ∩ B = (Ac ∪ Bc)c , (1.62)

where the complement is with respect to O.



10 Algebra of Sets

Proof Let x be an element of (Ac ∩ Bc)c. Then,

x ∈ (Ac ∩ Bc)c ⇐⇒ x /∈ Ac ∩ Bc (1.63)

⇐⇒ ¬(x ∈ Ac ∩ Bc) (1.64)

⇐⇒ ¬(x ∈ Ac ∧ x ∈ Bc) (1.65)

⇐⇒ ¬(x ∈ Ac) ∨ ¬(x ∈ Bc) (1.66)

⇐⇒ (x /∈ Ac) ∨ (x /∈ Bc) (1.67)

⇐⇒ (x ∈ A) ∨ (x ∈ B) (1.68)

⇐⇒ x ∈ A ∪ B. (1.69)

Hence, x ∈ (Ac ∩ Bc)c if and only if x ∈ A ∪ B, which proves the equality in

(1.61). The proof of the second equality uses similar arguments. Let x be an

element of (Ac ∪ Bc)c. Then,

x ∈ (Ac ∪ Bc)c ⇐⇒ x /∈ Ac ∪ Bc (1.70)

⇐⇒ ¬(x ∈ Ac ∪ Bc) (1.71)

⇐⇒ ¬(x ∈ Ac ∨ x ∈ Bc) (1.72)

⇐⇒ ¬(x ∈ Ac) ∧ ¬(x ∈ Bc) (1.73)

⇐⇒ (x /∈ Ac) ∧ (x /∈ Bc) (1.74)

⇐⇒ (x ∈ A) ∧ (x ∈ B) (1.75)

⇐⇒ x ∈ A ∩ B, (1.76)

Hence, x ∈ (Ac ∪ Bc)c if and only if x ∈ A ∩ B, which completes the proof.

The relevance of Theorem 1.12 is that it allows expressing the union of sets

in terms of complements and intersections; and the intersection of sets in terms

of complements and unions. This might appear trivial but it actually plays a

central role in many of the proofs presented in this work.

1.2.4 Symmetric Difference

The symmetric difference is defined as follows.

Definition 1.13 (Symmetric Difference). Given two subsets A and B of

the set O, the symmetric difference between A and B, denoted by A4B
contains the elements that belong only to either A or B. That is,

A4B , {a ∈ O : a ∈ A \ B ∨ a ∈ B \ A} . (1.77)

The following theorem provides an enlightening interpretation of the symmet-

ric property.
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Theorem 1.14. Given the subsets A and B of O, it holds that

A4B = B4A = (A ∪ B) ∩ (A ∩ B)
c
, (1.78)

where the complement is with respect to O.

Proof From Definition 1.13, it follows that

A4B = (A \ B) ∪ (B \ A) (1.79)

= B4A. (1.80)

Hence, from Theorem 1.10 and Theorem 1.12, the following holds:

(A \ B) ∪ (B \ A) = (A ∩ Bc) ∪ (B ∩ Ac) (1.81)

= (A ∪ (B ∩ Ac)) ∩ (Bc ∪ (B ∩ Ac)) (1.82)

= ((A ∪ B) ∩ (A ∪Ac)) ∩ ((Bc ∪ B) ∩ (Bc ∪ Ac)) (1.83)

= ((A ∪ B) ∩ O) ∩ (O ∩ (Bc ∪ Ac)) (1.84)

= (A ∪ B) ∩ (Bc ∪ Ac) (1.85)

= (A ∪ B) ∩ (B ∩ A)
c
, (1.86)

which completes the proof.

1.2.5 Disjoint Sets

Two sets are disjoint if they do not possess elements in common.

Definition 1.15 (Disjoint Sets). Given two sets A and B, they are said to

be disjoint if and only if

A ∩ B = ∅. (1.87)

The following theorem expresses the union of two sets by an equivalent union

of two disjoints sets. This trick reveals to be particularly useful in the following

chapters.

Theorem 1.16. The union of any two subsets A and B of a set O can be

expressed as the union of two disjoint sets: A and Ac ∩ B. That is,

A ∪ B = A ∪ (Ac ∩ B) , (1.88)

where the complement is with respect to O.

Proof The proof follows from verifying that A and Ac∩B are disjoint sets, that

is,

A ∩ (Ac ∩ B) = (A ∩Ac) ∩ B
= ∅ ∩ B
= ∅, (1.89)
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and the fact that,

A ∪ (Ac ∩ B) = (A ∪Ac) ∩ (A ∪ B)

= O ∩ (A ∪ B)

= A ∪ B, (1.90)

where O is the set containing the elements of both A and B. This completes the

proof.

Theorem 1.16 can be generalized to countable unions. Given a sequence of

subsets A1,A2,A3, . . . of a set O, it follows from Theorem 1.16 that their union

satisfies

A1 ∪ A2 ∪ . . . = A1 ∪ (Ac
1 ∩ A2) ∪ (Ac

1 ∩ Ac
2 ∩ A3) ∪ . . . , (1.91)

where the complement is with respect to the set O. Note that the sets A1,

(Ac
1 ∩ A2), (Ac

1 ∩ Ac
2 ∩ A3), . . . are disjoint sets.

1.2.6 Cartesian Products

Some sets are formed by elements that are tuples. More specifically, each com-

ponent of a tuple might be an element of a given set. Sets whose elements are

tuples can be obtained by an operation referred to as Cartesian product.

Definition 1.17 (Cartesian Products). Given two subsets A and B, their

Cartesian products are denoted by A× B and B ×A such that

A× B , {(a, b) : a ∈ A and b ∈ B} and (1.92)

B ×A , {(a, b) : a ∈ B and b ∈ A}. (1.93)

Note that the Cartesian product of A and B is a set whose elements are ordered

pairs and thus, when A 6= B it holds that A× B 6= B × A. Consider a sequence

of sets A1,A2, . . . ,An. Hence, the Cartesian product A1×A2× . . .×An is often

denoted by

n∏
s=1

As and

n∏
s=1

As , {(a1, a2, . . . , an) : ∀t ∈ {1, 2, . . . , n}, at ∈ At} . (1.94)

When all sets are identical, i.e., As = A for all s ∈ {1, 2, . . . , n}, the notation

can be simplified to

An ,
n∏
t=1

A = {(a1, a2, . . . , an) : ∀t ∈ {1, 2, . . . , n}, at ∈ A} . (1.95)

Given a Cartesian product of the sets A1, A2, . . ., An, a subset of such Carte-

sian product often implies a relation between the elements of A1, A2, . . ., An−1
and An. The following definition formalizes this intuition in the case of two sets.
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Definition 1.18 (Binary Relations). Given two subsets A and B, a binary

relation between A and B is determined by a set C ⊆ A× B. The elements

a ∈ A and b ∈ B are said to be related if and only if (a, b) ∈ C.

Binary relations are useful to describe several mathematical objects, for in-

stance functions, as discussed in Section 1.7.

1.2.7 The Empty Set and the Power Set

The empty set ∅ has been defined in Section 1.1 as the set that does not contain

any element. It has also naturally appeared in previous calculations, e.g., the

intersection of two disjoints sets.

Alternatively, given a set A, the power set of A is denoted by 2A and it is

defined hereunder.

Definition 1.19 (Power Set). Given a set A, the power set of A, denoted

by 2A, is the set of all possible subsets of A.

Some of the properties of the empty set are listed by the following theorem.

Theorem 1.20. Let A be a subset of O. Hence, the following holds:

|∅| = 0; (1.96)

∅ ⊆ A; (1.97)

∅ ∪ A = A ∪ ∅ = A; (1.98)

A ∩ ∅ = ∅ ∩ A = ∅; (1.99)

2∅ = {∅}; (1.100)

∅ × A = A× ∅ = ∅; and (1.101)

A ⊆ ∅ ⇐⇒ A = ∅. (1.102)

Proof See Homework 1

1.3 Subsets of Rn

1.3.1 Balls

Given a point in x ∈ Rn, with n ∈ N, and a positive real r < ∞, a ball is a

set that contains all the points whose Euclidian distance to x is bounded by r.

The point x is often called the center of the ball and the real r is referred to

as the radius. When n = 3, the resulting ball is a geometric object that is as

familiar as the shape of an orange or a volley ball. Hence, it is easy to see the

justification of this denomination for these sets. Nonetheless, in the case when
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n = 1 or n = 2, these sets are simply intervals and disks, respectively. In higher

dimensions, these sets receive the generic name ball. Balls in Rn can be open or

closed.

Definition 1.21 (Open ball in Rn). Given a point x = (x1, x2, . . . , xn) ∈
Rn, with n ∈ N, and a real r, with 0 < r <∞, the set

B(x, r) , {y ∈ Rn : ||x− y||2 < r} (1.103)

is an open ball.

Open balls are properly defined only for 0 < r < ∞. The case r = 0 leads to

an implication in which the norm ||x− y||2 in (1.103) is negative, which leads to

the equality B(x, 0) = ∅, for all x ∈ Rn. The case in which r = ∞ corresponds

to a degenerate ball that is equivalent to the whole Euclidian space Rn.

Definition 1.22 (Closed ball in Rn). Given a point x = (x1, x2, . . . , xn) ∈
Rn, with n ∈ N, and a positive real r, with 0 6 r <∞ , the set

B̄(x, r) , {y ∈ Rn : ||x− y||2 6 r} (1.104)

is a closed ball.

Contrary to the case of open balls, closed balls with r = 0 are nonempty. The

case r = 0 leads to the equality B̄(x, 0) = {x}, which is a singleton. Moreover,

it holds that for all x ∈ Rn, with n ∈ N, and for all r ∈ [0,+∞[,

B(x, r) ⊂ B̄(x, r). (1.105)

1.3.2 Boxes

Boxes are subsets of Rn, with n ∈ N, whose denomination is also due to their

geometry. When n = 3, boxes are regular polyhedra whose faces are pair-wise

pararell and parallel to one of the axes of the Cartesian coordinates. This is

despite the fact that when n = 1, a box is simply an interval; and when n = 2,

a box is a rectangle. For higher dimensions, these sets are generally referred to

as boxes.

Definition 1.23 (Generic Box in Rn). Given n intervals R1, R2, . . ., Rn
in R, such that for all i ∈ {1, 2, . . . , n}, interval Ri is of the form [ai, bi],

]ai, bi[, ]ai, bi], or [ai, bi[, with −∞ < ai < bi < +∞, the set

R , R1 ×R2 × . . .×Rn, (1.106)

is a generic box, or simply a box.

As in the case of balls, boxes can be open or closed. An open box satisfies the

following definition.
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Definition 1.24 (Open Box in Rn). Given n open intervals in R of the

form ]a1, b1[, ]a2, b2[, . . ., ]an, bn[, with n ∈ N and −∞ < ai < bi < +∞ for

all i ∈ {1, 2, . . . , n}, the set

R , ]a1, b1[ × ]a2, b2[ × . . . × ]an, bn[, (1.107)

is an open box.

Alternatively, a closed box can be defined as follows.

Definition 1.25 (Closed Box in Rn). Given n closed intervals in R of the

form [a1, b1], [a2, b2], . . ., [an, bn], with n ∈ N and −∞ < ai < bi < +∞ for

all i ∈ {1, 2, . . . , n}, the set

R , [a1, b1] × [a2, b2] × . . . × [an, bn], (1.108)

is a closed box.

1.3.3 Elementary Sets

An elementary set is a subset of Rn, with n ∈ N, that can be obtained by finite

union of boxes.

Definition 1.26 (Elementary Sets). An elementary set A is a subset of

Rn, with n ∈ N, for which there always exists a sequence of generic boxes

A1, A2, . . ., Am, with m <∞, such that A =
⋃m
t=1At.

Elementary sets exhibit an interesting property. The fundamental operations

between elementary sets, e.g., union, intersection, set difference and set sym-

metric difference, lead to elementary sets. The following theorem formalizes this

statement.

Theorem 1.27 (Properties of elementary sets). Let A and B be two ele-

mentary subsets of Rn, with n ∈ N. Then, the following sets A∪B; A∩B;

A \ B; and A4B, are elementary sets.

Proof See Homework 1.

1.3.4 Open Sets and Closed Sets

The reader is certainly acquainted with the notions of open and closed intervals,

which are respectively open and closed subsets in R. In the previous section,

open and closed intervals were used to build open and closed boxes, which are

examples of open and closed subsets in Rn, with n ∈ N. Other examples are

open balls and closed balls in Rn. In this section, the definitions of open and
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closed boxes (and balls) are extended to build a formal definition of both open

and closed sets in Rn.

Definition 1.28 (Open sets in Rn). A subset A of Rn, with n ∈ N, is said

to be open if for all x ∈ A, there a exists a real r > 0 such that

B(x, r) ⊂ A. (1.109)

Note that the Definition 1.28 is stated in terms of open balls, but the same

effect is obtained if such a definition is made in terms of open boxes. The disa-

vantage of such an alternative is the need of specifying many more parameters.

More specifically, describing a box requires n intervals (2n real numbers) instead

of a center for the ball, which is a point in Rn (n real numbers), and the radius

(one real number). From this perspective, Definition 1.28 is not unique but it is

certainly one of the simplest definitions.

The definition of a closed set is given in terms of its complement.

Definition 1.29 (Closed sets in Rn). A subset A of Rn, with n ∈ N, is

said to be closed if Ac is open, where the complement is with respect to Rn.

The following theorem shows that countable unions of open sets form open

sets.

Theorem 1.30 (Unions of open sets). Let C be a countable set such that

for all t ∈ C, At is an open set. Hence, the union⋃
t∈C
At (1.110)

is an open set.

Proof See Homework 1.

Alternatively, countably infinite intersections of open sets do not necessarily

form open sets.

Example 1.31. Consider a pair (a, b) ∈ R2, with −∞ < a < b < +∞.

For all n ∈ N, let An ,
]
a− 1

n , b+ 1
n

[
be an open set. Then, note that

∞⋂
t=1

At = [a, b], which is a closed set.

Nonetheless, finite intersections of open sets form an open set.

Theorem 1.32 (Intersections of open sets). Let A1, A2, . . ., Ak, be an
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arbitrary sequence of open sets, with k <∞. Hence, the intersection

k⋂
t=1

At (1.111)

form an open set.

Proof See Homework 1.

Using Theorem 1.30, the following shows that countable intersections of closed

sets form closed sets.

Theorem 1.33 (Intersections of closed sets). Let C be a countable set such

that for all t ∈ C, At is a closed set. Hence, the intersection⋂
t∈C
At (1.112)

is a closed set.

Proof Note that for all t ∈ C, Ac
t is an open set. Hence, from Theorem 1.30, it

holds that
⋃
t∈C Ac

t is an open set, and therefore, its complement is closed. Thus,

using Theorem 1.12, it follows that(⋃
t∈C
Ac
t

)c

=
⋂
t∈C
At (1.113)

is closed, which completes the proof.

Alternatively, countably infinite unions of closed sets do not necessarily form

closed sets.

Example 1.34. Given a pair (a, b) ∈ R2, with a < b− 2, let for all n ∈ N,

An ,
[
a+ 1

n , b−
1
n

]
be a closed set. Note that

∞⋃
t=1

At =]a, b[, which is an

open set.

Nonetheless, finite unions of closed sets form a closed set.

Theorem 1.35 (Unions of closed sets). Let A1, A2, . . ., Ak, be an arbitrary

sequence of closed sets, with k <∞. Hence, the union

k⋃
t=1

At (1.114)

forms a closed set.

Proof Note that Ac
1, Ac

2, . . ., Ac
k is a finite sequence of open sets. Hence, from
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Theorem 1.32, it holds that
⋂k
t=1Ac

t is an open set, and therefore, its complement

is closed. Thus, using Theorem 1.12, it follows that(
k⋂
t=1

Ac
t

)c

=

k⋃
t=1

At (1.115)

is closed, which completes the proof.

Note that subsets of Rn, with n ∈ N, might not necessarily be open or closed.

In R, an interval of the form [0, 1[ is neither closed nor open. It is said to be

closed to the left and open to the right. The case of the empty set is even more

interesting as shown by the following theorem.

Theorem 1.36. The empty set in Rn, with n ∈ N, is both closed and open.

Proof See Homework 1.

1.3.5 Bounded Sets and Compact Sets

A set is said to be bounded in Rn, with n ∈ N, if it is a subset of a ball centered

somewhere, e.g., at the origin, and whose radius is finite.

Definition 1.37 (Bounded Sets). A set A ⊂ Rn, with n ∈ N, is said to be

bounded if there exists a real r <∞ such that

A ⊆ B(0, r), (1.116)

where 0 = (0, 0, . . . , 0) ∈ Rn.

Sets that are both closed and bounded form a particular class of sets in Rn,

i.e., compact sets.

Definition 1.38 (Compact sets). A set A ⊂ Rn, with n ∈ N, is said to be

compact if it is closed and bounded.

Note that the following theorem is an immediate consequence of Definition 1.38,

Theorem 1.33, and Theorem 1.35.

Theorem 1.39 (Union and Intersection of Compact Sets). A finite union

of compact sets forms a compact set. A countable intersection of compact

sets forms a compact set.

1.3.6 Interior, Closure, and Boundary

In order to define the interior of a set in Rn, with n ∈ N, consider first the

definition of an interior point.
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Definition 1.40 (Interior Point). Given a set A ⊂ Rn, with n ∈ N, the

point x ∈ Rn is said to be an interior point of A if there exists an r > 0

such that

B(x, r) ⊂ A. (1.117)

From Definition 1.28, it follows that all elements of an open set are interior

points. In a nutshell, a point is interior to a set if it is always possible to center

an open ball in such a point and ensure that the ball is a subset of the set. The

union of all interior points of a set form its interior.

Definition 1.41 (Interior of a set). The interior of a set A ⊂ Rn, with

n ∈ N, denoted by intA, is

intA , {x ∈ A : ∃r > 0, B(x, r) ⊂ A} (1.118)

Given a nonempty set A ⊂ Rn, with n ∈ N, it holds that intA is a proper

subset of A if A is closed. On the other hand, intA is identical to A if A is open.

The definition of the closure of a set is in terms of the definition of points of

closure, also known as closure points or adherent points.

Definition 1.42 (Closure Point). Given a set A ⊂ Rn, with n ∈ N, the

point x ∈ Rn is said to be a closure point of A if for all r > 0, there exists

a point y ∈ A, such that

y ∈ B(x, r). (1.119)

A closure point of a set is a point that is arbitrarily close to at least one

element of the set. This said, any interior point is a closure point. The reunion

of all closure points of a given set forms its closure.

Definition 1.43 (Closure of a set). The closure of a set A ⊂ Rn, with

n ∈ N, denoted by cloA, is

cloA , {x ∈ Rn : ∀r > 0 ∃y ∈ A, y ∈ B(x, r)} (1.120)

Given a nonempty set A ⊂ Rn, with n ∈ N, it holds that A ⊆ cloA, with

strict inclusion if A is open. On the other hand, cloA is identical to A if A is

closed. The following theorem strengthen this observation.

Theorem 1.44. Consider a set A ⊂ Rn, with n ∈ N. Then, A is closed if

and only if A = cloA.

Proof See Homework 1.
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Example 1.45. Consider for instance, a subset A of Rn, with n ∈ N, that

satisfies |A| = k, with k < ∞. From Definition 1.41 and Definition 1.43, it

follows that intA = ∅ and cloA = A.

The following theorem formalizes this observation.

Theorem 1.46. Given a set A ⊂ Rn, with n ∈ N, it holds that intA is

always open; cloA is always closed; and

intA ⊆ cloA. (1.121)

Proof See Homework 1.

Example 1.45 highlights a special class of points in Rn often referred to as

isolated points.

Definition 1.47 (Isolated Point). Given a set A ⊂ Rn, with n ∈ N, the

point x ∈ Rn is said to be an isolated point of A if there exists an r > 0

such that

A ∩ B(x, r) = {x}. (1.122)

The sets that do not contain isolated points form a particular class of sets.

Definition 1.48 (Perfect Set). A subset of Rn, with n ∈ N, that does not

contain isolated points is said to be perfect.

The definition of boundary is given in terms of the definition of boundary

point.

Definition 1.49 (Boundary Point). Given a set A ⊂ Rn, with n ∈ N, the

point x ∈ Rn is said to be a boundary point of A if

x ∈ cloA \ intA. (1.123)

Using Definition 1.49, the definition of boundary can be stated as follows.

Definition 1.50 (Boundary of a set). The boundary of a set A ⊂ Rn, with

n ∈ N, denoted by bouA, is

bouA , {x ∈ Rn : x ∈ cloA \ intA} (1.124)

Using the notion of boundary of a set, a relaxation of the definition of disjoints

sets (Definition 1.15) can be formalized.

Definition 1.51 (Almost disjoint sets). Two subsets A and B of Rn, with
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n ∈ N, are almost disjoint if

intA ∩ intB = ∅. (1.125)

1.4 Partitions and Covers

A partition of a set is essentially a collection of disjoints subsets that satisfy the

following definition.

Definition 1.52 (Partition). Given a set A, let C be a set such that for all

c ∈ C, Bc is a non-empty subset of A. These subsets form a partition of A
if for all pairs (i, j) ∈ C2, with i 6= j, Bi ∩ Bj = ∅; and⋃

c∈C
Bc = A. (1.126)

The empty set has exactly one partition, which corresponds to the empty set

itself. A trivial partition of a nonempty set A is the set A itself. The smallest

partition of A, containing the proper subset B is formed by the sets B and B\A.

The largest partition of a set can be constructed as follows. Consider for in-

stance a setA and define for all a ∈ A the subset Ba = {a}. Hence,
⋃
a∈A Ba = A.

Thus, these subsets form the biggest partition of A.

When the set C in Definition 1.52 is countable, the corresponding partition

is said to be a countable partition. Otherwise, the partition is said to be an

uncountable partition.

Example 1.53. Given a set A = [a, b], with (a, b) ∈ R2 and a < b, let

C = [0, 1], and for all t ∈ C, let At = {a+ t(b− a)} be subsets of A. These

subsets form an uncountable partition of A.

Alternatively, a cover can be defined as follows.

Definition 1.54 (Covers and Exact Cover). Given a set A that satisfies

A ⊆
⋃
c∈C
Bc, (1.127)

the sets Bc, for all c ∈ C, form a cover of A. A cover that satisfies⋃
c∈C
Bc ⊆ A, (1.128)

is an exact cover.

From Definition 1.52 and Definition 1.54, it follows that every partition of a

given set forms an exact cover of such a set. Nonetheless, the opposite is not true

as sets forming a cover are not necessarily disjoint. Essentially, the sets Bc, for all
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c ∈ C, form a cover of A if for all a ∈ A, there exists at least one j ∈ C such that

a ∈ Bj . When the set C in Definition 1.54 is countable, the corresponding cover

is said to be a countable cover. Otherwise, the cover is said to be an uncountable

cover.

Example 1.55. Given a set A = [a, b], with (a, b) ∈ R2 and a < b, let

C = [0, 1] and for all t ∈ C, let At = [a, a+ t(b− a)] be subsets of A = [a, b].

These subsets form an uncountable cover of A.

Covers of compact sets in Rn, with n ∈ N, exhibit a unique property.

Theorem 1.56 (Heine-Borel). Let A ∈ Rn, with n ∈ N, be a compact set,

and assume that

A ⊂
⋃
t∈C
Bt (1.129)

where C is a set such that for all t ∈ C, Bt is an open set. Then, there exists

a finite k ∈ N such that

A ⊂
k⋃
j=1

Btj , (1.130)

where, for all j ∈ {1, 2, . . . , k}, tj ∈ C.

Proof See Homework 1.

Theorem 1.56 states that from every cover (Definition 1.54) formed by in-

finitely many open sets of a compact set, it is always possible to obtain a cover

formed by a finite number of those open sets. The first statement of Theorem 1.56

is attributed to Eduard Heine. Nonetheless, the first formal proof, in the case

in which C is countable, is attributed to Émile Borel in 1895. The current form

of this theorem is due to contributions of Pierre Cousin, Henri Lebesgue, and

Arthur Moritz Schoenflies.

1.5 Sequences of Sets

1.5.1 Monotonic Sequences of Sets

Monotonic sequences of sets are either increasing or decreasing. These can be

formally defined as follows.

Definition 1.57 (Increasing/Decreasing Sequences). Given a setA, a count-

able sequence of sets A1,A2, . . . is said to form an increasing sequence whose

limit is A, if and only if

(a) A1 ⊂ A2 ⊂ A3 ⊂ . . . and
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(b)

∞⋃
t=1

At = A.

This is denoted by An ↑ A. Alternatively, they are said to form a decreasing

sequence whose limit is A, if and only if

(c) A1 ⊃ A2 ⊃ A3 ⊃ . . . and

(d)

∞⋂
t=1

At = A.

This is denoted by An ↓ A.

The following examples show an increasing sequence of closed intervals and a

decreasing sequence of open intervals, respectively.

Example 1.58. Given a pair (a, b) ∈ R2, with a < b− 2, the open interval

]a, b[ can be shown to be the limit of an increasing sequence of closed in-

tervals. Assume for instance that for all n ∈ N, An ,
[
a+ 1

n , b−
1
n

]
. Note

that A1 ⊂ A2 ⊂ A3 ⊂ . . . and

∞⋃
t=1

At =]a, b[. Thus,

[
a+

1

n
, b− 1

n

]
↑ ]a, b[. (1.131)

Example 1.59. Given a pair (a, b) ∈ R2, with a < b, the closed interval

[a, b] can be shown to be the limit of a decreasing sequence of open intervals.

Assume for instance that for all n ∈ N, An ,
]
a− 1

n , b+ 1
n

[
. Then, note

that A1 ⊃ A2 ⊃ A3 ⊃ . . . and

∞⋂
t=1

At = [a, b]. Thus,

]
a− 1

n
, b+

1

n

[
↓ [a, b]. (1.132)

The De Morgan’s laws (Theorem 1.12) lead to the following implications.

Theorem 1.60. Consider an infinite sequence of sets A1,A2, . . .. Then,

(i) If An ↑ A, then Ac
n ↓ Ac; and

(ii) If An ↓ A, then Ac
n ↑ Ac.

Proof To prove (i), note that if An ↑ A, it follows that A1 ⊂ A2 ⊂ A3 ⊂ . . . and
∞⋃
t=1

At = A. From Theorem 1.9, the former implies that Ac
1 ⊃ Ac

2 ⊃ Ac
3 ⊃ . . ..
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Hence, from Theorem 1.12, it follows that

Ac =

( ∞⋃
n=1

An

)c

=

∞⋂
n=1

Ac
n. (1.133)

This leads to the conclusion that Ac
n ↓ Ac.

To prove (ii), note that if An ↓ A, it follows that A1 ⊃ A2 ⊃ A3 ⊃ . . . and
∞⋂
t=1

At = A. From Theorem 1.9, the former implies that Ac
1 ⊂ Ac

2 ⊂ Ac
3 ⊂ . . .,

whereas the latter, from Theorem 1.12, implies that

Ac =

( ∞⋂
n=1

An

)c

=

∞⋃
n=1

Ac
n. (1.134)

This leads to the conclusion that Ac
n ↑ Ac and completes the proof.

1.5.2 Limits of Sequences of Sets

The notion of a limit in a sequence of sets is analogous to the notion of limit in

a sequence of real numbers. The following definition unveils this analogy.

Definition 1.61. Consider a countable sequence of sets A1,A2,A3, . . ..

Then, the lower-limit of the sequence is

lim inf
n
An ,

∞⋃
m=1

∞⋂
k=m

Ak (1.135)

and the upper-limit of the sequence is

lim sup
n
An ,

∞⋂
m=1

∞⋃
k=m

Ak. (1.136)

Given a countable sequence of sets A1,A2,A3, . . . and a set B such that B ⊆
lim infnAn, then there always exists a k ∈ N, such that for all n > k, it holds

that B ⊂ An. More specifically, B ⊆ lim infnAn if and only if for all n ∈ N \ N
it holds that B ⊂ An, with N ⊂ N, a finite subset.

Alternatively, given a countable sequence of sets A1,A2,A3, . . . and a set B
such that B ⊆ lim supnAn, then for all k ∈ N, there always exists an integer

n > k such that B ⊂ An. More specifically, B ⊆ lim supnAn if and only if for all

n ∈ N it holds that B ⊂ An, with N ⊂ N an infinite subset.

Example 1.62. Consider a countable sequence of sets A1,A2,A3, . . . such
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that for all n ∈ N,

An =

{ ]−1
n , 1

]
if n is odd]

−1, 1
n

]
if n is even.

(1.137)

Hence, for all m ∈ N, the following holds:

∞⋃
n=m

An =

∞⋃
n=0

(Am+2n ∪ Am+2n+1) (1.138)

=

( ∞⋃
n=0

Am+2n

)
∪

( ∞⋃
n=0

Am+2n+1

)
and (1.139)

∞⋂
n=m

An =

∞⋂
n=0

(Am+2n ∩ Am+2n+1) (1.140)

=

( ∞⋂
n=0

Am+2n

)
∩

( ∞⋂
n=0

Am+2n+1

)
. (1.141)

Then, if m is even,

∞⋃
n=m

An =

( ∞⋃
n=0

]
−1,

1

m+ 2n

])
∪

( ∞⋃
n=0

]
−1

m+ 2n+ 1
, 1

])
(1.142)

=

]
−1,

1

m

]
∪
]
− 1

m+ 1
, 1

]
(1.143)

= ]− 1, 1] and (1.144)
∞⋂
n=m

An =

( ∞⋂
n=0

]
−1,

1

m+ 2n

])
∩

( ∞⋂
n=0

]
−1

m+ 2n+ 1
, 1

])
(1.145)

= ]−1, 0] ∩ [0, 1] (1.146)

= {0}. (1.147)

Alternatively, if m is odd,

∞⋃
n=m

An =

( ∞⋃
n=0

]
−1

m+ 2n
, 1

])
∪

( ∞⋃
n=0

]
−1,

1

m+ 2n+ 1

])
(1.148)

=

]
− 1

m
, 1

]
∪
]
−1,

1

m+ 1

]
(1.149)

= ]− 1, 1] and (1.150)
∞⋂
n=m

An =

( ∞⋂
n=0

]
−1

m+ 2n
, 1

])
∩

( ∞⋂
n=0

]
−1,

1

m+ 2n+ 1

])
(1.151)

= [0, 1] ∩ ]−1, 0] (1.152)

= {0}. (1.153)
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This implies that for all m ∈ N,

∞⋃
n=m

An = ]− 1, 1], and (1.154)

∞⋂
n=m

An = {0}. (1.155)

Thus, the upper-limit of the sequence is

lim sup
n
An =

∞⋂
m=1

∞⋃
n=m

An =

∞⋂
m=1

]− 1, 1] =]− 1, 1], (1.156)

and the lower limit of the sequence is

lim inf
n
An =

∞⋃
m=1

∞⋂
n=m

An =

∞⋃
m=1

{0} = {0}. (1.157)

In general, the upper and lower limits satisfy the following identities.

Theorem 1.63 (Complements of Limits). Consider a countable sequence of

sets A1,A2,A3, . . .. Then,(
lim sup

n
An
)c

= lim inf
n
Ac
n, and (1.158)(

lim inf
n
An
)c

= lim sup
n
Ac
n. (1.159)

Proof The proof is obtained using the De Morgan’s identities (Theorem 1.12).

That is,

(
lim sup

n
An
)c

=

( ∞⋂
m=1

∞⋃
n=m

An

)c

(1.160)

=

∞⋃
m=1

( ∞⋃
n=m

An

)c

(1.161)

=

∞⋃
m=1

∞⋂
n=m

Ac
n (1.162)

= lim inf
n
Ac
n (1.163)
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and (
lim inf

n
An
)c

=

( ∞⋃
m=1

∞⋂
n=m

An

)c

(1.164)

=

∞⋂
m=1

( ∞⋂
n=m

An

)c

(1.165)

=

∞⋂
m=1

∞⋃
n=m

Ac
n (1.166)

= lim sup
n
Ac
n, (1.167)

which completes the proof.

The following Theorem shows that the lower limit is a subset of the upper limit.

Theorem 1.64 (Inclusions). Consider a countable sequence of sets A1, A2,

A3, . . .. Then,

lim inf
n
An ⊆ lim sup

n
An. (1.168)

Proof Note that if B ⊂ lim infnAn, it follows that there exits an n ∈ N such

that for all k > n, B ⊂ Ak. This implies that for all n ∈ N, there exists at least

one k > n such that B ⊂ Ak, which implies that B ⊂ lim supnAn. This shows

that lim infnAn ⊆ lim supnAn.

When the upper and lower limit are identical, it is said that a limit exits. The

following theorem introduces a couple of cases in which a limit exits.

Theorem 1.65. Consider a countable sequence of sets A1, A2, A3, . . ..

Then, if An ↑ A or An ↓ A, it follows that

lim inf
n
An = lim sup

n
An. (1.169)

Proof Consider that An ↑ A. Then, it follows that A1 ⊂ A2 ⊂ A3 ⊂ . . ., which

implies that for all m > 0,

(a)

∞⋃
n=m

An = A; and

(b)

∞⋂
n=m

An = Am.

From (a), it follows that

lim sup
n
An =

∞⋂
m=1

∞⋃
n=m

An =

∞⋂
m=1

A = A, (1.170)
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and from (b), it follows that

lim inf
n
An =

∞⋃
m=1

∞⋂
n=m

An =

∞⋃
m=1

Am = A. (1.171)

The proof in the case in which An ↓ A follows similar steps, and this completes

the proof.

1.6 Set Fields and σ-fields

In order to introduce the notion of set fields and σ-fields, some new notations

must be introduced. In the following, sets whose elements are sets are denoted

by calligraphic script letters, e.g., A , B, C , . . . , Z . Thus, the notation A ∈ A

denotes that the set A is an element of the set A . Moreover, both A and A are

referred to as sets and further distinction is made only when needed.

Given a set O, a set field or a set algebra is a set F of subsets of O that

satisfy the axiom of closure under complements and under finite unions. A formal

definition is provided hereunder.

Definition 1.66 (Set Field). Let F be a set of subsets of O. Then, F is

said to be a set field if it is closed under complements and finite unions,

that is,

• O ∈ F ;

• ∀A ∈ F , Ac ∈ F ; and

• for all sequences of subsets A1,A2, . . . ,An in F ,

n⋃
t=1

At ∈ F , (1.172)

where n <∞, and complements are with respect to O.

Note that if F is a set field of O, it holds from the definition that O ∈ F and

thus, Oc = ∅ ∈ F . That is, the empty set is part of any set field.

Note that set fields are also closed under finite intersections. Consider for

instance the sets A1,A2, . . . ,An in F , with n <∞, then

n⋂
i=1

Ai =

(
n⋃
i=1

Ac
i

)c

∈ F , (1.173)

which follows from the fact that set fields are closed under complements and

finite unions.

A σ-field is a set field whose elements satisfy the axiom of closure under count-

able unions.
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Definition 1.67 (σ-field). Let F be a set of subsets of O. Then, F is

said to be a σ-field (or set σ-algebra) if it is closed under complements and

countably infinite unions, that is,

• O ∈ F ;

• ∀A ∈ F , Ac ∈ F ; and

• for all countable sequences of subsets A1,A2, . . . in F ,

∞⋃
t=1

At ∈ F .

Following the same reasoning as above, it follows that every σ-field contains

the empty set; and every σ-field is closed under countable intersections.

The largest σ-field on a set O is the collection of all possible subsets of O,

Often this collection is referred to as the power set (Definition 1.19) of O and it

is denoted by 2O. Alternatively, the smallest σ-field on a set O is the collection

of two sets: O and the empty set ∅.
Given a subset A ⊂ O, the smallest σ-field F on O containing A is the

collection {A, Ac, O, ∅}. Note that if G is a σ-field on O that contains A, then it

also contains Ac,O and ∅, and thus, F ⊂ G . Hence, the σ-field F is contained

in any σ-field that contains A. That is, F is the smallest σ-field on O containing

A.

Given a collection S of subsets of O, the smallest σ-field containing S is

referred to as the σ-field induced by S , and it is denoted by σ(S ).

Given two σ-fields F and G , with G ⊂ F , it is said that G is a sub σ-field of

F and F is a refinement of G .

A σ-field that plays a key role in the following chapters is the Borel σ-field.

Definition 1.68 (Borel σ-Field). The Borel σ-field on Rn, with n ∈ N, is

the smallest σ-field on Rn containing all open subsets of Rn.

Note that in Section 1.5.1, it has been shown that in R, intervals of the form

[a, b], ]a, b], [a, b[, and ]a, b[, with (a, b) ∈ R2 and a < b, can be obtained as

the limit of decreasing sequences of open sets. Similarly, by the closeness under

complements, it could be verified that B(R) also contains the sets ] − ∞, a[,

]−∞, a], ]b,∞[ and [b,∞[.

Borel σ-fields can be defined in any subset of R. The Borel σ-field in a specific

interval A ∈ B(R) is denoted by

B(A) , {A ∩ B : B ∈ B(R)}. (1.174)

Hence, B(A) is a σ-field on A.

Set operations among σ-fields might form other σ-fields. This is the case of

the intersection, but not necessarily the case of unions. The following theorems

highlight these observations.
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Theorem 1.69. Let F and G be two σ-fields of O. Then, F ∩ G is also a

σ-field of O.

Proof First, note that O ∈ F and O ∈ G due to the assumptions that F and

G are both σ-fields. Hence, O ∈ F ∩ G . Second, note that for all A ∈ F ∩ G ,

it holds that A ∈ F and A ∈ G . From the assumption that both F and G are

σ-fields, it holds that Ac ∈ F and Ac ∈ G . Therefore, Ac ∈ F ∩ G .

Finally, note that for all sequences of subsets A1,A2, ... in F ∩ G , it holds

that ∀t ∈ N, At ∈ F and At ∈ G . This implies
⋃∞
t=1At ∈ F and

⋃∞
t=1At ∈ G .

Therefore
⋃∞
t=1At ∈ F ∩ G . This verifies that F ∩ G satisfies the conditions in

Definition 1.67, which completes the proof.

Theorem 1.70. Let F and G be two σ-fields of O, with |O| > 1. Then,

F ∪ G is not necessarily a σ-field of O.

Proof The proof is a simple counter example in which the union of two σ-fields

of O, denoted by F and G , does not form a σ-field. Assume that A and B are

two nonempty proper subsets of O such that A∪B 6= A; A∪B 6= B; Bc 6= A; and

Ac 6= B. These assumptions ensure that A ∪ B 6= ∅; and A ∪ B 6= O. Moreover,

note that A ∪ B 6= Ac and A ∪ B 6= Bc.
The following σ-fields:

F , {A,Ac,O, ∅} , (1.175)

and

G , {B,Bc,O, ∅} , (1.176)

satisfy that F ∪G = {A,Ac,B,Bc,O, ∅}. Hence, F ∪G is not a σ-field, because

A ∈ F ∪ G and B ∈ F ∪ G , but A ∪ B /∈ F ∪ G . This completes the proof.

1.7 Set-Valued Functions

Given two sets A and B, a function f is a binary relation (Definition 1.18)

between A and B that assigns an element of B to each element of A. That is, for

all a ∈ A, there is an element of B assigned to a, denoted by f(a) ∈ B. When

B ⊂ R, the function f is said to be a real-valued function. More specifically, when

B ⊂ [0,∞[ or B ⊂]−∞, 0], the function f is said to be nonnegative or nonpositive,

respectively. Otherwise, when B ⊂]0,∞[ or B ⊂] −∞, 0[, the function f is said

to be positive or negative, respectively.

Often, the elements of A and B are respectively said to be the arguments and

the values of the function f . The set A is often referred to as the domain of

f , whereas the set B is referred to as co-domain, range, or image of f . In the

following sections, functions are defined in two steps. First, domain and image

sets are defined using the notation f : A → B. Second, given an argument a in A,
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the correspoding element f(a) in B is determined by a mathematical expression.

Consider for instance the quadratic function, e.g., f : R→ R and for all x ∈ R,

f(x) = x2.

For all C ⊆ A, the notation f(C) describes the following set:

f(C) , {b ∈ B : b = f(a), a ∈ C}, (1.177)

which is referred to as the image of C via the function f . Note that f(C) is an

abuse of notation given that the function f accepts as arguments the elements of

A instead of subsets of A. Clarifications are going to be provided when needed,

otherwise, this abuse of notation will be accepted and often used in the remaining

sections.

On the other hand, the functional inverse of the function f : A → B is denoted

by f−1 : B → 2A, where 2A denotes the power set of A (Defintion 1.19). That

is, given an element b in the image of f , that is, b ∈ B, the following holds:

f−1(b) = {a ∈ A : f(a) = b}, (1.178)

which is a set. In general functions whose image is a set of sets are referred to

as set-valued functions. In particular, the inverse function f−1 is a set-valued

function. With an abuse of notation, given a subset D ⊆ B, the notation f−1(D)

denotes the following set:

f−1(D) , {a ∈ A : f(a) ∈ D}, (1.179)

which is referred to as the pre-image of D via the function f .

The inverse function satisfies some properties that reveal useful in the next

chapters.

Theorem 1.71. Given two sets A and B, consider a function f : A → B.

Then, the inverse function f−1 : B → 2A satifies:

• For all a ∈ A, a ∈ f−1 (f(a));

• f−1(∅) = ∅;
• f−1(B) = A;

• Given a subset C ⊆ B, f−1(B \ C) = f−1(B) \ f−1(C)
• Given a collection B1, B2, . . ., Bn of subsets of B,

f−1

 n⋃
j=1

Bj

 =

n⋃
j=1

f−1(Bj) and (1.180)

f−1

 n⋂
j=1

Bj

 =

n⋂
j=1

f−1(Bj) (1.181)

Proof See Homework 1.

Given two functions f : A → B and g : B → C, the function h : A → C defined
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by h(x) = g(f(x)), with x ∈ A, is the composition of g and f . The function h is

also denoted by g ◦ f .

Theorem 1.72. Given the sets A, B, and C, consider the functions f :

A → B and g : B → C. Then, the composition of g with f , denoted by g ◦ f ,

satisfies:

(g ◦ f)−1 = f−1 ◦ g−1. (1.182)

Proof See Homework 1.
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The development of the theory of integration has been motivated by different

objectives. On one hand, integration can be seen as a tool for the calculation

of areas of shapes that are formed under the curve of certain functions. More

specifically, given a positive bounded function f : [a, b] → R, with −∞ < a <

b < +∞, it might be of particular interest to calculate the area of the surface

formed by the points in the set

{(x, y) ∈ R2 : a 6 x 6 b, 0 6 y 6 f(x)}, (2.1)

which is often referred to as the area under the curve of f . Nonetheless, this

problem is not different from the calculation of lengths, areas and volumes of

geometric figures, which dates back to the ancient Greece (500 - 200 B.C.). In

this regard, this chapter focuses only on relatively recent contributions during

the XIX century. In particular, this chapter shows that the formulations of the

integral proposed by Darboux and Riemann successfully contribute to solving

the problem of areas under certain functions. Darboux’s and Riemann’s integrals,

when they exist are equivalent to each other, and are equivalent to the area under

the curve in the case of positive continuous functions, for instance.

On the other hand, integration can be seen as the inverse operation of dif-

ferentiation. This perspective is due to the contributions of Isaac Newton and

Leibniz during the last years of the XVII and the dawn of the XVIII centuries.

Darboux’s and Riemann’s integrals reveal exciting connections between integra-

tion and differentiation. Let F : R → R be a continuous function and denote

its derivative by f : R → R. When the Riemann’s integral of f on [a, b], with

−∞ < a < b < +∞, exists, it follows that∫ b

a

f(x)dx = F (b)− F (a). (2.2)

This is in line with the intuition that the integral of the derivative of a function

must be equal to the original function. Nonetheless, in general, the Riemman’s

integral of the derivative of an arbitrary function does not necessarily exists.

The notion of integral in which the equality in (2.2) holds always true was pro-

posed by Arnaud Denjoy (Denjoy 1912). Nonetheless, this definition of integral

is known today under the name Henstock–Kurzweil integral, due to the impor-

tant contributions of Jaroslav Kurzweil and Ralph Henstock, who extensively

developed this theory.
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The most impactful contribution to the theory of integration was undoubtedly

made by Henri Lebesgue during his thesis in 1902. The impact of the notion of

integral proposed by Lebesgue stems from the fact that it allows integrating a

larger class of functions; and unifies the problem of finding a function knowing

its derivative; and the problem of calculating the area under its curve. Despite

the generality of Lebesgue integral, it is always possible to find a function whose

derivative is not integrable in the sense of Riemman and Lebesgue, but in the

sense of Henstock–Kurzweil. This highlights the fact that there is no general

theory of integration, or at least there is no definition of integral that unifies all

what one can expect of such an operation.

Finally, it is important to highlight that, the contributions of Lebesgue opened

a new field in mathematical analysis, the theory of measure, which is studied later

in this chapter.

2.1 Notation

In order to introduce the definition of integral, in the sense of Darboux, Rie-

mann, and Lebesgue, two new objects are introduced: subdivisions and tagged

subdivisions.

A subdivision is a set of points in R that can be used to form a finite number

of subsets within a given interval.

Definition 2.1 (Subdivision). Given an interval [a, b] ∈ R, with ∞ < a <

b <∞, a subdivision R = {t0, t1, . . . , tn} on [a, b], with n <∞, is a subset

of R whose elements satisfy

a = t0 < t1 < . . . < tn−1 < tn = b. (2.3)

Infinitely many subdivisions can be formed on an interval [a, b], with a < b,

while no subdivision can be formed if a = b. Subdivisions on a given interval

are defined under the assumption that such interval is both closed and bounded,

which implies that subdivisions are defined only on compact subsets of R (Defi-

nition 1.38).

Every subdivision R on a compact interval [a, b] induces a collection of perfect

subsets (Definition 1.48) of [a, b] of the form, [t0, t1], [t1, t2], . . ., [tn−1, tn], which

are almost disjoint (Definition 1.51). These sets [t0, t1], [t1, t2], . . ., [tn−1, tn],

form an exact cover of [a, b] (Definition 1.54) given that

[a, b] ⊆
n⋃
j=1

[tj−1, tj ] ⊆ [a, b]. (2.4)

A parameter that describes a subdivision is the length of its widest interval.

This parameter is referred to as the mesh or norm of the subdivision.
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Definition 2.2 (Mesh or Norm). Given a subdivision R = {x0, x1, . . . , xn}
on a compact set [a, b], with a < b, the mesh or norm of R is a positive real

denoted by δ(R), and

δ(R) = max
t∈{1,2,...,n}

(xt − xt−1). (2.5)

The larger the cardinality of a subdivision, the finer intervals it induces. From

this perspective, a subdivision R can be said to be a refinement of another

subdivision R′ if it satisfies the following definition.

Definition 2.3 (Refinement). A subdivision R on a subset [a, b] ∈ R, with

a < b, is said to be the refinement of another subdivision R′ if R′ ⊂ R,

with strict inclusion.

Definition 2.3 leads to the following theorem.

Theorem 2.4 (Meshs and Refinements). Given two subdivisions R and R′
on a subset [a, b] ∈ R, with a < b and R a refinement of R′, it holds that

δ(R) 6 δ(R′). (2.6)

Proof See Homework 1.

When each of the intervals [tj−1, tj ] in (2.4) is associated with a real qj , such

that qj ∈ [tj−1, tj ], a tagged subdivision is formed.

Definition 2.5 (Tagged Subdivision). Given an interval [a, b] ∈ R, with

−∞ < a < b <∞, a tagged subdivision is a tuple (R,Q), where R is a sub-

division on [a, b] of the form R = {x0, x1, . . . , xn}; and Q = {q1, q2, . . . , qn}
is a set such that for all i ∈ {1, 2, . . . , n},

qi ∈ [xi−1, xi]. (2.7)

Note that given a tagged subdivision (R,Q) it holds that |Q| = |R| − 1 = n,

for some integer n <∞.

2.2 Darboux’s Integral

The definition of integral proposed by Jean-Gaston Darboux in 1875 (Darboux

1875) arrived after Georg Friedrich Bernhard Riemann had already proposed his

own definition in 1854, which was published in 1868 (Riemann 1868). Later in

this chapter, it is shown that Darboux’s formulation of the integral is a special

case of Riemann’s general formulation. Nonetheless, through the following sec-

tions, it will become evident that Darboux’s formulation is easier to treat. More

interestingly, it is shown that these two definitions are implications of each other.
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In order to introduce the definition of the integral of Darboux, consider first

his definitions of lower and upper sums.

Definition 2.6 (Darboux’s Sum). Given a bounded function f : [a, b]→ R,

with −∞ < a < b < ∞, and a subdivision R = {x0, x1, . . . , xn} on [a, b],

the following sums

D̄f (R) ,
n∑
j=1

(xj − xj−1)

(
sup

y∈[xj−1,xj ]

f(y)

)
and (2.8)

Df (R) ,
n∑
j=1

(xj − xj−1)

(
inf

y∈[xj−1,xj ]
f(y)

)
, (2.9)

are Darboux’s upper and lower sums.

The fact that Darboux’s sums are defined over bounded functions, ensures that

both supy∈[xt−1,xt] f(y) and infy∈[xt−1,xt] f(y) in (2.8) are finite for all intervals

induced by the subdivisionR. The following theorem formalizes this observation.

Theorem 2.7. Given a bounded function f : [a, b] → R, with −∞ < a <

b <∞, and a subdivision R = {x0, x1, . . . , xn} on [a, b], it follows that

−∞ < (b−a)

(
inf

y∈[a,b]
f(y)

)
6 Df (R) 6 D̄f (R) 6 (b−a)

(
sup
y∈[a,b]

f(y)

)
<∞.

(2.10)

Proof See Homework 1.

The lower and upper sums of Darboux exhibit some properties and two of

them are central for the definition of Darboux’s integral. The first property is

on the effect of refinements on the value of the sums.

Theorem 2.8. Consider a bounded function f : [a, b] → R, with −∞ <

a < b <∞, and let R and R′ be two subdivisions on [a, b], such that R is a

refinement of R′. Then, it holds that

Df (R′) 6 Df (R) 6 D̄f (R) 6 D̄f (R′). (2.11)

Proof See Homework 1.

The second property is on the apparent trivial fact that any upper sum is

bigger than any lower sum.

Theorem 2.9. Consider a bounded function f : [a, b]→ R, with −∞ < a <

b <∞, and let R and R′ be any two arbitrary subdivisions on [a, b]. Then,
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it holds that

Df (R) 6 D̄f (R′). (2.12)

Proof See Homework 1.

Theorem 2.8 implies that by further dividing the interval [a, b] through refine-

ments of the initial subdivision, the Darboux’s lower and upper sums approach

to each other. Alternatively, Theorem 2.9 establishes that any Darboux’s upper

sum is not smaller that any Darboux’s lower sum.

Some functions f : [a, b] → R satisfy that the lower and upper Darboux’s

sums Df (R) and D̄f (R) can be made arbitrarily close for some relatively coarse

subdivisions. These functions form a special class of real-valued functions known

as elementary simple functions.

Definition 2.10 (Elementary Simple Functions). Consider a function f :

[a, b] → R, with −∞ < a < b < ∞, for which there exists at least one

partition of [a, b] formed by elementary sets A1, A2, . . ., Am, with m <∞
and for all x ∈ [a, b],

f(x) =

m∑
t=1

at1{x∈At}, (2.13)

where for all i ∈ {1, 2, . . . ,m}, ai ∈ R. Then, the function f is said to be an

elementary simple function.

Elementary simple functions exhibit an important property.

Theorem 2.11. Let f : [a, b] → R, with −∞ < a < b < ∞, be an elemen-

tary simple function of the form in (2.13). Then, for all ε > 0, there always

exists a subdivision R = {x0, x1, . . . , xn} on [a, b], with n <∞, such that

D̄f (R)−Df (R) < ε. (2.14)

Proof See Homework 1.

The definition of Darboux’s integral is introduced in terms of both the Dar-

boux’s lower integral and Darboux’s upper integral.

Definition 2.12. Given a bounded function f : [a, b] → R, with −∞ <

a < b <∞, the values

D̄∗f , inf{D̄f (R) : R is a partition on [a, b]} and (2.15)

D∗f , sup{Df (R) : R is a partition on [a, b]}, (2.16)

where the supremum and the infimum are with respect to all subdivisions

on [a, b], are respectively the upper and lower integrals of Darboux.
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Using Definition 2.12, Darboux’s integral of the function f : [a, b]→ R, which

is denoted by ∫ b

a

f(x)dx, (2.17)

can be defined as follows.

Definition 2.13. Given a bounded function f : [a, b] → R, with −∞ <

a < b <∞, for which

D∗f = D̄∗f , (2.18)

the Darboux’s integral is ∫ b

a

f(x)dx , D∗f = D̄∗f . (2.19)

The condition D∗f = D̄∗f is known as integrability condition. The functions that

satisfy Darboux’s integrability condition are said to be integrable functions in

the sense of Darboux. A more formal definition of integrability is the following.

Definition 2.14. A function f : [a, b] → R, with −∞ < a < b < ∞, is

said to be integrable in the sense of Darboux if for all ε > 0, there exists a

subdivision R such that

D̄f (R)−Df (R) < ε. (2.20)

From Definition 2.14 and Theorem 2.11, the following corollary formalizes an

important observation.

Corollary 2.15. All elementary simple functions are integrable in the

sense of Darboux.

Elementary simple functions play a central role in the construction and anal-

ysis of the notion of integral. The following theorem shows that all integrable

functions can be approximated with arbitrary precision by elementary simple

functions.

Theorem 2.16. Given a bounded function f : [a, b] → R, with −∞ < a <

b < ∞, and a subdivision R = {x0, x1, . . . , xm} on [a, b], with m < ∞, the

following functions

f̄R(x) =

m∑
t=1

1{x∈[xt−1,xt[} sup
y∈[xt−1,xt[

f(y), and (2.21)

fR(x) =

m∑
t=1

1{x∈[xt−1,xt[} inf
y∈[xt−1,xt[

f(y), (2.22)
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satisfy the following inequalities for all x ∈ [a, b],

fR(x) 6 f(x) 6 f̄R(x). (2.23)

Moreover, for all ε > 0, there exists a subdivision R′ such that:∫ b

a

f̄R′(x)dx−
∫ b

a

fR′(x)dx < ε. (2.24)

Proof See Homework 1.

Using Theorem 2.16, Darboux’s lower and upper integrals of an arbitrary

bounded function f can be alternatively defined in terms of the Darboux’s lower

and upper integrals of elementary simple functions that approximate f .

D∗f = sup

{∫ b

a

g(x)dx ∈ R : g is elementary simple, ∀x ∈ [a, b], g(x) 6 f(x)

}
;

(2.25)

and

D̄∗f = inf

{∫ b

a

g(x)dx ∈ R : g is elementary simple, ∀x ∈ [a, b], f(x) 6 g(x)

}
.

(2.26)

The equalities in (2.25) and (2.26) lead to an interpretation of Darboux’s

lower and upper integrals of f in terms of the area under the curve of f . This

interpretation is developed in the following section.

2.2.1 Area under the Curve

This section shows that if the Darboux integral of a positive function exists, its

value is identical to the area under its curve. In the case of arbitrary functions, it

is shown that if the Darboux integral exists, then its value is exactly the difference

between two values that can be associated to the areas under the curve of certain

functions.

Case of Positive Elementary Simple Functions
Corollary 2.15 leads to an insightful connection between the area under the

curve of an elementary simple function and its Darboux’s integral. Consider an

elementary simple function f : [a, b]→ R, with −∞ < a < b <∞, such that for

all x ∈ [a, b],

f(x) =

m∑
t=1

at1{x∈At}, (2.27)

where for all i ∈ {1, 2, . . . ,m}, with m < ∞, 0 6 ai < ∞; and A1, A2, . . ., Am
form a partition of [a, b]. Without any loss of generality, assume that A1, A2,
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. . ., Am are convex intervals. Consider also a subdivision R = {x0, x1, . . . , xp}
on [a, b], with m < p < ∞ satisfying the following conditions. For all i ∈
{1, 2, . . . ,m}, max{a, inf Ai − δ} ∈ R and min{b, supAi + δ} ∈ R, with δ > 0

being a constant chosen arbitrarily small. Hence, Darboux’s integral satisfies the

following:∣∣∣∣∣
∫ b

a

f(x)dx−
p∑
t=1

(xt − xt−1)f

(
xt + xt−1

2

)∣∣∣∣∣ < 2pδ sup
y∈[a,b]

f(y). (2.28)

where for all j ∈ {1, 2, . . . , p}, f
(
xj+xj−1

2

)
= asj , for some sj ∈ {1, 2, . . . ,m}.

Therefore,
∑p
t=1(xt− xt−1)ast is the sum of the areas of p rectangles. Note that

for all t ∈ {1, 2, . . . , p}, the t-th rectangle has a base of length (xt − xt−1) and

height ast . Note that since δ in (2.28) can be chosen arbitrarily small, the area

of the rectangles whose base is 2δ have limited impact in the value of Darboux’s

integral. Hence, Darboux integral of a non-negative elementary simple function

f : [a, b] → R, with −∞ < a < b < ∞, corresponds exactly to the area of the

following set in R2,

{(x, y) ∈ R2 : a 6 x 6 b, 0 6 y 6 f(x)}, (2.29)

which is the area under the curve of f .

Case of Elementary Simple Functions
Following the same order of ideas, the same analysis holds for arbitrary elemen-

tary simple functions. In this case, the Darboux integral of a elementary simple

function f : [a, b] → R, with −∞ < a < b < ∞, corresponds exactly to the

difference of the areas of the following sets in R2,{
(x, y) ∈ R2 : a 6 x 6 b, 0 6 y 6 max{0, f(x)}

}
and (2.30){

(x, y) ∈ R2 : a 6 x 6 b,min{0, f(x)} 6 y 6 0
}
. (2.31)

To formalize this observation, consider the positive and negative parts of a

given real-valued function f .

Definition 2.17. Given a real-valued function f : [a, b] → R, with −∞ <

a < b < ∞, its positive part and negative part are non-negative functions

respectively denoted by f+ : [a, b]→ R+ and f− : [a, b]→ R+ such that for

all x ∈ [a, b],

f+(x) , max{f(x), 0} and (2.32)

f−(x) , −min{f(x), 0}. (2.33)

Using Definition 2.17, the discussion above can be trivially formalized as follows.

Theorem 2.18. Let f : [a, b] → R, with −∞ < a < b < ∞, be an elemen-
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tary simple function. Then, the positive and negative parts of f satisfy∫ b

a

f(x)dx =

∫ b

a

f+(x)dx−
∫ b

a

f−(x)dx. (2.34)

Proof See Homework 1.

Note that both f− and f+ in (2.34) non-negative elementay simple functions

whose integrals are respectively the areas of the sets in (2.30) and in (2.31).

Case of Positive Bounded Functions
The connections between Darboux’s integral and the area under the curve can

be extended to the general case of bounded functions. Consider first the case in

which the function f in Theorem 2.16 is positive. Hence, the functions fR and

f̄R in (2.16) are both positive elementary simple functions and thus integrable.

From the assumption that f is positive and integrable, it follows that∫ b

a

fR(x)dx 6
∫ b

a

f(x)dx 6
∫ b

a

f̄R(x)dx. (2.35)

In this case, the inequalities in (2.35) imply that the Darboux integral of the

function f is: (a) lower bounded by the integral of a simple function fR that

is always smaller than f ; and (b) upper bounded by the integral of a simple

function f̄R that is always bigger than f . Hence, Darboux’s integral of a positive

bounded function is a positive real number lower bounded by the area under

the curve of fR; and upper bounded by the area under the curve of f̄R. From

Theorem 2.16, it follows that the subdivision R in (2.35) can be refined such that

the area under the curve of fR and f̄R are arbitrarily close to each other. This

implies that the Darboux’s integral of a positive bounded function, if it exists,

it is equivalent to the area under the curve of such function.

Case of Bounded Functions
Using Definition 2.17, the discussion above can be trivially extended to the case

of arbitrary bounded functions.

Theorem 2.19. Let f : [a, b] → R, with −∞ < a < b < ∞, be a bounded

function, integrable in the sense of Darboux. Then, the positive and negative

parts of f satisfy∫ b

a

f(x)dx =

∫ b

a

f+(x)dx−
∫ b

a

f−(x)dx. (2.36)

Proof See Homework 1.

From Theorem (2.19), it holds that the Darboux integral of an arbitrary

bounded function is the difference between the areas under the curve of its cor-

responding positive and negative parts.
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2.2.2 Geometric Interpretation of Darboux’s Integrability

2.3 Riemann’s Integral

The Riemman’s integral, as introduced in (Riemann 1868), is defined in terms

of Riemman’s sums. In contrast to Darboux’s sums, which uses subdivisions, the

Riemann’s sum uses tagged subdivisions.

Definition 2.20 (Riemann’s Sum). Given a bounded function f : [a, b]→
R and a tagged subdivision (R,Q) on [a, b], with −∞ < a < b < ∞;

R = {x0, x1, . . . , xn}; and Q = {q1, q2, . . . , qn}, the following sum

Rf (R,Q) ,
n∑
j=1

(xj−1 − xj)f(qj), (2.37)

is a Riemann’s sum.

Riemann’s sums are defined over bounded functions, which ensures that given

a tagged subdivision (R,Q) on [a, b], it holds that for all q ∈ Q in Definition 2.20,

f(q) <∞. More precisely, for all t ∈ {1, 2, . . . , n}, it holds that

inf
y∈[xt−1,xt]

f(y) 6 f(qt) 6 sup
y∈[xt−1,xt]

f(y). (2.38)

The inequalities in (2.38) suggest that the Riemann’s sum in (2.37) would be

a Darboux’s lower or upper sum if the tagged subdivision is such that for all

i ∈ {1, 2, . . . , n},

qi = arg inf
y∈[xt−1,xt]

f(y), or (2.39)

qi = arg sup
y∈[xt−1,xt]

f(y), (2.40)

respectively. Nonetheless, the implications of this observation are more profound.

Theorem 2.21 (Sums of Darboux and Riemann). Let f : [a, b] → R, with

−∞ < a < b <∞, be a bounded function and let R = {x0, x1, . . . , xn} be a

subdivision on [a, b]. Then, for all tagged subdivisions of the form (R,Q), it

holds that

Df (R) 6 Rf (R,Q) 6 D̄f (R). (2.41)

Proof See Homework 1.

The Riemman’s integral of a bounded function f : [a, b]→ R, with −∞ < a <

b <∞, which is denoted by ∫ b

a

f(x)dx, (2.42)

is defined as the limit, if it exists, of the Riemann’s sum Rf (R,Q) when the

mesh of R tends to zero.
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Definition 2.22 (Riemann’s Integral). Given a bounded function f : [a, b]→
R, with −∞ < a < b <∞, its Riemann’s integral is∫ b

a

f(x)dx , lim
δ(R)→0

Rf (R,Q) , (2.43)

when the limit exists.

From Definition 2.22, it follows that a condition for the existence of the integral

is the existence of the limit in (2.43). A function for which such a limit exists

is said to be integrable in the sense of Riemann, which leads to the following

definition.

Definition 2.23 (Integrability). Given a bounded function f : [a, b]→ R,

with −∞ < a < b <∞, it is said to be integrable in the sense of Riemann,

with integral equal to
∫ b
a
f(x)dx, if and only if for all ε > 0, there exist a

tagged subdivision (R,Q) such that∣∣∣∣∣
∫ b

a

f(x)dx−Rf (R,Q)

∣∣∣∣∣ < ε. (2.44)

Given that by adopting certain choices in the definition of the tagged subdi-

vision in a Riemann’s sum, Darboux’s lower and upper sums can be obtained as

special cases, Riemann’s sums can be seen as a more general definition. Nonethe-

less, the notion of Riemann’s integral is not more general than Darboux integral.

More interestingly, the existence of either integral implies the existence of the

other. When they exist, the values of these integrals are identical. The following

theorem formalizes these statements.

Theorem 2.24. Consider the function f : [a, b] → R, with −∞ < a < b <

∞. Then, the following statements are equivalent:

(i) The function f is integrable in the sense of Riemman;

(ii)The function f is integrable in the sense of Darboux; and

(iii)
∫ b
a
f(x)dx = D∗f = D̄∗f = limδ(R)→0Rf (R,Q).

Proof See Homework 1.

2.4 Riemann Integrable Functions

In the previous section, it was shown that elementary simple functions are inte-

grable in the sense of Darboux, and thus, are integrable in the sense of Riemann

as well. Given that Darboux’s integrability and Riemann’s integrability condi-

tions have been shown to be identical, in the following, the distinction between

these integrals is dropped. This said, the following theorems introduce more

general classes of functions that satisfy the integrability condition.
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Theorem 2.25. Let f : [a, b]→ R, with −∞ < a < b <∞, be a continuous

function. Then, the function f is integrable.

Proof See Homework 1.

The result in Theorem 2.25 can be generalized to functions that are piece-wise

continuous. These functions are defined hereunder.

Definition 2.26 (Piece-wise Continuity). Given a function f : [a, b] → R,

with −∞ < a < b <∞, it is said to be piece-wise continuous if there exists

a subdivision R = {x0, x1, . . . , xm} on [a, b], with m < ∞, such that for

all t ∈ {1, 2, . . . ,m}, the restriction of f on the interval ]xt−1, xt[ can be

extended to a continuous function on [xt−1, xt].

Theorem 2.27. Let f : [a, b]→ R, with −∞ < a < b <∞, be a piece-wise

continuous function. Then, the function f is integrable.

Proof See Homework 1.

The continuity condition for integrability can be replaced by a milder condition

on the shape of the function. The following definitions introduce some conditions

on the shape of functions.

Definition 2.28 (Increasing and decreasing functions). Given a function

f : [a, b] → R, with a < b, it is said to be increasing or decreasing if for

all pairs (x1, x2) ∈ [a, b]2, with x1 < x2, it holds that f(x1) < f(x2), or

f(x1) > f(x2), respectively.

Denominations of the form nondecreasing or nonincreasing are often used. The

former refers to functions for which given a pair (x1, x2) ∈ [a, b]2, with x1 < x2,

it holds that f(x1) 6 f(x2), whereas the latter, refers to functions for which

f(x1) > f(x2).

Definition 2.29 (Monotonic functions). A function f : [a, b] → R, with

a < b, is said to be monotonic if it is either increasing or decreasing.

The integral of monotonic functions exhibits the following property.

Theorem 2.30. Let f : [a, b]→ R, with −∞ < a < b <∞, be a monotonic

function. Then, the function f is integrable.

Proof See Homework 1.

The composition of integrable functions is integrable under certain conditions.
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Theorem 2.31. Let f : [a, b]→ R and g : R→ R, with −∞ < a < b <∞,

be an integrable function and a continuous function, respectively. Then, the

composition g ◦ f is integrable on [a, b].

Proof See Homework 1.

2.5 Properties of Riemann’s Integral

Theorem 2.32. Let f : [a, b] → R and g : [a, b] → R, with −∞ < a < b <

∞, be two integrable functions. Then, the following holds:

• For all c ∈ R, ∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx; and (2.45)∫ b

a

f(x) + g(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx. (2.46)

• If for all x ∈ [a, b], f(x) 6 g(x), then∫ b

a

f(x)dx 6
∫ b

a

g(x)dx. (2.47)

• For all c ∈ [a, b], ∫ c

c

f(x)dx = 0; and (2.48)∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx. (2.49)

Proof See Homework 1.

2.6 The Extended Real Numbers

In the previous sections, the integral has been defined only for bounded func-

tions defined within a compact interval. In Section 2.2.1, it was argued that the

integral of the function f : [a, b]→ R can be approximated by the integral of an

elementary simple function that approximates the function f . This approxima-

tion, which can be made arbitrarily precise for all integrable functions, highlights

the fact that the integral is a sum of infinitesimally small signed areas of rect-

angles. The base of those rectangles is defined by the partition on [a, b] that

defines the elementary simple function, whereas, their heights are determined by

the value of the function f . Their areas are said to be signed as they carry the

positive or negative sign of the corresponding values of f . In the case in which



46 Integration

f is unbounded, there might be at least one rectangle whose area is arbitrarily

large. This translates into a sum of some finite numbers and some numbers that

are arbitrarily away from zero. To study these sums, the set of real numbers

must be equipped with some additional elements.

In previous sections, the symbols used to identify the real numbers whose

absolute values are arbitrarily large are −∞ and +∞. That is, for all x ∈ R,

−∞ < x < +∞, with strict inequalities. Hence, the set of extended real numbers,

denoted by R̄, is defined as follows:

R̄ , R ∪ {+∞,−∞}. (2.50)

This said, for all a ∈ R, the intervals [a,+∞], ]a,+∞], [−∞, a], and [−∞, a[

are proper subsets of R̄, and R̄ = [−∞,+∞] . The new elements, −∞ and +∞,

are adopted under the following assumptions, for all a ∈ R:

a + +∞ = +∞ + a = +∞; and (2.51)

a + −∞ = −∞ + a = −∞. (2.52)

Moreover, for all a ∈ R \ {0},

|a| · +∞ = +∞ · |a| = +∞; (2.53)

− |a| · +∞ = +∞ · − |a| = −∞; (2.54)

|a| · −∞ = −∞ · |a| = −∞; (2.55)

− |a| · −∞ = −∞ · − |a| =∞; (2.56)

0 · +∞ = +∞ · 0 = 0; and (2.57)

0 · −∞ = −∞ · 0 = 0. (2.58)

Despite these rules, some operations remain undetermined. For instance, +∞−
+∞, −∞ + +∞, +∞ + −∞, +∞

+∞ , −∞−∞ , −∞+∞ and +∞
−∞ are undetermined quanti-

ties. These mathematical indeterminations constraint conclusions that are obvi-

ous when dealing with finite real numbers. For instance, nothing can be concluded

from the inequality a+ +∞ < b+ +∞ in terms of either a < b or a > b.

This said, the integral of a positive unbounded function can be zero or +∞.

The former arises when the set A = f−1(+∞) ⊂ R is finite. This is explained

from the fact that all those rectangles whose height is arbitrarily large have a

base of length zero. Thus, given that 0 ·+∞ = 0, the areas of those rectangles do

not have any impact in the sum of areas, which remains finite. The latter arises

when A = f−1(+∞) ⊂ R and intA is not empty. In this case, there must be at

least one rectangle whose height is +∞ and whose base is bounded away from

zero. In this case, the sum contains at least one term that is +∞, and thus, the

integral is +∞. In either case, the integral is said to exist, even if it is equal to

∞.

Alternatively, arbitrary functions f : [a, b]→ R for which their integral is the

difference of the integral of f+ and the integral of f− (Theorem 2.19), the result
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might be an undetermined form, e.g., −∞+ +∞ or +∞+−∞. In this case, the

integral is said not to exist.

In a nutshell, the integral of positive functions always exists. This is an immedi-

ate consequence of the following observation. Given a (countable or uncountable)

set A, for all α ∈ A, let xα ∈ [0,+∞] be fixed. Hence, it follows that

∑
α∈A

xα ∈ [0,+∞]. (2.59)

More interestingly, the sum can be reordered and it does not affect the result.

That is, let f : B → A be a bijective function. Then, the following holds:

∑
β∈B

xf(β) =
∑
α∈A

xα. (2.60)

The equality in (2.60) does not necessarily hold if the condition xα ∈ [0,+∞]

is replaced by xα ∈ R, for all α ∈ A, when |A| =∞. The following theorem, due

to Riemann, formalizes this observation.

Theorem 2.33 (Riemann’s reordering theorem). Let a1, a2, . . . be a se-

quence of real numbers such that

−∞ <

+∞∑
t=1

at < +∞, and (2.61)

+∞∑
t=1

|at| = +∞. (2.62)

Then, for all M ∈ R̄, there always exists a bijection f : N→ N, such that

+∞∑
t=1

af(t) = M. (2.63)

Proof See Homework 1.

Under the conditions of Theorem 2.33, rearrangements of the sum of signed

reals cannot be associated to a unique value. Therefore, in this case the sum is

undetermined. This observation plays a fundamental role in the case in which

integration is over functions whose domains are not compact, e.g., intervals of

the form ]−∞, a], with a ∈ R̄. These cases are discussed further in this chapter.
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2.7 Limitations of Riemann Integral

2.8 Henstock–Kurzweil Integral

2.9 The Problem of Measure

Consider an increasing continuous function f : [a, b] → [α, β], with −∞ < a <

b < +∞ and −∞ < α < β < +∞ , and note that any subdivision

X = {x0, x1, . . . , xn} (2.64)

on [a, b], with n <∞, induces a subdivision

Z = {z0, z1, . . . , zn} (2.65)

on [α, β], such that for all t ∈ {0, 1, 2, . . . , n}, zt = f(xt). Hence, from the

assumption that f is increasing, it holds that:

a = x0 < x1 < . . . < xn = b (2.66)

α = z0 < z1 < . . . < zn = β. (2.67)

The function f is integrable in the sense of Riemann if the Darboux lower and

upper integrals,

n∑
t=1

zt−1(xt − xt−1) and

n∑
t=1

zt(xt − xt−1), (2.68)

become identical as the mesh of the subdivision X or Z tends to zero. Considering

that the mesh of X tends to zero was the idea used to define both Riemann and

Darboux integrals. Alternatively, considering that the mesh of Z tends to zero

is rather a new approach, which implies that the area under the curve can also

be calculated by subdividing the y-axis instead of the x-axis.

Note that the intervals [z0, z1], [z1, z2], . . ., [zn−1, zn], which form an exact

cover of [α, β], induce an exact cover on [a, b] formed by the sets

f−1([zt−1, zt]) = {x ∈ [a, b] : zt−1 6 f(x) 6 zt} (2.69)

, [xt−1, xt], (2.70)

with xt , f−1(zt) and t ∈ {1, 2, . . . , n}.
Using this notation, two sequences of n rectangles are formed. In the first

sequence, the t-th rectangle has height zt and base (xt − xt−1). In the second

sequence, the t-th rectangle has height zt−1 and base (xt−xt−1). The area under

the curve, and thus the integral, is the limit of the Darboux’s lower and upper

sums in (2.68) when the mesh of the subdivision Z tends to zero. In this case,

the base of the rectangles was easy to identify thanks to the assumptions that

the function f was continuous, bounded and increasing. Essentially, the base of

the rectangles induced by the subdivision Z on [α, β] is equal to the length of

the closed and convex intervals [xt−1, xt], e.g., (xt − xt−1).
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When the assumption that the function f is increasing is dropped, the sets

f−1([zt−1, zt]) are such that it is less clear how to assume the base of the rect-

angles to calculate the areas under the curve.

Consider for instance the case of a concave function f : [−1, 1] → [0, 1] for

which for all x ∈ [−1, 1], f(x) = x2. Then, for any arbitrary subdivision Z =

{z0, z1, . . . , zn} of the interval [0, 1], it holds for all t ∈ {1, 2, . . . , n},

f−1([zt−1, zt]) = {x ∈ [a, b] : zt−1 6 f(x) 6 zt} (2.71)

, [−
√
zt,−

√
zt−1] ∪ [

√
zt−1,

√
zt]. (2.72)

In this case, each interval [zt−1, zt] induces four vertical rectangles. Two rect-

angles, one located on the interval [−√zt,−
√
zt−1] and one on the interval

[
√
zt−1,

√
zt], have heights equal to zt−1 and bases equal to

√
zt −

√
zt−1. The

other two rectangles, whose locations are identical to the previous ones, have

heights equal to zt and bases equal to
√
zt −

√
zt−1. Darboux’s lower and upper

sums can be written in the following form:

n∑
t=1

2
(√
zt −

√
zt−1

)
zt−1 and

n∑
t=1

2
(√
zt −

√
zt−1

)
zt, (2.73)

respectively. The limit of both sums as the mesh of the subdivision Z tends to

zero exist and are identical to the Riemann integral. Intuitively, Darboux lower

sum in (2.73) can be interpreted as the sum of the areas of n rectangles whose

bases are 2
(√
z1 −

√
z0
)
, 2
(√
z2 −

√
z1
)
, . . ., 2

(√
zn−1 −

√
zn
)

and their heights

are z0, z1, . . . , zn−1, respectively. A similar observation can be made for Darboux

upper sum in (2.73).

In a nutshell, the set f−1([zt−1, zt]) is the union of two compact sets, which are

either disjoint or almost-disjoint sets, and thus, the base of the vertical rectangle

can be assumed to be the sum of the lengths of these two intervals. This justifies

the factor of two in (2.73).

Generalizing this method to arbitrary functions leads to the problem of finding

the corresponding length of the basis of the vertical rectangles induced by a

subdivision of the range of a function f , which can be ] − ∞,+∞[. This is

essentially equivalent to finding the length of the intervals f−1([zt−1, zt]) induced

by Z. This problem is an instance of the problem of measure, which consists in

associating a positive real to intervals of R. This positive real is the measure of

the set. This problem was formulated by Henri Lebesgue building on previous

works on measures, namely by Camille Jordan and Émile Borel. This said, the

problem of measure can be formulated for any type of sets, not necessarily subsets

of Rn, with n ∈ N, but any kind of sets.

2.10 Jordan Measure and Jordan Measurable Sets

The Jordan measure applies to bounded subsets in Rn, with n ∈ N, that can be

approximated by elementary sets with arbitrary precision. The Jordan measure
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of an elementary set, which can be expressed as a finite union of almost disjoint

boxes, is the sum of the volumes of such composing boxes.

Let En denote the set of all elementary sets in Rn. Hence, the volume of

elementary sets can be measured as follows. Let vn : En → R be a positive

function, such that for all bounded generic boxes B = B1 × B2 × . . .× Bn ∈ En,

with Bt ⊂ R an interval of the form [at, bt], ]at, bt[, [at, bt[, or ]at, bt] and −∞ <

at 6 bt < +∞, for all t ∈ {1, 2, . . . , n}, it holds that

vn(B) =

n∏
t=1

(bt − at), (2.74)

which is the volume of B. In the case of elementary sets, it holds from Defini-

tion 1.26 that for all E ∈ En, there always exists a finite partition of E formed

by the sets A1, A2, . . ., Ak, with k ∈ N. Thus,

vn(E) =

k∑
t=1

vn(At), (2.75)

which is the volume of E . When, the argument of the function vn is the empty

set, it holds that:

vn(∅) = 0. (2.76)

In a nutshell, the volume of a generic box A is the product of the lengths

of its sides. The volume of an elementary set A is the sum of the volumes of

its composing generic boxes. And finally, the empty set has volume zero. It

is interesting to note that an elementary set can be formed by infinitely many

different finite collections of disjoint boxes. That is, two different finite collections

of disjoint boxes might be such that their unions form the same set. Nonetheless,

the sum of the volumes of such sets is identical to the volume of the set they

form.

Theorem 2.34. Let E1, E2, . . ., Ek and D1, D2, . . ., Dp be two different

finite sequences of disjoint boxes of Rn, with (k, n, p) ∈ N3, such that

A =

k⋃
t=1

Et =

p⋃
t=1

Dt. (2.77)

Then, the following holds,

vn (A) =

k∑
t=1

vn (Dt) =

p∑
t=1

vn (Et) . (2.78)

Proof See Homework 1.

Essentially, Theorem 2.34 states that the volume of an elementary set is inde-

pendent of the boxes that are chosen to measure it.

These observations lead to the following properties:
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Theorem 2.35. Let E ⊂ Rn, with n ∈ N, be an elementary set. Then,

vn (E) > 0.

Proof See Homework 1.

Theorem 2.36. Let E1, E2, . . ., Ek be a finite sequence of almost disjoint

elementary subsets of Rn, with (k, n) ∈ N2. Then,

vn

(
k⋃
t=1

Et

)
=

k∑
t=1

vn (Et) . (2.79)

Proof See Homework 1.

Theorem 2.37. Let E1, E2, . . ., Ek be a finite sequence of elementary subsets

of Rn, with (k, n) ∈ N2 and E1 ⊆ E2 ⊆ . . . ⊆ Ek. Then, the following holds,

vn (E1) 6 vn (E2) 6 . . . 6 vn (Ek) . (2.80)

Proof See Homework 1.

Theorem 2.38. Let E1, E2, . . ., Ek be a finite sequence of elementary subsets

of Rn, with (k, n) ∈ N2. Then, the following holds,

vn

(
k⋃
t=1

Et

)
6

k∑
t=1

vn (Et) . (2.81)

Proof See Homework 1.

Using these properties of the volume of elementary sets, a formal definition of

the Jordan measure is given in terms of the inner and outer Jordan measures.

Definition 2.39 (Inner and Outer Jordan Measures). Let En denote the

set of all elementary sets in Rn, with n ∈ N, and let A ∈ En. Then, the

inner Jordan measure of A is

mn (A) , sup
E∈{D∈En:D⊆A}

vn (E) ; and (2.82)

the outer measure of A is

m̄n (A) , inf
E∈{D∈En:A⊆D}

vn (E) . (2.83)
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Theorem 2.40. Let A be an arbitrary subset of Rn, with n ∈ N. Then, the

following holds,

mn (A) 6 m̄n (A) . (2.84)

Proof See Homework 1.

Definition 2.41 (Jordan Measure). An arbitrary subset A of Rn, with

n ∈ N, is said to be Jordan measurable if mn (A) = m̄n (A). When A is

Jordan measurable, its Jordan measure is:

mn(A) , mn (A) = m̄n (A) . (2.85)

Theorem 2.42. Let A be an elementary subset of Rn, with n ∈ N. Then,

A is Jordan measurable. Moreover, mn(A) = vn(A).

Proof See Homework 1.

Theorem 2.43. Let A be a bounded subset of Rn, with n ∈ N. Then, the

following statements are equivalent:

(i) A is Jordan measurable; and

(ii) For all ε > 0, there always exist two elementary sets D and E that

satisfy D ⊆ A ⊆ E, such that:

vn (E \ D) < ε. (2.86)

Proof See Homework 1.

The Jordan measure and the Riemann integral exhibit a relation that is worth

highlighting.

Theorem 2.44. Let f : [a, b] → R, with −∞ < a < b < ∞, be a bounded

function and let the sets

A+ = {(x, y) ∈ R2 : x ∈ [a, b], 0 6 y 6 f(x)} and (2.87)

A− = {(x, y) ∈ R2 : x ∈ [a, b], f(x) 6 y 6 0)}. (2.88)

Then, the function f is Riemann integrable if and only if the sets A+ and

A− are Jordan measurable. Moreover,∫ b

a

f(x)dx = m2(A+)−m2(A−). (2.89)

Proof See Homework 1.
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2.11 Lebesgue Outer Measure

The Lebesgue measure is a generalization of the Jordan measure in the sense

that it applies to sets that can be approximated by infinitely countable unions

of elementary sets with arbitrary precision. Before introducing the formal defi-

nition of Lebesgue measure, consider the notion of an outer measure. That is, a

function that approximates the measure of a set by measuring the smallest set

that contains it.

Definition 2.45 (Lebesgue outer measure). Given an arbitrary subset E
of Rn, with n ∈ N, the Lebesgue outer measure is

µ∗ (E) = inf

∞∑
t=1

vn (At) (2.90)

where the infimum is with respect to all countable covers on E of the form

A1, A2, . . ., such that

E ⊆
∞⋃
t=1

Aj , (2.91)

and for all t ∈ N, At is a closed box.

The Lebesgue outer measure has the following three properties. First, it is

non-negative, but it can be infinite.

Theorem 2.46. Let A be an arbitrary subset of Rn, with n ∈ N. Then,

0 6 µ∗ (A) 6∞. (2.92)

Proof See Homework 1.

An example of a set whose Lebesgue outer measure is infinity is Rn.

Theorem 2.47. The Lebesgue outer measure of Rn, with n ∈ N, satisfies:

µ∗ (Rn) = +∞. (2.93)

Proof See Homework 1.

Alternatively, generic boxes have finite Lebesgue outer measure.

Theorem 2.48. Let E be a generic box of Rn, with n ∈ N. Then,

µ∗ (E) = vn (E) , (2.94)

which is the volume of the box.

Proof See Homework 1.
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The second and third property of the Lebesgue outer measure are monotonicity

and subadditivity.

Theorem 2.49. Let A1 and A2 be two arbitrary subsets of Rn, with n ∈ N,

such that A1 ⊂ A2. Then,

µ∗ (A1) 6 µ∗ (A2) . (2.95)

Proof See Homework 1.

Theorem 2.50. Let A1, A2, . . ., form a countable sequence of arbitrary

subsets of Rn, with n ∈ N. Then, the following holds:

µ∗

( ∞⋃
t=1

At

)
6
∞∑
t=1

µ∗ (At) . (2.96)

Proof See Homework 1.

An outer measure is not a measure. In particular, it is possible to find patho-

logical subsets of Rn in which disjoint sets have elements that are so close to

each other that the Lebesgue outer measure of their union is different from the

sum of measures of each of its subsets. The following theorems present some

cases in which the Lebesgue outer measure of the union of some subsets of Rn

is identical to the sum of the Lebesgue outer measure of each of these subsets.

Theorem 2.51. Let A and B be two arbitrary subsets of Rn, with n ∈ N,

such that

inf
(a,b)∈A×B

||a− b||2 > 0. (2.97)

Then,

µ∗ (A ∪ B) = µ∗ (A) + µ∗ (B) . (2.98)

Proof See Homework 1.

Theorem 2.52. Let A1, A2, . . ., form a countable sequence of almost dis-

joint closed boxes, and let also

A =

∞⋃
t=1

At, (2.99)

be their union. Then, the following holds:

µ∗

( ∞⋃
t=1

At

)
=

∞∑
t=1

µ∗ (At) . (2.100)

Proof See Homework 1.
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2.12 Lebesgue Measure and Lebesgue Measurable Sets

Theorem 2.53. Let On be the set of all possible open subsets of Rn, and

let A be an arbitrary subset of Rn, with n ∈ N. Then,

µ∗ (A) = inf
D∈{B∈On:A⊂B}

µ∗ (D) . (2.101)

Proof See Homework 1.

Definition 2.54 (Lebesgue Measurable Sets). Let A be an arbitrary subset

of Rn, with n ∈ N. Then, A is said to be Lebesgue measurable if for all

ε > 0, there always exists an open subset O ⊂ Rn, such that A ⊂ O and

µ∗ (O \ A) 6 ε. (2.102)

This definition leads immediately to an important class of Lebesgue measur-

able sets.

Theorem 2.55. Let A be an open subset of Rn, with n ∈ N. Then, the set

A is Lebesgue measurable.

Proof Note that from the assumption that A is open and A ⊆ A, the condition

of existence of an open set containing A is satisfied. Moreover, µ∗ (A \ A) =

µ∗ (∅) = 0 < ε, for all ε > 0, which completes the proof.

Using Definition 2.54, the definition of Lesbesgue measure can be introduced

as follows.

Definition 2.56 (Lebesgue Measure). Let A be a Lebesgue measurable

subset of Rn, with n ∈ N. Then, the Lebesgue measure of A, denoted by

µ (A), satisfies

µ (A) , µ∗ (A) . (2.103)

Definition 2.56 implies that the Lebesgue outer measure becomes a measure

when it is restricted to Lebesgue measurable sets (Definition 2.54). That is,

as shown in the sequel of this section, the Lebesgue measure inherits all the

properties of the Lebesgue outer measure, namely, positivity, monotonicity, and

subadditivity. The additivity property is shown later, in Theorem 2.62.

For the moment, using Definition 2.54 and the fact that open sets are Lebesgue

measurable, the objective is to identify other classes of sets that are Lebesgue

measurable. The following theorem shows that all sets that possess Lebesgue

outer measure zero are Lebesgue measurable.
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Theorem 2.57. Let A be an arbitrary subset of Rn, with n ∈ N, such that

µ∗(A) = 0. Then, A is Lebesgue measurable. Moreover, all subsets B of A
are Lebesgue measurable.

Proof From Theorem 2.53, it holds that for all ε > 0, there always exists an

open set O such that A ⊆ O and µ∗(O) < ε. Moreover, given that O \ A ⊆ O,

it holds from the monotonicity of the Lebesgue outer measure that µ∗(O \A) <

µ∗(O) < ε. Note that the same holds for any subset of A, which completes the

proof

The following theorem shows that countable unions of Lebesgue measurable

sets form Lebesgue measurable sets.

Theorem 2.58. Let A1, A2, . . ., form a countable sequence of Lebesgue

measurable subsets of Rn, with n ∈ N. Then, the countable union

A =

∞⋃
t=1

At, (2.104)

is Lebesgue measurable, and

µ (A) 6
∞∑
t=1

µ (At) . (2.105)

Proof From the assumption that At is Lebesgue measurable for all t ∈ N, it

holds that for all εt > 0, it is always possible to find an open set Ot, such that

At ⊆ Ot and

µ∗ (Ot \ At) < εt. (2.106)

For the ease of presentation, let εt , ε
2t , for some ε > 0. Let O be the set

O ,
+∞⋃
t=1

Ot, (2.107)

which is open, and thus Lebesgue measurable, and verifies thatA ⊆ O. Moreover,

it also holds that:

O \ A ⊆
+∞⋃
t=1

Ot \ At, (2.108)

which implies due to the monotonicity of the Lebesgue outer measure that

µ∗ (O \ A) 6
+∞∑
t=1

µ∗ (Ot \ At) (2.109)

6
+∞∑
t=1

ε

2t
(2.110)

= ε, (2.111)
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which proves the Lebesgue measurability of A, and thus, µ (A) = µ∗ (A). Finally,

the inequality in (2.105) follows from the subadditivity of the Lebesgue outer

measure (Theorem 2.50).

The following theorem shows that closed sets of Rn, with n ∈ N, are Lebesgue

measurable.

Theorem 2.59. Let A be a closed subset of Rn, with n ∈ N. Then, A is

Lebesgue measurable.

Proof See Homework 1.

The following theorem shows that the complement of a Lebesgue measurable

set is Lebesgue measurable.

Theorem 2.60. Let A be a Lebesgue measurable subset of Rn, with n ∈ N.

Then, Ac is Lebesgue measurable.

Proof From the assumption that A is measurable, it holds that for all t ∈ N,

there always exists an open set Ot such that A ⊆ Ot and

µ∗ (Ot \ A) 6
1

t
. (2.112)

Note that Oc
t is closed, and thus Lebesgue measurable (Theorem 2.59); and

Oc
t ⊆ Ac (Theorem 1.9). Let the set C be

C ,
∞⋃
t=1

Oc
t , (2.113)

which is also measurable (Theorem 2.58) and satisfies C ⊆ Ac. Thus, the following

holds:

Ac = C ∪ Ac \ C. (2.114)

Hence, given that the union of two Lebesgue measurable sets is Lebesgue mea-

surable (Theorem 2.58), the problem boils down to prove the Lebesgue measura-

bility of the set Ac \C. First, note that from (2.113), it holds that Oc
t ⊆ C, which

implies that Cc ⊆ Ot (Theorem 1.9), and

Cc \ A ⊆ Ot \ A. (2.115)

Second, note that Cc \ A = Ac \ Ot (Theorem 1.9), which together with the

monotonicity of the Lebesgue outer measure (Theorem 2.49), yields from (2.112)

and (2.115),

µ∗ (Cc \ A) 6 µ∗ (Ot \ A) (2.116)

6
1

t
. (2.117)

Letting t tend to infinity yields µ∗ (Cc \ A) = 0, which implies the Lebesgue

measurability of Cc \ A (Theorem 2.57), and completes the proof.
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Finally, using the previous results, the following theorem shows that the set

of all Lebesgue measurable sets in Rn, with n ∈ N, form a σ-field.

Theorem 2.61. The set of all Lebesgue measurable sets in Rn, with n ∈ N,

form a σ-field.

Proof See Homework 1.

In the following, the set σ-field formed by all the Lebesgue measurable sets

in Rn, with n ∈ N, is referred to as the Lebesgue σ-field, and it is denoted by

L (Rn). From Definition 1.68 and Theorem 2.61 it follows that the Borel σ-field,

i.e., B (Rn), is a subset of L (Rn). Nonetheless, it is important to highlight that

this inclusion is strict. That is,

B (Rn) ⊂ L (Rn) , (2.118)

as there are Lebesgue measurable sets that are not in the Borel σ-field.

This section ends by showing the additivity of the Lebesgue measure.

Theorem 2.62. Let A1, A2, . . ., form a countable sequence of disjoint

Lebesgue measurable subsets of Rn, with n ∈ N, and let also

A =

+∞⋃
t=1

At. (2.119)

Then,

µ (A) =

+∞∑
t=1

µ (At) . (2.120)

Proof See Homework 1.

2.13 Lebesgue Measurable Functions

The definition of Lebesgue measurable functions can be stated in different equiv-

alent forms. A useful definition is often the one that is expressed in terms of

conditions that are easy to verify. The following definition is one of these.

Definition 2.63 (Lebesgue Measurable Function). A function f : E → R̄,

with E ⊆ Rn a Lebesgue measurable set and n ∈ N, is said to be Lebesgue

measurable, if for all a ∈ R, it holds that {x ∈ E : f(x) < a} is a Lebesgue

measurable set.

An immediate consequence of Definition 2.63 is an important property of con-

tinuous functions.
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Theorem 2.64. A continuous function f : Rn → R, with n ∈ N, is

Lebesgue measurable.

Proof See Homework 2.

2.13.1 Alternative Definitions of Lebesgue Measurable Functions

The following theorem provide equivalent definitions of measurability of func-

tions that take values in the extended reals.

Theorem 2.65. Consider a function f : Rn → R̄, with n ∈ N. Then, the

following statements are equivalent:

(i) The function f is Lebesgue measurable;

(ii) For all a ∈ R, the set f−1 ([−∞, a[) = {x ∈ Rn : f(x) < a} is

Lebesgue measurable;

(iii) For all a ∈ R, the set f−1 ([−∞, a]) = {x ∈ Rn : f(x) 6 a} is

Lebesgue measurable;

(iv) For all a ∈ R, the set f−1 (]a,+∞]) = {x ∈ Rn : f(x) > a} is

Lebesgue measurable; and

(v) For all a ∈ R, the set f−1 ([a,+∞]) = {x ∈ Rn : f(x) > a} is Lebesgue

measurable.

Proof See Homework 2.

Theorem 2.66. Consider a function f : Rn → R̄, with n ∈ N. Then, f is

Lebesgue measurable if and only if

(i) The sets f−1(−∞) and f−1(∞) are Lebesgue measurable; and

at least one of the following conditions hold:

(ii) For all open subsets O of R, the set f−1 (O) ⊆ Rn is a Lebesgue

measurable set; or

(iii) For all closed subsets C of R, the set f−1 (C) ⊆ Rn is a Lebesgue

measurable set.

Proof See Homework 2.

In the case of finite functions, the following theorems present alternative tools

to verify Lebesgue measurability.

Theorem 2.67. Consider a function f : Rn → R, with n ∈ N. Then the

following statements are equivalent:

(i) The function f is Lebesgue measurable;

(ii) For all pairs (a, b) ∈ R2, with a < b, the set f−1 (]a, b[) = {x ∈ Rn :

a < f(x) < b} is Lebesgue measurable;

(iii) For all pairs (a, b) ∈ R2, with a < b, the set f−1 ([a, b[) = {x ∈ Rn :
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a 6 f(x) < b} is Lebesgue measurable;

(iv) For all pairs (a, b) ∈ R2, with a < b, the set f−1 (]a, b]) = {x ∈ Rn :

a < f(x) 6 b} is Lebesgue measurable; and

(v) For all pairs (a, b) ∈ R2, with a < b, the set f−1 ([a, b]) = {x ∈ Rn :

a 6 f(x) 6 b} is Lebesgue measurable.

Proof See Homework 2.

Theorem 2.68. Consider a function f : Rn → R, with n ∈ N. Then, f is

Lebesgue measurable if and only if

(i) For all open subsets O of R, the set f−1 (O) ⊆ Rn is a Lebesgue

measurable set; or

(ii) For all closed subsets C of R, the set f−1 (C) ⊆ Rn is a Lebesgue

measurable set.

Proof See Homework 2.

2.13.2 Lebesgue Measurable Simple Functions

The definition of an elementary simple function (Definition 2.10) is generalized by

that of Lebesgue measurable simple functions, which are central in the definition

of Lebesgue integral.

Definition 2.69 (Lebesgue Measurable Simple Functions). A function f :

E → R̄, with E ⊆ Rn and n ∈ N, is said to be a Lebesgue measurable

simple function if there always exists a partition on E formed by Lebesgue

measurable sets A1, A2, . . ., Am, with m <∞, such that for all x ∈ E ,

f(x) =

m∑
t=1

at1{x∈At}, (2.121)

with ai ∈ R̄ for all i ∈ {1, 2, . . . ,m}.

From Definition 2.69, it holds that every elementary simple function (Definition

2.10) is a Lebesgue measurable simple function, but the converse is not neces-

sarily true.

There might exist many expressions of the form in (2.121) to describe the

same Lebesgue measurable simple function. For instance, consider an alternative

description of the function f in (2.121) such that a partition of E is formed by

measurable sets B1, B2, . . ., Bp, with p <∞, and for all x ∈ E,

f(x) =

m∑
t=1

at1{x∈At} =

p∑
t=1

ct1{x∈Bt} (2.122)

for some extended reals c1, c2, . . ., cp. In this case, for all pairs (i, j) ∈ {1, 2, . . . ,m}
× {1, 2, . . . , p}, it holds that for all x ∈ Ai ∩ Bj , f(x) = ai = cj .
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To add some extra generality, the condition that the sets A1, A2, . . ., Am in

Definition 2.69 are disjoint can be neglected. Nonetheless, in order to avoid an

indetermination, it must be ensured that the sum in (2.121) does not include

simultaneously the terms +∞ and −∞.

2.13.3 Properties of Lebesgue Measurable Functions

The addition and the product of bounded measurable functions form measurable

functions.

Theorem 2.70. Let f : E → R and g : E → R, with E a Lebesgue mea-

surable subset of Rn and n ∈ N, be two Lebesgue measurable functions.

Then, the functions formed by the addition f + g; the k-th power fk; and

the product f · g are Lebesgue measurable functions.

Proof See Homework 2.

The composition of two Lebesgue measurable functions is measurable under

certain conditions.

Theorem 2.71. Let f : Rn → R and g : R → R, with n ∈ N, be a

Lebesgue measurable function and a continuous function, respectively. Then,

the composition g ◦ f is measurable.

Proof See Homework 2.

Note that under the conditions of Theorem 2.71, the composition f ◦ g is not

necessarily Lebesgue measurable.

Theorem 2.72. For all t ∈ N, let ft : Rn → R, with n ∈ N, be a measurable

function. Then, the following functions gi : Rn → R̄, with i ∈ {1, 2}, such

that for all x ∈ Rn,

g1(x) = sup
t∈N

ft(x), and (2.123)

g2(x) = inf
t∈N

ft(x), (2.124)

are Lebesgue measurable.

Proof Consider the subset of the form [−∞, a[, with a ∈ R. Then, the following
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holds

g−11

(
[−∞, a[

)
= {x ∈ Rn : g1(x) < a} (2.125)

=

{
x ∈ Rn : sup

t>0
ft(x) < a

}
(2.126)

=

+∞⋂
t=1

{x ∈ Rn : ft(x) < a} (2.127)

=

+∞⋂
t=1

f−1t
(

]−∞, a[
)
; and (2.128)

g−12

(
[−∞, a[

)
= {x ∈ Rn : g2(x) < a} (2.129)

=

{
x ∈ Rn : inf

t>0
ft(x) < a

}
(2.130)

=

+∞⋃
t=1

{x ∈ Rn : ft(x) < a} (2.131)

=

+∞⋃
t=1

f−1t
(

[−∞, a[
)
. (2.132)

From the assumption that for all t ∈ N, the function ft is Lebesgue mea-

surable, it follows that f−1t
(

[−∞, a[
)

is Lebesgue measurable. Hence, from the

equalities in (2.128) and (2.132), it holds that g−11

(
[−∞, a[

)
and g−12

(
[−∞, a[

)
are sets respectively formed by countable intersections and countable unions of

measurable sets, and thus, both are Lebesgue measurable. This implies that both

g1 and g2 are Lebesgue measurable functions.

A further implication of Theorem 2.72 is described hereunder.

Theorem 2.73. For all t ∈ N, let ft : Rn → R, with n ∈ N, be a Lebesgue

measurable function. Then, the following functions gi : Rn → R̄, with i ∈
{1, 2}, such that for all x ∈ Rn,

g1(x) = lim
t→+∞

sup
k>t

fk(x), and (2.133)

g2(x) = lim
t→+∞

inf
k>t

fk(x), (2.134)

are Lebesgue measurable.

Proof See Homework 2.

The following theorem is an immediate implication of Theorem 2.73.

Theorem 2.74. For all t ∈ N, let ft : Rn → R, with n ∈ N, be a Lebesgue

measurable function. Assume that there exists a function f : Rn → R such
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that for all x ∈ Rn,

lim
t→+∞

ft(x) = f(x). (2.135)

Then, the function f is Lebesgue measurable.

Proof From the assumption in (2.135), it follows that the limit exists for all

x ∈ Rn, and

lim
t→+∞

ft(x) = g1(x) = g2(x), (2.136)

with g1 and g2 the functions defined in (2.133) and (2.134), respectively. Hence,

given that the functions g1 and g2 are Lebesgue measurable, the function f is

also a Lebesgue measurable function.

The argument of the proof of Theorem 2.74 can be extended to functions that

might differ in certain intervals under the condition that such intervals are of

Lebesgue measure zero. This functions are said to be equal almost everywhere.

Definition 2.75. Given two functions f : E → R and g : E → R, with

E ⊆ Rn and n ∈ N, they are said to be equal almost everywhere, if the set

{x ∈ E : f(x) 6= g(x)} (2.137)

is of Lebesgue measure zero, i.e., µ ({x ∈ E : f(x) 6= g(x)}) = 0.

In general, a property on a given point x ∈ E , with E ⊂ Rn and n ∈ N,

denoted by C(x), is said to hold almost everywhere or to hold for almost every

x ∈ E , if the set

C = {x ∈ E : C(x) does not hold} (2.138)

satisfies µ (C) = 0. That is, the property C(x) is verified on all elements of E
except on a subset of Lebesgue measure zero. Using this notion, the following

holds.

Theorem 2.76. Let f : E → R and g : E → R, with E ⊆ Rn and n ∈ N,

be two functions such that f is Lebesgue measurable and f and g are equal

almost everywhere. Then, the function g is Lebesgue measurable.

Proof See Homework 2.

Finally, the most prominent property of Lebesgue measurable functions is

presented in two steps. First, it is shown for non-negative Lebesgue measurable

functions in the following theorem; and later, it is shown for arbitrary Lebesgue

measurable functions in Theorem 2.78.

Theorem 2.77. Let f : E → [0,+∞], with E ⊆ Rn and n ∈ N, be a

non-negative Lebesgue measurable function. Then, there always exist an in-
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creasing sequence of non-negative Lebesgue measurable simple functions f1,

f2, . . ., with ft : E → [0,+∞] for all t ∈ N, that converge point-wise to f .

That is, for all x ∈ E, the following holds:

fi(x) 6 fi+1(x) and lim
t→+∞

ft(x) = f(x), (2.139)

with i ∈ N.

Proof See Homework 2.

Theorem 2.78. Let f : E → R̄, with E ⊆ Rn and n ∈ N, be a Lebesgue

measurable function. Then, there always exist a sequence of Lebesgue mea-

surable simple functions f1, f2, . . ., with ft : E → R for all t ∈ N, that

satisfies for all for all x ∈ E:

|fi(x)| 6 |fi+1(x)| and lim
t→+∞

ft(x) = f(x), (2.140)

with i ∈ N.

Proof Note that the function f can be written in terms of non-negative func-

tions as follows. For all x ∈ E , f(x) = f+(x) − f−(x). From Theorem 2.77,

it follows that there exist two increasing sequences of non-negative Lebesgue

measurable simple functions g1, g2, . . . and h1, h2, . . ., with gt : E → [0,+∞]

and ht : E → [0,+∞] for all t ∈ N, that converge point-wise to f+ and f−,

respectively. For all t ∈ N, let the function ft be such that for all x ∈ E ,

ft(x) = gt(x)− ht(x), which satisfies limt→+∞ ft(x) = f(x).

Finally, note that for all x ∈ E and for all t ∈ N, |ft(x)| = gt(x) + ht(x).

Thus, the sequence of functions |f1|, |f2|, . . ., is increasing, which completes the

proof.

2.14 Lebesgue Integral

The Lebesgue integral is defined only for Lebesgue measurable functions, yet

this is by no means restrictive. In this section, it is shown that a larger class of

functions are integrable in the sense of Lebesgue than in the sense of Riemann-

Darboux. In order to study these subtleties of this more general theory of inte-

gration, the definition of Lebesgue integral is built into three steps. First, the

Lebesgue integral is defined for Lebesgue measurable non-negative simple func-

tions (Definition 2.69). Second, the definition is extended to Lebesgue measurable

simple functions; and finally, the integral is defined for functions that satisfy the

absolute integrability condition, which is introduced later in Definition 2.94
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2.14.1 Case of Non-Negative Lebesgue Measurable Simple Functions

The Lebesgue integral of a non-negative Lebesgue measurable simple function

can be described as follows:

Definition 2.79. Consider a non-negative Lebesgue measurable simple

function f : E → [0,+∞], with E ⊆ Rn and n ∈ N, such that for all

x ∈ E

f(x) =

m∑
t=1

at1{x∈At}, (2.141)

where for all i ∈ {1, 2, . . . ,m} and m < ∞, it holds that ai ∈ [0,+∞] and

A1, A2, . . ., Am form a partition of E . The Lebesgue integral of the function

f is ∫
E
f(x)dµ(x) ,

m∑
t=1

atµ (At) . (2.142)

Note that the Lebesgue integral of non-negative Lebesgue measurable simple

functions is independent of the description of the function. The following theorem

formalizes this property.

Theorem 2.80. Consider a non-negative measurable simple function f :

E → [0,+∞], with E ⊆ Rn and n ∈ N, such that for all x ∈ E

f(x) =

m∑
t=1

at1{x∈At} =

p∑
t=1

ct1{x∈Bt}, (2.143)

where for all (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , p}, with m <∞ and p <∞,

it holds that ai ∈ [0,+∞], cj ∈ [0,+∞], and A1, A2, . . ., Am and B1, B2,

. . ., Bp form two different exact covers of E. Then,∫
E
f(x)dµ(x) =

m∑
t=1

atµ (At) =

p∑
t=1

ctµ (Bt) . (2.144)

Proof See Homework 2.

The sum in (2.144) is positive but not necessarily finite. The following theorem

sheds some light into this observation.

Theorem 2.81. Consider a non-negative Lebesgue measurable simple func-

tion f : E → [0,+∞], with E ⊆ Rn and n ∈ N. Then,∫
E
f(x)dµ(x) < +∞ (2.145)
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if and only if the function f is finite almost everywhere and

µ ({x ∈ E : f(x) > 0}) < +∞. (2.146)

Proof See Homework 2.

The Lebesgue integral of a non-negative Lebesgue measurable simple function

can be performed over a subset of the domain of such function. This can be done

by noticing that the product of non-negative simple functions and the indicator

function is a simple function.

Definition 2.82. Consider a non-negative Lebesgue measurable simple

function f : E → [0,+∞], with E ⊆ Rn and n ∈ N. The Lebesgue inte-

gral of the function f on the subset A ⊆ E is∫
A
f(x)dµ(x) ,

∫
E
f(x)1{x∈A}dµ(x). (2.147)

The integral of non-negative Lebesgue measurable simple functions possesses

the following properties.

Theorem 2.83. Consider two non-negative Lebesgue measurable simple

functions f : E → R and g : E → R, with E ⊆ Rn and n ∈ N. Then,

the following holds:

(i) For all pairs (α, β) ∈ [0,+∞]2,∫
E

(αf(x) + βg(x)) dµ(x) = α

∫
E
f(x)dµ(x) + β

∫
E
g(x)dµ(x) (2.148)

(ii) Given two disjoint measurable subsets A and B of E,∫
A∪B

f(x)dµ(x) =

∫
A
f(x)dµ(x) +

∫
B
f(x)dµ(x); (2.149)

(iii) ∫
E
f(x)dµ(x) = 0, (2.150)

if and only if f(x) = 0 for almost every x ∈ E;

(iv) If f(x) 6 g(x) for almost every x ∈ E,∫
E
f(x)dµ(x) 6

∫
E
g(x)dµ(x); and (2.151)

(v) If f(x) = g(x) for almost every x ∈ E,∫
E
f(x)dµ(x) =

∫
E
g(x)dµ(x). (2.152)

Proof See Homework 2.
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2.14.2 Case of Absolutely Integrable Simple Functions

Absolute integrability in the case of Lebesgue measurable simple functions can

be described as follows.

Definition 2.84 (Absolutely Integrable Simple Functions). A Lebesgue

measurable simple function f : E → R, with E ⊆ Rn and n ∈ N, is said to

be absolutely integrable if ∫
E
|f(x)|dµ(x) <∞. (2.153)

The Lebesgue integral of an absolutely integrable simple function is defined

as follows.

Definition 2.85 (Lebesgue Integral of Absolutely Integrable Simple Func-

tions). The Lebesgue integral of an absolutely integrable simple function

f : E → R, with E ⊆ Rn and n ∈ N, is∫
E
f(x)dµ(x) =

∫
E
f+(x)dµ(x)−

∫
E
f−(x)dµ(x). (2.154)

Note that from Definition 2.84, it follows that absolute integrability implies

that the function has a finite Lebesgue integral.

Theorem 2.86. Let f : E → R, with E ⊆ Rn and n ∈ N, be an absolutely

integrable simple function. Then, it holds that the Lebesgue integral of f is

finite.

Proof The proof follows from the fact that for all x ∈ E , |f(x)| = f+(x)+f−(x),

and thus,

+∞ >

∫
E
|f(x)|dµ(x) =

∫
E
f+(x)dµ(x) +

∫
E
f−(x)dµ(x), (2.155)

where f+ and f− are both non-negative simple functions. Therefore,∫
E
f+(x)dµ(x) < +∞ and (2.156)∫
E
f−(x)dµ(x) < +∞, (2.157)

which yields,∫
E
f(x)dµ(x) =

∫
E
f+(x)dµ(x)−

∫
E
f−(x)dµ(x) < +∞, (2.158)

and completes the proof.

Absolutely integrable simple functions exhibit a particular property regarding

the measure of their support. The support of a function is formally defined

hereunder.
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Definition 2.87 (Support of a Function). Given a Lebesgue measurable

function f : E → R, with E ⊆ Rn and n ∈ N, the support of f is

supp f , {x ∈ E : f(x) 6= 0} . (2.159)

A Lebesgue measurable function f : E → R, with E ⊆ Rn and n ∈ N, is said

to be concentrated in a Lebesgue measurable subset A ⊂ E , if for all x ∈ E \ A,

f(x) = 0.

Definition 2.88 (Functions with Finite-Measure Support). A Lebesgue

measurable function f : E → R, with E ⊆ Rn and n ∈ N, is said to have

finite-measure support if

µ (supp f) < +∞. (2.160)

Theorem 2.89. A Lebesgue measurable simple function f : E → R, with

E ⊆ Rn and n ∈ N, is an absolutely integrable function if and only if it has

a finite measure support.

Proof See Homework 2.

The integral of absolutely integrable simple functions possesses the following

properties.

Theorem 2.90. Consider two absolutely integrable simple functions f : E →
R and g : E → R, with E ⊆ Rn and n ∈ N. Then, the following holds:

(i) For all pairs (α, β) ∈ R2,∫
E

(αf(x) + βg(x)) dµ(x) = α

∫
E
f(x)dµ(x) + β

∫
E
g(x)dµ(x) (2.161)

(ii) Given two disjoint Lebesgue measurable subsets A and B of E,∫
A∪B

f(x)dµ(x) =

∫
A
f(x)dµ(x) +

∫
B
f(x)dµ(x); (2.162)

(iii) If f(x) = g(x) for almost every x ∈ E,∫
E
f(x)dµ(x) =

∫
E
g(x)dµ(x); (2.163)

Proof See Homework 2.

2.14.3 Case of Non-Negative Lebesgue Measurable Functions

The Lebesgue integral of non-negative Lebesgue measurable functions is defined

as follows.
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Definition 2.91 (Lebesgue Integral of Non-Negative Lebesgue Measurable

Functions). The Lebesgue integral of a non-negative Lebesgue measurable

function f : E → R, with E ⊆ Rn and n ∈ N, is∫
E
f(x)dµ(x) , sup

{∫
E
g(x)dµ(x) : g is Lebesgue measurable simple and

0 6 g(x) 6 f(x) for almost every x ∈ E w.r.t. µ

}
. (2.164)

The integral of non-negative Lebesgue measurable functions possesses the fol-

lowing properties.

Theorem 2.92. Consider two non-negative Lebesgue measurable functions

f : E → R and g : E → R, with E ⊆ Rn and n ∈ N. Then, the following

holds:

(i) For all pairs (α, β) ∈ [0,+∞[2,∫
E

(αf(x) + βg(x)) dµ(x) = α

∫
E
f(x)dµ(x) + β

∫
E
g(x)dµ(x) (2.165)

(ii) Given two disjoint measurable subsets A and B of E,∫
A∪B

f(x)dµ(x) =

∫
A
f(x)dµ(x) +

∫
B
f(x)dµ(x); (2.166)

(iii) ∫
E
f(x)dµ(x) = 0, (2.167)

if and only if f(x) = 0 for almost every x ∈ E;

(iv) If f(x) 6 g(x) for almost every x ∈ E,∫
E
f(x)dµ(x) 6

∫
E
g(x)dµ(x); and (2.168)

(v) If f(x) = g(x) for almost every x ∈ E,∫
E
f(x)dµ(x) =

∫
E
g(x)dµ(x); (2.169)

Proof See Homework 2.

Theorem 2.93. Consider a non-negative Lebesgue measurable function f :

E → [0,∞], with E ⊆ Rn and n ∈ N and assume that∫
E
f(x)dµ(x) < +∞. (2.170)
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Then, it holds that f(x) < +∞ for almost every x ∈ E. The converse is not

necessarily true.

Proof See Homework 2.

2.14.4 Case of Absolutely Integrable Measurable Functions

Absolute integrability in the case of Lebesgue measurable functions can be de-

scribed as follows.

Definition 2.94 (Absolutely Integrable Functions). A Lebesgue measur-

able function f : E → R, with E ⊆ Rn and n ∈ N, is said to be absolutely

integrable if ∫
E
|f(x)|dµ(x) <∞. (2.171)

The Lebesgue integral of an absolutely integrable function is defined as follows.

Definition 2.95 (Lebesgue Integral of Absolutely Integrable Functions).

The Lebesgue integral of an absolutely integrable measurable function f :

E → R, with E ⊆ Rn and n ∈ N, is∫
E
f(x)dµ(x) =

∫
E
f+(x)dµ(x)−

∫
E
f−(x)dµ(x). (2.172)

The integral of absolutely integrable measurable functions possesses the fol-

lowing properties.

Theorem 2.96. Consider two absolutely integrable measurable functions

f : E → R and g : E → R, with E ⊆ Rn and n ∈ N. Then, the following

holds:

(i) For all pairs (α, β) ∈ R2,∫
E

(αf(x) + βg(x)) dµ(x) = α

∫
E
f(x)dµ(x) + β

∫
E
g(x)dµ(x) (2.173)

(ii) Given two disjoint measurable subsets A and B of E,∫
A∪B

f(x)dµ(x) =

∫
A
f(x)dµ(x) +

∫
B
f(x)dµ(x); (2.174)

(iii) For all subsets A of E, the following holds∫
A
f(x)dµ(x) =

∫
E
f(x)1{x∈A}dµ(x); (2.175)
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(iv) If f(x) = g(x) for almost every x ∈ E,∫
E
f(x)dµ(x) =

∫
E
g(x)dµ(x); and (2.176)

(v) ∣∣∣∣∫
E
f(x)dµ(x)

∣∣∣∣ 6 ∫
E
|f(x)|dµ(x). (2.177)

Proof See Homework 2.
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3.1 Measurable Spaces and Measurable Functions

Definition 3.1 (Measurable Space). Given a set O and a σ-field F on O,

the pair (O,F ) is said to be a measurable space.

Definition 3.2 (Product of Measurable Spaces). Let (A,F ) and (B,G )

be two measurable spaces. The product of these measurable spaces is a

measurable space denoted by (A,F )× (B,G ) such that

(A,F )× (B,G ) , (A× B, σ (F × G )) , (3.1)

where σ (F × G ) is the smallest σ-field on A× B containing F × G .

Definition 3.3 (Measurable Function). Let (A,F ) and (B,G ) be two mea-

surable spaces. The function f : A → B is said to be measurable relative to

(A,F ) and (B,G ) if for all G ∈ G ,

f−1(G) ∈ F . (3.2)

The verification of whether or not a function is measurable might be tedious and

thus, the following theorem eases this task in the case in which the target σ-field

is induced by a particular collection of sets.

Theorem 3.4. Let (A,F ) and (B,G ) be two measurable spaces, such that

G = σ (D), for some D . Then, a function f : A → B is measurable relative

to (A,F ) and (B,G ) if and only if for all D ∈ D ,

f−1(D) ∈ F . (3.3)

Proof Consider that f is measurable relative to (A,F ) and (B,G ). Then, from

Definition 3.3, it holds that for all D ∈ D ⊆ G , f−1(D) ∈ F , which proves the

sufficiency.

To prove the necessity, assume that for all D ∈ D ,

f−1(D) ∈ F . (3.4)
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Under this assumption, proving that for all G ∈ G it holds that f−1(G) ∈ F

boils down to proving that G ⊆ M , {D ⊆ B : f−1(D) ∈ F}. This is done

in two steps. First, it is shown that M is a σ-field on B. To prove that M is a

σ-field on B, given Definition 1.67, it suffices to verify that:

(a) Given that f−1(B) = A ∈ F , it holds that B ∈M ;

(b) For all M ∈ M , it holds that f−1(Mc) = (f−1(M))c ∈ F , given that

f−1(M) ∈ F ; and

(c) For all i ∈ N, let Mi be a subset of M . Hence, f−1(Mi) ∈ F and

f−1
(⋃

i∈NMi

)
=
⋃
i∈N f

−1 (Mi) ∈ F .

Second, from the assumption in (3.4), it holds that for all D ∈ D , D ⊆ M .

Hence, given that G = σ(D) and M are both σ-fields, it holds that G ⊆ M .

This completes the proof.

Theorem 3.5. Consider a measurable function f relative to (A,E ) and

(B,F ). Consider also a measurable function g relative to (B,F ) and (C,G ).

Then, the composition g ◦ f is measurable relative to (A,E ) and (C,G ).

Proof Let G be an arbitrary set in G and let F = g−1(G) be the pre-image of G
through g. Hence, given that the function g is measurable relative to (B,F ) and

(C,G ), it follows that F = g−1(G) ∈ F . Alternatively, given that the function

f is measurable relative to (A,E ) and (B,F ), it follows that E , f−1(F) ∈ E .

Finally, (g ◦ f)−1(G) = f−1(g−1(G)) = f−1(F) = E ∈ E , which completes the

proof.

Definition 3.6 (Borel Measurable Functions). A function f that is mea-

surable relatively to (A,F ) and (R,B(R)) is said to be Borel measurable

relative to (A,F ). Moreover, when A = Rk and F = B
(
Rk
)
, for some

k > 0, the function f is said to be Borel measurable.

Note that all Borel measurable functions are Lebesgue measurable (Defini-

tion 2.63), but the converse is not necessarily true.

Definition 3.7 (Positive and Negative Parts). Given an arbitrary function

f : O → R, Borel measurable on (O,F ), its positive part and negative part

are non-negative functions denoted by f+ : O → R+ and f− : O → R+,

respectively, satisfy for all x ∈ O,

f+(x) , max{f(x), 0} and (3.5)

f−(x) , −min{f(x), 0}. (3.6)

The positive and negative parts of a Borel measurable function relative to

given measurable space satisfies the following property.
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Theorem 3.8. Let f be an arbitrary Borel measurable function on (O,F ).

Then, the functions f+ and f− are both Borel measurable functions on

(O,F ).

Proof From Definition 1.68, it holds that given the set T = {]a,+∞[ : a ∈ R},
the Borel σ-field satisfies B(R) = σ(T ). From Theorem 3.4, it holds that to

prove that f+ and f− are both Borel measurable functions, it is enough to prove

that the inverse of each of the intervals ]a,∞[ is in F .

The function f+ is a positive function, and thus, for all a ∈ R, with a < 0, it

holds that (f+)−1(]a,∞)) = O ∈ F . Alternatively, for all a ∈ R, with a > 0, it

holds that (f+)−1(]a,∞[) = {x ∈ O : f+(x) > a} = {x ∈ O : max{f(x), 0} >
a} = {x ∈ O : f(x) > a} = f−1(]a,∞[) ∈ F , where the last inclusion holds

because f is Borel measurable relative to (O,F ).

Similarly, the function f− is positive. Hence, for all a ∈ R, with a < 0, it holds

that (f−)−1(]a,∞[) = O ∈ F . Alternatively, for all a ∈ R, with a > 0, it holds

that (f−)−1(]a,∞[) = {x ∈ O : f−(x) > a} = {x ∈ O : −min{f(x), 0} > a} =

{x ∈ O : −f(x) > a} = {x ∈ O : f(x) < −a} = f−1(]−∞,−a[) ∈ F , where the

last inclusion holds because f is Borel measurable relative to (O,F ).

Definition 3.9 (Isomorphic Measurable Spaces). Two measurable spaces

(A,F ) and (B,G ) are said to be isomorphic if there exists a bijective func-

tion f : A → B that is measurable relative to (A,F ) and (B,G ) and its

functional inverse f−1 is measurable relative to (B,G ) and (A,F ). If it

exists, f is referred to as an isomorphism of (A,F ) and (B,G ).

Definition 3.10 (Standard Measurable Spaces). A measurable space is

said to be standard if it is isomorphic to a measurable space (A,B(A)),

with A ∈ B(R).

Given a measure space (O,F ), the elements of O are referred to as outcomes,

whereas those in F are referred to as events. These denominations are often

related to the fact that measurable spaces are the building blocks of probability

theory. From this perspective, given an experiment, the set O contains all the

“outcomes” that might be observed after the experiment. A particular “event”

is a subset of “outcomes”. More specifically, it is a set in F . In order to deter-

mine whether or not an “event” A ∈ F has taken place, all the corresponding

outcomes must be verified. That is, all the outcomes of the experiment must be

elements of the event A. The intuition for the requirement of closeness under

complementations follows from the fact that if a given event is verifiable so is

the same event not taking place. The intuition for closeness under unions stems

from the fact that events can be jointly verified.
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A refinement of these intuitions leads to the notion of measure, which is rem-

iniscent to the notion of a distance in a metric space, for instance.

3.2 Measures

Definition 3.11 (Measure). A measure on a σ-field F is a non-negative

real-valued function ν : F → [0,+∞] such that

ν (∅) = 0; (3.7)

and for all countable sequences of disjoint sets A1,A2, . . . in F ,

ν

( ∞⋃
t=1

At

)
=

+∞∑
t=1

ν (At) . (3.8)

Consider a measurable space (O,F ), with O a finite set. The function ν :

F → N ∪ {0,+∞} such that for all A ∈ F ,

ν(A) = |A| , (3.9)

is a measure. More specifically, it is said to be a counting measure, as it is a

measure of the number of elements in the subsets of F .

A more general exemple can be constructed in a measurable space (O,F ), with

O an arbitrary set. Let a be an element of O, then the function δa : F → {0, 1}
such that for all A ∈ F ,

δa(A) =

{
1 if a ∈ A
0 if a /∈ A, (3.10)

is a measure on (O,F ). Often, it is referred to as the Dirac measure on (O,F )

with respect to a.

Note that a measure is always positive but it is not necessarily finite. This

observation is formalized by the following definitions.

Definition 3.12 (Finite Measure). Given a measure ν on the measurable

space (O,F ), it is said to be a finite measure if ν (O) <∞.

A particular example of finite measures is that of probability measures. A

measure ν on a σ-field F of elements of O is said to be a probability measure if

it satisfies ν (O) = 1.

Definition 3.13 (σ-Finite Measures). Given a measure ν on the measur-

able space (O,F ), it is said to be a σ-finite if there exists an infinite se-

quence A1,A2, . . . , of sets in F such that
⋃∞
t=1At = O and for all n ∈ N,

ν(An) <∞.
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An exemple of a σ-finite measure is the Lebesgue measure (Definition 2.56) on

(R,B(R)), with B(R) being the Borel σ-field in R (Definition 1.68).

Definition 3.14 (Concentration). A measure ν on the measurable space

(O,F ) is said to be concentrated on A, if ν (Ac) = 0.

Definition 3.15 (Measure Space). Given a measurable space (O,F ) and

a measure ν on F , the triplet (O,F , ν) is referred to as a measure space.

A measure space (O,F , ν) whose measure ν is a probability measure is called

a probability space.

The following theorem introduces some properties of measures.

Theorem 3.16. Let (O,F , ν) be a measure space. Then,

(i) For all pairs (A,B) ∈ F 2,

ν (A ∪ B) + ν (A ∩ B) = ν (A) + ν (B) ; and (3.11)

(ii) For all pairs (A,B) ∈ F 2, with A ⊂ B,

ν (B) = ν (A) + ν (B \ A) . (3.12)

Proof The proof of (i) is based on the fact that

A = (A \ B) ∪ (A ∩ B) ; and (3.13)

B = (B \ A) ∪ (A ∩ B) , (3.14)

where the sets A \ B, A ∩ B and B \ A are mutually disjoint. Therefore,

ν(A) = ν(A \ B) + ν(A ∩ B), (3.15a)

ν(B) = ν(B \ A) + ν(A ∩ B), and (3.15b)

ν(A ∪ B) = ν(A ∩ B) + ν(B \ A) + ν(A \ B). (3.15c)

Adding the equations in (3.15) yields,

ν(A) + ν(B) = ν(A ∪ B) + ν(A ∩ B). (3.16)

The proof of (ii) is based on the fact that A and B\A are disjoint sets and thus,

ν(A) + ν(B \ A) = ν(A ∪ (B \ A)) = ν(A ∪ B) = ν(B). (3.17)

where the last equality follows from the fact that A ⊆ B. This completes the

proof.

Theorem 3.17. Let (O,F , ν) be a measure space. Consider also an infinite

sequence of subsets A1,A2, . . . , in F . Then,
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(i) if An ↑ A, lim
n→∞

ν(An) = ν(A); and

(ii) if An ↓ A and ν(O) <∞, lim
n→∞

ν(An) = ν(A).

Proof Let B1 , A1 and for all n ∈ N \ {1}, let Bn , An \ An−1. Note that B1,

B2, . . . are mutually disjoint sets and
⋃
i∈N Bi =

⋃
i∈NAi = A (Theorem 1.16),

which yields:

ν (A) = ν

(⋃
i∈N
Bi

)
=
∑
i∈N

ν(Bi). (3.18)

Note also that for all n ∈ N \ {1}, it holds that An−1 ⊆ An. Hence, from

Theorem 3.16, it follows that

ν(An) = ν(An−1) + ν(An \ An−1) = ν(An−1) + ν(Bn), (3.19)

and thus, ν(Bn) = ν(An)− ν(An−1); and ν(B1) = ν(A1). Using these elements,

the following holds:

ν(A) = ν

(⋃
i∈N
Ai

)
(3.20)

= ν

(⋃
i∈N
Bi

)
(3.21)

=
∑
i∈N

ν(Bi) (3.22)

= ν(B1) +
∑
i≥2

ν(Bi) (3.23)

= ν(A1) +
∑
i≥2

(ν(Ai)− ν(Ai−1)) (3.24)

= ν(A1) + lim
n→∞

n∑
i=2

(ν(Ai)− ν(Ai−1)) (3.25)

= ν(A1) + lim
n→∞

(ν(An)− ν(A1)) (3.26)

= lim
n→∞

ν(An), (3.27)

which completes the proof of statement (i).

The proof of statement (ii) is as follows. For all n ∈ N \ {1}, let Bn = Ac
n.

This implies that B1 ⊆ B2 ⊆ . . . . Hence, from Theorem 1.12, it holds that,(⋃
i∈N
Bi

)c

=
⋂
i∈N
Bci =

⋂
i∈N
Ai = A (3.28)

Therefore, Bn ↑ Ac and thus, from (3.27) it follows that limn→∞ ν(Bn) = ν(Ac).
Given that ν is a finite measure, i.e., ν(O) < ∞, and A ⊂ O, it holds from
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Theorem 3.16 that

ν(A) = ν(O)− ν(Ac) = ν(O)− lim
n→∞

ν(Bn) (3.29)

= ν(O)− lim
n→∞

ν ((O)− ν(An)) (3.30)

= ν(O)− (ν(O)− lim ν(An)) (3.31)

= lim ν(An), (3.32)

which completes the proof.

3.3 General Integration

Given a measure space (O,F , ν) and a Borel measurable function f relative to

(O,F ), the integral of the function f with respect to ν, often referred to as

Lebesgue integral, is denoted by∫
O
fdν, or

∫
O
f(x)ν(dx), or

∫
O
f(x)dν(x), or νf, or ν(f). (3.33)

Nonetheless, the notation used in the following would be

∫
O
fdν.

Definition 3.18 (Borel Measurable Simple Functions). Consider a mesurable

space (O,F ). Then, a function f : O → R is said to be a Borel measurable

simple function if it is Borel measurable relative to (O,F ) and it takes

finitely many different values.

Every Borel measurable simple function f : O → R relative to (O,F ) can be

written as follows:

f(x) =

m∑
t=1

at1{x∈At}, (3.34)

where m ∈ N is finite, (a1, a2, . . . , am) ∈ Rm and A1,A2, . . .Am are disjoint sets

in F . Note that a Borel measurable simple function is a Lebesgue measurable

simple function. Nonetheless, the converse is not necessarily true.

Definition 3.19 (Increasing and Decreasing Sequences of Functions). Con-

sider a sequence of Borel measurable functions relative to (O,F ), denoted

by f1, f2, f3, . . .. The sequence is said to be increasing if for all (m,n) with

m < n, it holds that for all x ∈ O,

fm(x) < fn(x). (3.35)

Alternatively, the sequence is said to be decreasing if for all (m,n) with
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m < n, it holds that for all x ∈ O,

fm(x) > fn(x). (3.36)

The following is a fundamental property of Borel measurable functions in terms

of increasing sequences of simple functions.

Theorem 3.20. Given a mesurable space (O,F ), any non-negative Borel

measurable function f relative to (O,F ) is the limit of an increasing se-

quence of non-negative, finite Borel measurable simple functions.

Proof The proof is by construction. For all n ∈ N, consider the functions fn :

O → R defined as follows:

fn(x) =

{
k−1
2n if k−1

2n 6 f(x) < k
2n for some k ∈ {1, 2, . . . , n2n}

n if f(x) > n.
(3.37)

Note that, for all n ∈ N, fn is a non-negative quantizer of the function f with res-

olution 1
2n and span n. Thus, it is a Borel measurable simple function. Moreover,

for all x ∈ O, lim
n→∞

fn(x) = f(x).

Theorem 3.20 leads to the following more general result.

Theorem 3.21. Given a mesurable space (O,F ), any arbitrary Borel mea-

surable function f relative to (O,F ) is the limit of a sequence of finite Borel

measurable simple functions f1, f2, . . ., such that for all n ∈ N and for all

x ∈ O, |fn(x)| < |f(x)|.

Using these notations, given a measure space (O,F , ν) and a Borel measurable

function f relative to (O,F ), the Lebesgue integral of the function f with respect

to ν is defined hereunder.

Definition 3.22 (Lebesgue Integral). Given a measurable space (O,F , ν)

and a Borel measurable function f : O → R relative to (O,F ), the integral

of the function f with respect to ν is defined as follows:

• when f is a non-negative Borel measurable simple function (BMSF),

that is, for all x ∈ O, f(x) =
∑m
t=1 at1{x∈At}, for some finite m ∈ N,

(a1, a2, . . . , am) ∈ [0,+∞]m and A1,A2, . . .Am are sets in F , then∫
O
fdν ,

m∑
t=1

atν (At) ; (3.38)
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• when f is non-negative Borel measurable relative to (O,F ), then,∫
O
fdν , sup

{∫
O
gdν : g is a BMSF relative to (O,F ) and

∀x ∈ O, 0 6 g(x) 6 f(x)

}
; and (3.39)

• when f is an arbitrary Borel measurable function relative to (O,F ),

then, ∫
O
fdν ,

∫
O
f+dν −

∫
O
f−dν. (3.40)

The Lebesgue integral

∫
O
fdν of an arbitrary Borel measurable function f

relative to (O,F ) is said to exist if the indetermination +∞ + −∞ does not

appear in the sum in (3.40). This indetermination is always avoided in the case

in which the function f is either non-negative or non-positive. Therefore, the

Lebesgue integral of a non-negative function or a non-positive function always

exists. Nonetheless, the former might be +∞, whereas the latter might be −∞.

When the Lebesgue integral

∫
O
fdν is finite, the function f is said to be

Lebesgue integrable with respect to the measure space (O,F , ν).

A condition that ensures the finiteness of the Lebesgue integral is the absolute

integrability.

Definition 3.23 (Absolute Integrability). Consider a measure space (O,F , ν)

and a Borel measurable function f relative to (O,F ). The function f is said

to be absolutely integrable if ∫
O
|f |dν <∞. (3.41)

When the integral of f with respect to the measure ν is over a particular set

A ∈ F other than O, i.e.,

∫
A
fdν, it follows that:∫

A
fdν =

∫
O
f(x)1{x∈A}dν(x). (3.42)

The following theorem compares the integrals

∫
A
fdν and

∫
O
fdν.

Theorem 3.24. Let f be a non-negative Borel measurable function relative

to (O,F ) and ν a measure on (O,F ). Assume also that

∫
O
fdν < +∞.
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Then, for all A ⊂ O, it holds that
∫
A fdν < +∞ and∫

A
fdν 6

∫
O
fdν. (3.43)

Proof Assume that f is a non-negative simple function with the form in (3.38).

Then, let g : O → R be for all x ∈ O,

g(x) = f(x)1{x∈A} =

m∑
t=1

at1{x∈At}1{x∈A} =

m∑
t=1

at1{x∈At∩A}, (3.44)

which is also a simple function. Hence,∫
A
fdν =

∫
A
gdν =

m∑
t=1

atν(At ∩ A) 6
m∑
t=1

atν (At) =

∫
O
fdν < +∞. (3.45)

The proof continues with the analysis of non-negative functions (other than

simple functions) using the same argument.

Definition 3.25. Given measurable space (O,F ) a set A ∈ F and an

arbitrary Borel measurable function f : relative to (O,F ), the integral∫
A
fdν (3.46)

is referred to as the indefinite integral of f with respect to ν on A.

The denomination of indefinite integral stems from the fact that if O = R,

F = B(R) and ν is the Lebesgue measure (Definition 2.56), then given an

interval A = [a, x], it follows that if f is Riemman integrable,∫
A
fdν =

∫ x

a

f(t)dt, (3.47)

where the integral on the right hand side of (3.47) is the Riemman indefinite

integral.

Lebesgue integrals exhibit several properties that are reminiscent to those of

Riemman integrals. The following theorem highlights one of those properties.

Theorem 3.26 (Integration of a weighted function). Let f be a Borel mea-

surable function relative to (O,F ) and ν a measure on (O,F ). Then, if∫
O fdν exists, it holds that for all c ∈ R,

∫
O cfdν exists and∫

O
cfdν = c

∫
O
fdν. (3.48)

Proof TBW
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Theorem 3.27. Let f and g be two Borel measurable functions relative to

(O,F ) and ν a measure on (O,F ). Then, if for all x ∈ O, f(x) > g(x), it

follows that
∫
O fdν >

∫
O gdν, given that both integrals exist.

Proof TBW

Theorem 3.28. Let f be a Borel measurable function with respect to (O,F )

and ν a measure on (O,F ). Then, if
∫
O fdν exists, it holds that∣∣∣∣∫

O
fdν

∣∣∣∣ 6 ∫
O
|f |dν. (3.49)

Proof TBW

Theorem 3.29 (Additivity of Integrals). Let f and g be two Borel measur-

able functions with respect to (O,F ) and ν a measure on (O,F ). Then,

when the integrals
∫
O fdν and

∫
O gdν exist, and

∫
O fdν +

∫
O fdν is not of

the form +∞+−∞ or −∞+∞, it holds that∫
O
f + g dν =

∫
O
fdν +

∫
O
gdν. (3.50)

Proof TBW

3.4 Monotone Convergence

Using the notion of increasing sequences of functions (Definition 3.19), the mono-

tone convergence theorem can be stated as follows.

Theorem 3.30 (Monotone Convergence). Let (O,F , ν) be a measure space

and f be a non-negative Borel measurable function relative to (O,F ). Let

also f1, f2, f3, . . . be an increasing sequence of non-negative Borel measur-

able functions relative to (O,F ). Assume that for all x ∈ O,

lim
t→∞

ft(x) = f(x). (3.51)

Then, if follows that

lim
t→∞

∫
O
ft(x)dν =

∫
O
f(x)dν. (3.52)

Proof TBW
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Theorem 3.31 (Fatou’s Lemma). Let (O,F , ν) be a measure space and f

and f1, f2, f3, . . . be non-negative Borel measurable functions relative to

(O,F ). Then,

• when for all n ∈ N and for all x ∈ O, fn(x) > f(x) and
∫
O fdν > −∞,

it holds that

lim
n→∞

inf

∫
O
fndν >

∫
O

(
lim
n→∞

inf fn

)
dν (3.53)

• when for all n ∈ N and for all x ∈ O, fn(x) 6 f(x) and
∫
O fdν <∞, it

holds that

lim
n→∞

sup

∫
O
fndν 6

∫
O

(
lim
n→∞

sup fn

)
dν (3.54)

Proof TBW

3.5 Dominated Convergence

Theorem 3.32 (Dominated Convergence). Let (O,F , ν) be a measure space

and f , g and f1, f2, f3, . . . be Borel measurable functions relative to (O,F ).

Assume that for all n ∈ N and for all x ∈ O, |fn(x)| 6 g(x) and
∫
O |g|dν <

+∞ and limn→∞ fn(x) = f(x) almost everywhere with respect to ν. Then,∫
O |f |dν < +∞ and

lim
n→∞

∫
O
fndν =

∫
O
fdν. (3.55)

Proof TBW

3.6 Radon-Nikodym Derivative

In order to introduce the notion of Radon-Nikodym derivative, the notion of

absolute continuity of a measure with respect to another is introduced.

Definition 3.33 (Absolute Continuity). Given two measures ν and λ on a

measurable space (O,F ), λ is said to be absolutely continuous with respect

to ν, if for all A ∈ F for which ν(A) = 0, it holds that λ(A) = 0.

Theorem 3.34. Given a measure space (O,F , ν) and a non-negative Borel

measurable function f : O → R relative to (O,F ) such that

∫
O
fdν < +∞,
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let λ : F → [0,+∞] be such that for all the A ∈ F ,

λ(A) =

∫
A
fdν. (3.56)

Then, λ is a measure on (O,F ).

Proof To prove the conditions imposed by Definition 3.11, it suffices to verify

that λ is a non-negative function, λ (∅) = 0, and

λ

(⋃
i∈N
Ai

)
=
∑
i∈N

λ(Ai). (3.57)

Note that f is a non-negative function and thus, from Theorem 3.27, it follows

that λ is non-negative. Let A1, A2, . . . be mutually disjoint sets in F . Hence,

the following holds:

λ

(⋃
i∈N
Ai

)
=

∫⋃
i∈N
Ai

f(x)dν(x) =

∫
O
f(x)1x∈

⋃
i∈N
Ai


dν(x). (3.58)

From the assumption that A1, A2, . . . are mutually disjoint sets, it holds that

1x∈
⋃
i∈N
Ai


=
∑
i∈N

1{x∈Ai}. Thus, from (3.58), it holds that

λ

(⋃
i∈N
Ai

)
=

∫
O
f(x)

∑
i∈N

1{x∈Ai}dν(x) (3.59)

=

∫
O

(∑
i∈N

f(x)1{x∈Ai}

)
dν(x). (3.60)

For all n ∈ N, let the function gn : O → R be such that for all x ∈ O, it holds

that gn(x) =
∑n
i=1 f(x)1{x∈Ai}, which is a sum of non-negative terms, and thus,

g1, g2, . . . form an increasing sequence of nonnegative functions. Hence, from the

monotone convergence theorem (Theorem 3.30), it follows that∫
O

lim
n→∞

gn(x)dν(x) = lim
n→∞

∫
O
gn(x)dν(x), (3.61)

which implies the following,∫
O

(∑
i∈N

f(x)1{x∈Ai}

)
dν(x) =

∫
O

lim
n→∞

gn(x)dν(x) (3.62)

= lim
n→∞

∫
O
gn(x)dν(x) (3.63)

= lim
n→∞

∫
O

n∑
i=1

f(x)1{x∈Ai}dν(x). (3.64)
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From the assumptions of the theorem, it follows that the integral

∫
O
fdν exists,

which implies that the integral

∫
A
fdν exists for all A ∈ F (Theorem 3.24).

Hence, from (3.59) and Theorem 3.29, the following holds

λ

(⋃
i∈N
Ai

)
= lim
n→∞

∫
O

n∑
i=1

f(x)1{x∈Ai}dν(x) (3.65)

= lim
n→∞

n∑
i=1

∫
O
f(x)1{x∈Ai}dν(x) (3.66)

=

∞∑
i=1

∫
O
f(x)1{x∈Ai}dν(x) (3.67)

=

∞∑
i=1

∫
Ai

f(x)dν(x) (3.68)

=
∑
i∈N

λ(Ai), (3.69)

which proves the second condition imposed by Definition 3.11.

To prove the first condition imposed by Definition 3.11, note that from the

assumption that

∫
O
fdν < ∞, it holds that λ(O) < +∞. Then, λ(O) = λ(O ∪

∅) = λ(O) + λ(∅) < +∞. This implies that λ(∅) = 0, which proves the first

condition imposed by Definition 3.11, and completes the proof.

The measure λ in Theorem 3.34 is the only measure that can be generated from

ν through the function f up to negligible sets with respect to ν. The following

theorem formalizes this intuition.

Theorem 3.35. Consider a measure space (O,F , ν), with ν a σ-finite mea-

sure, and consider also two non-negative Borel measurable functions f and g

relative to (O,F ) such that

∫
O
fdν and

∫
O
gdν exist. Let λ1 : F → [0,+∞]

and λ2 : F → [0,+∞] be two measures on (O,F ) such that for all the

A ∈ F ,

λ1(A) =

∫
A
fdν, and (3.70)

λ2(A) =

∫
A
gdν. (3.71)

Then, λ1 and λ2 are identical if and only if for almost every x ∈ O with

respect to ν, f(x) = g(x).

Proof See Homework 3.
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Exercise 3.36. Show via an example that Theorem 3.35 fails if the as-

sumption that ν is σ-finite is neglected.

Note that in Theorem 3.34, for all A for which ν(A) = 0, it follows that

λ(A) = 0. That is, the measure λ generated from ν through the function f

is absolutely continuous with respect to ν. The following theorem states the

converse: if λ is absolutely continuous with respect to ν, then λ is obtained as

the indefinite integral of f with respect to a measure ν, with f being a unique

non-negative Boreal measurable function relative to (O,F ).

Theorem 3.37 (Radon-Nikodym Theorem). Let λ and ν be two measures

on a given measurable space (O,F ), such that ν is σ-finite and λ is abso-

lutely continuous with respect to ν. Then, there exists a Borel measurable

function f : O → R̄ such that for all A ∈ F ,

λ(A) =

∫
A
fdν. (3.72)

Moreover, the function g is unique almost everywhere with respect to λ.

Proof See Homework 3.

The function f in (3.72) is often referred to as the density of λ with respect

to ν, the likelihood ratio of λ with respect to ν, or the Radon-Nikodym

derivative of λ with respect to ν. To emphasize this denomination, it is often

denoted by dλ
dν .

The following results are immediate extensions of Theorem 3.37.

Corollary 3.38. Let λ and ν be two measures on a given measurable space

(O,F ). Then, ν is absolutely continuous with respect to λ if and only if there

exists a Borel measurable function f : O → R such that for all A ∈ F , the

equality in (3.72) holds.

Proof See Homework 3.

Another immediate result from Theorem 3.37 is the following.

Corollary 3.39. Let (O,F , ν) be a measure space with O a countable set

and ν a counting measure. That is, for all A ∈ F ,

ν(A) = |A|. (3.73)

Let also λ be a measure on (O,F ). Then, λ is absolutely continuous with

respect to ν.

Proof See Homework 3.
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Exercise 3.40. Consider the measure space ([0,+∞[,B ([0,+∞[, ) , µ), with

µ the Lebesgue measure. Let ν be absolutely continuous with respect to µ

and assume that the Radon-Nikodym derivative dν
dµ is a continuous function.

Show that for all x ∈ [0,+∞[, the following holds:

d

dx
ν([0, x]) =

dν

dµ
(x). (3.74)

The following theorem describes some of the properties of the Randon-Nikodym

derivative.

Theorem 3.41. Let λ and ν be two measures on a given measurable space

(O,F ) with ν being absolutely continuous with respect to λ and λ being σ-

finite. Then,

(i) The function dλ
dλ is constant equal to one almost everywhere with re-

spect to λ;

(ii) if f : O → R+ is a non-negative Borel measurable function with

respect to (O,F ), it holds that for all A ∈ F ,∫
A
fdν =

∫
A
f

dν

dλ
dλ, (3.75)

if the integrals exist;

(iii) if γ is a σ-finite measure on (O,F ), λ is absolutely continuous with

respect to γ, it holds that

dν

dγ
=

dν

dλ

dλ

dγ
almost everywhere w.r.t. γ; and (3.76)

(iv) if λ is absolutely continuous with respect to ν, and ν is σ-finite, it

holds that the product of functions

dν

dλ

dλ

dν
= 1 almost everywhere w.r.t. λ and ν. (3.77)

Proof Proof of (i): First, consider that the σ-finite measure λ is absolutely

continuous with respect to itself. Hence, from Theorem 3.37, it follows that for

all A ∈ F ,

λ (A) =

∫
A

dλ =

∫
A

dλ

dλ
dλ, (3.78)

where the function dλ
dλ is unique up to sets of measure zero with respect to λ.

Hence, the function dλ
dλ is equal to one almost everywhere with respect to λ.

Proof of (ii): From Theorem 3.37, it holds that for all A ∈ F ,

ν(A) =

∫
A

dν

dλ
dλ. (3.79)

Let A be an arbitrary set in F and assume that f is a simple function of the

form f(x) =
∑m
i=1 ai1{x∈Ai}, for some finite m ∈ N, some subsets A1, A2 . . .,
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Am forming a partition of O and a1, a2, . . ., am being non-negative reals. For

all i ∈ {1, 2, . . . ,m}, let Bi = A ∩Ai be a subset of F . Hence,∫
A
f

dν

dλ
dλ =

∫
A

dν

dλ
(x)

n∑
i=1

ai1{x∈Ai}dλ(x) (3.80)

=

∫
A

n∑
i=1

ai
dν

dλ
(x)1{x∈Ai}dλ(x) (3.81)

=

n∑
i=1

ai

∫
A

dν

dλ
(x)1{x∈Ai}dλ(x) (from Theorem 3.29) (3.82)

=

n∑
i=1

ai

∫
Bi

dν

dλ
dλ (3.83)

=

n∑
i=1

aiν(Bi) (from (3.79)). (3.84)

On the other hand,∫
A
fdν =

∫
A

n∑
i=1

ai1{x∈Ai}dν(x) (3.85)

=

n∑
i=1

ai

∫
A
1{x∈Ai}dν(x) (from Theorem 3.29) (3.86)

=

n∑
i=1

ai

∫
Bi

dν (3.87)

=

n∑
i=1

aiν(Bi), (3.88)

which proves the equaility (3.75) in the case of simple functions.

For the case in which f is an arbitrary non-negative Borel measurable function,

it follows from Theorem 3.20 that there always exists an increasing sequence of

non-negative finite simple functions h1, h2, . . . that converge point-wise to f .

Hence, from Theorem 3.30 and the previous result for simple functions, it holds

that: ∫
A
fdν = lim

n→∞

∫
A
hndν = lim

n→∞

∫
A
hn

dλ

dν
dν =

∫
A
f

dλ

dν
dν, (3.89)

which completes the proof of (ii).

Proof of (iii): From Theorem 3.37, it holds that for all A ∈ F ,

ν(A) =

∫
A

dν =

∫
A

dν

dγ
dγ. (3.90)

Again, from Theorem 3.37, it holds that for all A ∈ F ,

ν(A) =

∫
A

dν =

∫
A

dν

dλ
dλ =

∫
A

dν

dλ

dλ

dγ
dγ, (3.91)
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and thus, given that the Radon-Nikodym derivative is unique up to sets of mea-

sure zero, it holds that (3.76) follows sfrom (3.90) and (3.91).

Proof of (iv): From the proof of (iii), it follows that

dν

dµ
.
dµ

dν
=

dµ

dµ
, (3.92)

and from the proof of (i), it follows that

dν

dµ
.
dµ

dν
=

dµ

dµ
= 1, (3.93)

almost everywhere, which completes the proof of (iv).

Theorem 3.42. Let λ be a σ-finite measure on (O,F ) and ν1, ν2, . . . , νn be

finite measures on (O,F ) such that for all k ∈ {1, 2, . . . , n}, νk is absolutely

continuous with λ. Then, the following holds,

d

n∑
t=1

νt

dλ
=

n∑
t=1

dνt
dλ

almost everywhere w.r.t. λ (3.94)

Moreover, if ν is a measure on (O,F ) such that for all A ∈ F , ν(A) =

lim
n→∞

n∑
t=1

νt(A), then ν is absolutely continuous with λ and

lim
n→∞

d

n∑
t=1

νt

dλ
=

dν

dλ
almost everywhere w.r.t. λ. (3.95)

Proof For all t ∈ {1, 2, . . . , n}, let the measure γt : F → [0,+∞] be such that

for all A ∈ F ,

γt(A) =

t∑
i=1

νi(A). (3.96)

Then, the following holds for all A ∈ F ,

γn(A) =

∫
A

d

n∑
t=1

νt =

∫
A

d

n∑
t=1

νt

dλ
dλ. (3.97)

On the other hand, from Theorem 3.29, it follows that

γn(A) =

n∑
i=1

νi(A) =

n∑
i=1

∫
A

dνi =

n∑
i=1

∫
A

dνi
dλ

dλ =

∫
A

n∑
i=1

dνi
dλ

dλ. (3.98)

Hence, the proof of (3.95) follows from (3.97) and (3.98).
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The proof of (3.95) follows by noticing that

dν1
dλ

,
d (ν1 + ν2)

dλ
, . . .

d

n∑
t=1

νt

dλ
, . . . (3.99)

form an increasing sequence of non-negative measurable functions. Hence, for all

A ∈ F , it holds that

ν(A) = lim
n→∞

n∑
i=1

νi(A) (3.100)

= lim
n→∞

∫
A

d
n∑
t=1

νt

dλ
dλ (from (3.97)) (3.101)

=

∫
A

lim
n→∞

d

n∑
t=1

νt

dλ
dλ (from Theorem 3.30). (3.102)

On the other hand, given that for all A ∈ F , it holds that

ν(A) =

∫
A

dν

dλ
dλ. (3.103)

The equalities in (3.102) and (3.103) imply (3.95), which completes the proof.

Theorem 3.43. For all i ∈ {1, 2}, let (O,F , νi) and (O,F , λi) be two mea-

sure spaces with νi and λi two σ-finite measures; and λi absolutely continu-

ous with respect to νi. Let also ν and λ be two measures on the measurable

space
(
O2, σ

(
F 2
))

such that for all (A,B) ∈ σ
(
F 2
)
,

ν (A,B) = ν1 (A) ν2 (B) , and (3.104)

λ (A,B) = λ1 (A)λ2 (B) . (3.105)

Then, λ is absolutely continuous with respect to ν; and for all (x, y) ∈ O2,

dλ

dν
(x, y) =

dλ1
dν1

(x)
dλ2
dν2

(y). (3.106)

Proof See Homework 3.
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3.7 Distances and Pseudo-Distances between Measures

3.7.1 Total Variation

3.7.2 Levy-Prokhorov Distance

3.7.3 Kullback-Liebler Divergence

3.8 Inequalities

3.8.1 Markov Inequality

Theorem 3.44. Let f : Rn → [0,∞], with n ∈ N, be a non-negative Borel

measurable function. Then, for all γ ∈]0,+∞[, it holds that

µ ({x ∈ Rn : f(x) > γ}) 6 1

γ

∫
Rn

fdµ, (3.107)

where µ is the Lebesgue measure.

Proof See Homework 3.

3.8.2 Jensen Inequality

Theorem 3.45. Consider a probability space (O,F , P ) and let g be a Borel

measurable function relative to (O,F ) such that −∞ <
∫
O gdP < +∞. Let

also f : R→ R be a convex Borel measurable function. Then,

f

(∫
O
gdP

)
6
∫
O

(f ◦ g) dP. (3.108)

Proof See Homework 3.

Exercise 3.46. State a result of the form of Theorem 3.45 when the func-

tion f is assumed to be concave.



4 Probability Theory

4.1 Independence

Two events are independent if the occurrence of one does not influence the

occurrence of the other. More specifically, given a probability space (O,F , P )

and two sets (events) A and B in F , they are said to be independent, with

respect to P , if and only if: P (A ∩ B) = P (A)P (B). Note also that

P (Ac ∩ B) = P
(
(A ∪ Bc)

c)
= 1− P (A ∪ Bc)

= 1− P (Bc ∪ (B ∩ A))

= 1− P (Bc)− P (B ∩ A) , (4.1)

and in the case in which A and B are independent, the equality in (4.1) can be

written as follows:

P (Ac ∩ B) = 1− P (Bc)− P (A)P (B)

= 1− P (Bc)− P (A)
(
1− P (B)

c)
(4.2)

= (1− P (A))
(
1− P (B)

c)
(4.3)

= P (Ac)P (B) , (4.4)

which implies the independence of Ac and B with respect to the probability

measure P . Following the same argument, if A and B are independent with

respect to P , so are A and Bc. That is, P (A ∩ Bc) = P (A)P (Bc).
The notion of independence of a pair of events can be extended to any finite

sequence of events. A sequence of n events is said to be formed by mutually

independent events if and only if any subset of events is also formed by mutually

independent events. The following definition formalizes this extension.

Definition 4.1 (Mutual Independent Events). Consider a probability space

(O,F , P ) and a sequence of n sets denoted by A1,A2, . . . ,An, such that

for all i ∈ I , {1, 2, . . . , n}, Ai ∈ F . Then, the sets A1,A2, . . . ,An are said

to be mutually independent if and only if for all finite subsets J ⊆ I, it
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holds that

P

⋂
j∈J
Aj

 =
∏
i∈J

P (Ai). (4.5)

In order to determined whether a sequence of n sets are mutually independent,

it is required to verify whether

n∑
t=2

(
n

t

)
= 2n−n−1 subsets of sets are mutually

independent. When, one of the 2n−n−1 verifications fails, the sequence is said to

be dependent. When all the verifications fail, the sequence is said to be totally

dependent. If there exists a k ∈ N for which any sequence of k sets out of the n

sets is mutually independent, the sequence is said to be k-wise independent. In

particular, if k = 2, the sequence is said to be pair-wise independent, whereas

if k = n, the sequence is said to be mutually independent.

From Definition 4.1, it follows that for all 2 6 k < n, k-wise independence

does not imply mutual independence.

4.2 Conditional Probability

When two events are dependent, a natural question is to determine the proba-

bility of one of the events given that the other has been observed. The answer

to this question is the notion of conditional probability.

Definition 4.2 (Conditional Probability). Given a probability space
(
O,F ,

P
)

and two events (sets) A and B in F , the probability of A conditioning

on B is denoted by P (A|B) and it is defined as the ratio:

P (A|B) ,
P (A ∩ B)

P (B)
, (4.6)

when P (B) > 0.

The definition of conditional probability with respect to negligible sets, e.g.,

P (A|B) when P (B) = 0 is left for a latter discussion.

The notion of conditional probability allows for a reformulation of the notion

of independence. The following theorem highlights this observation.

Theorem 4.3 (Independence and Conditional Probability). Consider a

probability space (O,F , P ) and two sets (events) A and B in F , with

P (A) > 0. Then, A and B are independent if and only if P (B|A) =

P (B). Alternatively, if P (B) > 0, A and B are independent if and only

if P (A|B) = P (A).

Proof The proof is immediate from Definition 4.1 and Definition 4.2.
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Theorem 4.4 (Total Probability). Consider a probability space (O,F , P )

and a set A ∈ F . Let the sets B1,B2, . . . ,Bn be an exact partition of O.

Then, the following holds:

P (A) =

n∑
t=1

P (A ∩ Bt) and (4.7)

P (A) =
∑

{t:P (Bt)>0}

P (A|Bt)P (Bt) . (4.8)

Proof The proof of (4.7) follows from the equalities hereunder

P (A) = P (A ∩O) (4.9)

= P

(
A ∩

(
n⋃
t=1

Bt

))
(4.10)

= P

(
n⋃
t=1

(A ∩ Bt)

)
(4.11)

=

n∑
t=1

P (A ∩ Bt) , (4.12)

where (4.10) follows from the assumption that B1,B2, . . . ,Bn form a partition

of O (Definition 1.52); (4.11) follows from the distributive property of unions

and intersections (Theorem 1.6); and (4.12) follows from the fact that the sets

A ∩ B1, A ∩ B2, . . ., A ∩ Bn are disjoint (Definition 1.15). The proof of (4.8)

follows from (4.7) and Definition (4.2).

4.3 Random Variables

A random variable is essentially a Borel measurable function defined over a

probability space. Assume for instance a cubic dice that is rolled once. The

outcomes of the experiment areO , {1, 2, . . . , 6}. Consider a σ-field F consisting

in the largest σ-field induced by O and let P : F → [0, 1] be for all A ∈ F ,

P (A) =
|A|
6
. (4.13)

Hence, given the probability space (O,F , P ), some random variables can be

defined. Let the random variable X be 1 if the outcome is an even number or 0

otherwise. That is, X(1) = X(3) = X(5) = 0 and X(2) = X(4) = X(6) = 1. Let

the random variable Y be 1 if the outcome is bigger than three or 0 otherwise.

That is, Y (1) = Y (2) = Y (3) = 0 and Y (4) = Y (5) = Y (6) = 1. Let also

the random variable Z be simply the outcome of the experiment, i.e., for all

i ∈ {1, 2, . . . , 6}, Z(i) = i.

In general, a random variable defined in (O,F , P ) maps each of the elements
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of O into the reals. That is, it associates a real number to each of the outcomes

of the experiment. This rises an interest in the probability of events (sets) of the

form {x : X(x) ∈ B}, where B =]a, b] is a Borel set with a 6 b. This implies

that for all (a, b) ∈ R2, with a 6 b, the sets of the form X−1(]a, b]) must be

measurable with respect to (O,F ) and (R,B(R)). That is, X−1(]a, b]) ∈ F .

This highlights the fact that random variables are Borel measurable functions

with respect to the corresponding measurable space. This becomes clearer in the

following definition.

Definition 4.5 (Random Variables). Given a probability space (O,F , P ),

a function X : O → R Borel measurable with respect to (O,F ) is said to

be a random variable.

Let X : O → R be a random variable defined on (O,F , P ). Note that X

induces a measure in (R,B(R)), which is denoted by PX . More specifically, for

all B ∈ B (R), it holds that

PX (B) = P ({x ∈ O : X(x) ∈ B}) . (4.14)

Note that if the value PX (B) is known for all B ∈ B (R), the random variable X

is completely characterized. Nonetheless, this characterization might be long and

tedious. Random variables might be characterized by their distribution function.

Definition 4.6 (Distribution Functions). Given a random variable X de-

fined on a given probability space (O,F , P ), the distribution function of

X, denoted by FX : R→ [0, 1] is

FX(a) = P ({x ∈ O : X(x) 6 a}) , (4.15)

and satisfies

lim
x→+∞

F (x) = 1; and lim
x→0

F (x) = 0. (4.16)

The distribution function FX determines the probability measure PX .

Note that once a distribution function is associated to random variable, it is

no longer needed to specify the probability space in which it has been defined.

Nonetheless, it is implicit that all random variables are defined in a probability

space. More importantly, it can be verified that for all random variables there

always exists a probability space in which they can be formally defined. Let for

instance, X be a random variable with probability distribution function FX .

Then, it can be defined as a Borel measurable function X : R → R on the

probability space (R,B (R) , Q) in such a way that for all r ∈ R, X(r) = r,

where for all B =]a, b] ∈ B (R) with a 6 b,

Q(B) = FX(b)− FX(a). (4.17)

Radom variables can be broadly classified among discrete random vari-
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ables, absolutely continuous random variables and continuous random

variables.

4.3.1 Discrete Random Variables

Discrete random variables take essentially finite or infinitely countable values. A

particular class of discrete random variables is that of simple random variables.

Definition 4.7 (Simple Random Variables). A random variable is said to

be simple if and only if it takes finitely many different values.

Note that Definition 4.7 is reminiscent of that of simple functions (Definition

3.18).

Definition 4.8 (Discrete Random Variables). A random variable is said

to be discrete if and only if its image is a countable set.

Consider a random variable X defined in the probability space (O,F , P )

and assume it is discrete. Then, its image can be described by a set X ,
{x1, x2, . . . , xn}, with n 6∞ of isolated points. In this case, the random variable

X can be fully characterized by the probability mass function, denoted by

pX : R→ [0, 1]. This function is zero everywhere in R except in {x1, x2, . . . , xn}.
More specifically, for all i ∈ {1, 2, . . . , n},

pX(xi) = P ({x ∈ O : X(x) = xi}) , (4.18)

and
n∑
i=1

pX(xi) = 1, (4.19)

which implies that for all a ∈ R, the distribution function of the random variable

X is

FX(a) =

n∑
j=1

pX(xj)1{xj6a}. (4.20)

Assume that there exists a set {i1, i2, . . . , in} ⊆ {1, 2, . . . , n} of indices such that

{x1, x2, . . . , xn} can be ordered as follows:

xi1 < xi2 < . . . < xin . (4.21)

Hence, the distribution function FX of X is a function with discontinuities at

each value xi1 , xi2 , . . . , xin . More specifically, for all pairs (a, b) ∈ [xt, xt+1[ with

a < b and t ∈ {1, 2, . . . , n− 1}, it holds that FX is constant, i.e.,

FX(b)− FX(a) = 0; and (4.22)
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for all pairs (a, b) ∈]xt−1, xt+1[ with a < xt 6 b and t ∈ {2, 3, . . . , n− 1},

FX(b)− FX(a) = pX(xt). (4.23)

The random variable X induces the probability measure PX on (R,B (R)),

which satisfies for all B ∈ B (R),

PX(B) = P ({x ∈ O : X(x) ∈ B}) (4.24)

=

∫
B
pXdν (4.25)

=
∑

i∈{j:xj∈B}

pX(xi), (4.26)

where ν is a counting measure on (R,B (R)). That is, for all A ∈ B (R),

ν(A) = |A|. (4.27)

From Theorem 3.37, it holds that the probability mass function pX is the Radon-

Nikodym derivative of PX with respect to a counting measure ν in (4.27).

In particular, for all B =]a, b] ∈ B (R), with a < b,

PX(B) =
∑

i∈{j:xj∈B}

pX(xi) = FX(b)− FX(a). (4.28)

Note that every simple random variable is discrete. Nonetheless, the converse

is not necessarily true.

Note also that the random variable X is fully described by the set X and

probability mass function (PMF) pX .

4.3.2 Absolutely Continuous and Continuous Random Variables

Definition 4.9 (Absolutely Continuous Random Variables). Consider a

random variable X described by a distribution function FX : R → [0, 1].

The random variable X is said to be absolutely continuous if and only if

there exists a non-negative Borel measurable function fX : R → R such

that

FX(x) =

∫ x

−∞
fX(t)dt. (4.29)

The function fX in (4.29) is referred to as the probability density func-

tion of the random variable X. The distribution function FX is non-negative,

increasing and bounded by one. Hence, from (4.29), it follows that∫ +∞

−∞
fX(t)dt =

∫
R

fXdµ = 1, (4.30)

where the integral on the left is in the sense of Riemann, whereas the one on the

right is in the sense of Lebesgue with u the Lebesgue measure (Definition 2.56).
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Exercise 4.10. Given an absolutely continuous random variable X that

induces the probability measure PX on (R,B (R)), show that PX is abso-

lutely continuous with respect to the Lebesgue measure. This justifies the

denomination absolutely continuous random variable.

The probability measure PX induced by the random variable X satisfies for

all B =]a, b] ∈ B (R), with a < b,

PX (B) =

∫
B
fXdµ = FX(b)− FX(a), (4.31)

which is reminiscent to (4.28) in the case of discrete random variables.

Definition 4.11 (Continuous Random Variables). Consider a random vari-

able X described by a distribution function FX : R → [0, 1]. The random

variable X is said to be continuous if and only if it can be verified that FX
is continuous everywhere on R

Exercise 4.12. Prove that absolute continuity implies continuity and show

via an example that the converse is not true.

Exercise 4.13. Given a random variable X that induces the probability

measure PX on (R,B (R)), show that X is absolutely continuous if and

only if for all x ∈ R, PX ({x}) = 0.

4.4 Random Vectors

A random vector is essentially a (Borel measurable) vector-valued function de-

fined over a probability space.

Definition 4.14 (Random Vector). Given a probability space (O,F , P ),

any measurable function with respect to (O,F ) and (Rn,B (Rn)) is said

to be an n-dimensional random variable.

Consider a probability space (O,F , P ) and let X : O → Rn be an n-

dimensional random vector. For all i ∈ {1, 2, . . . , n}, let Xi : O → R be such that

for all w ∈ O, X(w) = (X1(w), X2(w), . . . , Xn(w)). That is, Xi is the projection

of X into the i-th coordinate space. Hence, given that X is Borel measurable

with respect to (O,F ), so is each of the functions X1, X2, . . . , Xn−1, and Xn.

Therefore, the random vector X can be understood as an n-tuple of random

variables (X1, X2, . . . , Xn).



4.5 Independent Random Variables 99

The probability measure induced by the random vector X is denoted by PX

and for all B ∈ B (Rn),

PX (B) = P ({w ∈ O : X(w) ∈ B}) . (4.32)

The distribution function FX : Rn → [0, 1] associated with the random variable

X is for all w = (w1, w2, . . . , wn) ∈ Rn,

FX (w) = P ({r ∈ O : ∀i ∈ {1, 2, . . . , n}, Xi(r) < wi}) . (4.33)

Often, the distribution function FX is referred to as the joint probability

distribution of X1, X2, . . . , Xn−1 and Xn. The function FX is increasing and

right-continuous on R.

4.5 Independent Random Variables

The notion of independent random variables is reminiscent to the notion of

independent events in Section 4.1.

Definition 4.15 (Independent Random Variables). Let X1, X2, . . . , Xn−1
and Xn be random variables on a given probability space (O,F , P ). Then,

X1, X2, . . ., Xn−1 and Xn are said to be independent if and only if for all

sets B1,B2, . . . ,Bn, with Bi ∈ B (R) for all i ∈ {1, 2, . . . , n},

P (X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) =

n∏
t=1

P (Xt ∈ Bt) . (4.34)

The following theorems describe two essential properties of independent ran-

dom variables.

Theorem 4.16. Let X1, X2, . . . , Xn−1 and Xn be random variables on a

given probability space (O,F , P ) with joint probability distribution function

FX1,X2,...,Xn
. For all i ∈ {1, 2, . . . , n}, let FXi

be the probability distribution

function of the random variable Xi. Then, X1, X2, . . . , Xn−1 and Xn are

independent if and only if for all w = (w1, w2, . . . , wn) ∈ Rn,

FX (w1, w2, . . . , wn) =

n∏
t=1

FXt
(wt) . (4.35)

Theorem 4.17. Let X = (X1, X2, . . . , Xn) be random vector with a proba-

bility mass function pX . For all i ∈ {1, 2, . . . , n}, let pXi
be the probability

mass function of the random variable Xi. Then, X1, X2, . . . , Xn−1 and Xn
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are independent if and only if for all w = (w1, w2, . . . , wn) ∈ Rn,

pX (w1, w2, . . . , wn) =

n∏
t=1

pXt
(wt) . (4.36)

Theorem 4.18. Let X = (X1, X2, . . . , Xn) be random vector with a proba-

bility density function fX . For all i ∈ {1, 2, . . . , n}, let fXi
be the probability

density function of the random variable Xi. Then, X1, X2, . . . , Xn−1 and

Xn are independent if and only if for all w = (w1, w2, . . . , wn) ∈ Rn,

fX (w1, w2, . . . , wn) =

n∏
t=1

fXt
(wt) . (4.37)

4.6 Expectation

The expectation of a random variable is, intuitively, the average of a large set of

its realizations.

Definition 4.19 (Expectation). Let X be a random variable defined on

(O,F , P ). Then, the expectation of X (with respect to P ) is denoted by

E [X] and

E [X] ,
∫
O
XdP. (4.38)

The expectation is said to exists if and only if the integral in (4.38) exists

as well. In the case of discrete random variables, the expectation simplifies to a

well-known expression.

Theorem 4.20 (Expectation of Discrete Random Variables). Let X be a

discrete random variable defined on (O,F , P ) with probability mass function

pX : R→ [0, 1], with supp pX = {x1, x2, . . . , xn} and n 6∞. Then,

E [X] =

n∑
i=1

xipX(xi). (4.39)

Proof Let O1, O2, . . ., On−1 and On form a partition of the set O such that
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for all i ∈ {1, 2, . . . , n} and for all v ∈ Oi, it holds that X(v) = xi. Hence,

E [X] ,
∫
O
XdP (4.40)

=

n∑
i=1

xiP (Oi) (4.41)

=

n∑
i=1

xiP ({v ∈ O : X(v) = xi}) (4.42)

=
∑
x∈X

xpX (x) , (4.43)

which completes the proof.

The equality in 4.43 implies that the expectation of X, in the discrete case,

can be calculated using the probability mass function pX instead of the measure

P . This observation highlights the fact once the probability mass function pX
is known, it is not needed to specify the probability space (O,F , P ) to fully

describe the random variable X.

The case of absolutely continuous random variables is described by the follow-

ing theorem.

Theorem 4.21 (Expectation of Absolutely Continuous Random Variables).

Let X be an absolutely continuous random variable with probability density

function fX . Then,

E [X] =

∫
R

xf(x)dx. (4.44)

Proof Assume, without any loss of generality that the random variable X is

defined as a Borel measurable function X : R → R on the probability space

(R,B (R) , P ) in such a way that for all r ∈ R, X(r) = r, where for all

B =]a, b] ∈ B (R) with a < b, it holds that P (B) = FX(b) − FX(a). Assume

also that X > 0. From Theorem 3.20, it follows that there always exists an

increasing sequence of simple finite functions X1, X2, X3, . . . Borel measurable

with respect to (R,B (R)) with probability density functions fX1
, fX2

, . . ., such

that limi→∞Xi = X. Note also that for all i ∈ N \ {0}, there exists a partition

of R+ of the form Bi,t =]t εi, (t + 1)εi], with t ∈ N such that for all x ∈ Bi,t,
Xi(x) = X(t εi) = t εi, with ε1 > ε2 > . . . > 0 arbitrarily small. Hence, for all
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i ∈ N \ {0},

E [Xi] ,
∫
O
XidPi (4.45)

=

∞∑
t=0

t εiP (Bi,t) (4.46)

=

∞∑
t=0

t εi

∫ (t+1) εi

t εi

fXi
(u)du. (4.47)

Note that the integration variable u ∈ R+ satisfies t εi < u 6 (t + 1) εi. Hence,

there always exists a δi > 0 such that t εi = u+ δi, which leads to the following:

E [Xi] =

∞∑
t=0

∫ (t+1) εi

t εi

ufXi
(u)du+

∞∑
s=0

δi

∫ (s+1) εi

s εi

fXi
(u)du (4.48)

=

∫ ∞
0

ufXi
(u)du+ δi

∫ ∞
0

fXi
(u)du (4.49)

=

∫ ∞
0

ufXi
(u)du+ δi, (4.50)

where, for all i ∈ N, δi > δi+1 > 0. Note that X1, X2, . . ., is an increasing

sequence of functions such that limi→∞Xi = X. Hence, from the monotone

convergence theorem (Theorem 3.30), it holds that

lim
i→∞

E [Xi] = lim
i→∞

∫ ∞
0

ufXi(u)du+ lim
i→∞

δi (4.51)

=

∫ ∞
0

ufX(u)du, (4.52)

= E [X] , (4.53)

which completes the part of the proof for non-negative random variables. The

proof continues by noting that given an arbitrary absolutely continuous random

variable X, the same analysis holds for its positive and negative parts, i.e., X+

and X−. Hence, for an arbitrary random variable, it holds that

E [X] =

∫
R

xfX(x)dx, (4.54)

which completes the proof.

The equality in 4.54 implies that the expectation of X, in the continuous

case, can be calculated using the distribution function fX instead of P . This

observation highlights the fact once the probability density function fX is known,

it is not needed to specify the probability space (O,F , P ) to fully describe the

random variable X.

In general, the expectation of a random variable is its integral with respect

to the measure of the corresponding probability space. Hence, all the existing

results for integration hold.
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Theorem 4.22 (Expectation and Probability). Let X be a discrete random

variable with induced probability measure PX . Then,

E
[
1{X∈A}

]
= PX (A) . (4.55)

Proof TBW

Theorem 4.23 (Properties of Expectations). Let X and Y be two random

variables defined on (O,F , P ) and assume that both E [X] and E [Y ] exist.

Then,

• if X > 0, then E [X] > 0;

• if X > 0, then E [X] = 0 if and only if X = 0;

• if X 6 Y , E [X] 6 E [Y ]; and

• for all (a, b) ∈ R2, E [aX + bY ] = aE [X] + bE [Y ].

Proof TBW

4.7 Moments

4.8 Markov Chains



5 Information Measures

5.1 Information

Definition 5.1 (Information). Given a discrete random variable X with

probability mass function pX : R→ [0, 1], for all x ∈ supp pX , the informa-

tion provided by x is

ιX(x) = − log (pX(x)) . (5.1)

Information is measured in bits or nats depending on whether the base of the

logarithm is either two or the natural base.

Definition 5.2 (Information Spectrum). Given a discrete random variable

X with probability mass function pX : R→ [0, 1], the information spectrum

of X, denoted by SX : R→ [0, 1], is the cumulative distribution function of

the random variable ιX(X). That is, for all a ∈ R,

SX(a) =
∑

x∈supp pX

pX(x)1{ιX(x)6a}. (5.2)

Definition 5.3 (Joint Information). Given two discrete random variables

X and Y with joint probability mass function pXY : R2 → [0, 1], for all

(x, y) ∈ supp pX × supp pY , the information provided by (x, y) is

ιXY (x, y) = − log (pXY (x, y)) . (5.3)

Definition 5.4 (Conditional Information). Consider two discrete random

variables X and Y with joint probability mass function pXY : R2 → [0, 1]

and marginal probability mass functions pX : R → [0, 1] and pY : R →
[0, 1]. For all (x, y) ∈ supp pX × supp pY , the information provided by the

event Y = y conditioning on the event X = x, is denoted by ιY |X=x(y) or
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ιY |X(y|x), and

ιY |X=x(y) = − log

(
pXY (x, y)

pX(y)

)
= ιXY (x, y)− ιX(x). (5.4)

5.2 Entropy – Case of Discrete Random Variables

The entropy of a given discrete random variable is defined as follows.

Definition 5.5 (Entropy). LetX be a discrete random variable and assume

it induces the probability measure PX on (R,B (R)). Let also pX : R→ [0, 1]

be the probability mass function of X. Then, the entropy of X, denoted by

H(X), H(pX) or H(PX), is:

H(X) ,
∫
R

ιXdPX = −
∑

x∈supp pX

pX(x) log pX(x). (5.5)

The entropy is measured in bits or nats depending on whether the base of the

logarithm is either two or the natural base.

Let suppX = {x1, x2, . . . , xn} be the support of the random variable X, with

n ∈ N. Note that H(X) in (5.5) depends upon the values x1, x2, . . ., xn−1 and xn
only trough the values pX(x1), pX(x2), . . ., pX(xn−1) and pX(xn). That is, the

entropy H(X) in (5.5) does not depend on the values that the random variable

X might take, but the probability with which it takes such values. This property

of entropy is inherited from the information function (Definition 5.1).

An alternative way for calculating the entropy H(X) in (5.5) is using the

properties of expectation with respect to the probability measure PX :

Theorem 5.6 (Entropy and Information Spectrum). Let X be a discrete

random variable and assume it induces the probability measure PX on
(
R,

B (R)
)
. Let also pX : R → [0, 1] be the probability mass function of X.

Then,

H(X) = EX [ιX(X)] =

∫ ∞
0

(1− SX(x))dx, (5.6)

where SX is the information spectrum of X (Definition 5.2).

Proof See Homework 3.

From Theorem 5.6, it follows that the entropy of a given random variable is

the expectation of the amount of information that can be obtained from such

random variable.

The following Theorem provides a closed-form expression of the entropy of a

binary random variable.
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Figure 5.1 Entropy H(X) of a binary random variable X with probability mass
function pX(0) = 1− pX(1) = p, with p ∈ [0, 1].

Theorem 5.7. Let X be a Bernoulli random variable with probability mass

function pX , such that pX(0) = 1− pX(1) = p, with p ∈ [0, 1]. Then,

H(X) =

{
0 if p ∈ {0, 1}
−p log p− (1− p) log(1− p) otherwise.

(5.7)

Often, the entropy H(X) of a binary random variable X with probability

mass function pX(0) = 1 − pX(1) = p is denoted by H(p), with p ∈ [0, 1].

Figure 5.1 shows that 0 6 H(p) 6 1. That is, the entropy H(p) is a non-negative

bounded function of p. The maximum is achieved when pX(0) = 1− pX(1) = 1
2

(uniform distribution). Alternatively, the lower bound is achieved when X is

an ill distribution, i.e., pX(0) = 1 − pX(1) ∈ {0, 1}. The following Theorem

generalizes these observations for random variables with countable supports.

Theorem 5.8. Let X be a discrete random variable with probability mass

function pX : R→ [0, 1]. Then,

0 6 H(X) 6 log |X |. (5.8)

Proof The lower-bound follows from Theorem 4.23 and the fact that for all x ∈
X , ιX(x) > 0. The upper-bound follows from (5.6), and the following inequalities:
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H(X) = EX

[
log

1

pX(X)

]
(5.9a)

6 logEX

[
1

pX(X)

]
(5.9b)

= log
∑

x∈supp pX

1 (5.9c)

= log |supp pX | (5.9d)

6 log |X |, (5.9e)

where, (5.9b) follows from Jensen’s inequality (Theorem 3.45). Thus, the maxi-

mum value of the entropy of a random variable X is obtained when it is uniformly

distributed, i.e., |supp pX | = |X | and pX(x) = 1
|X | for all x ∈ X . This completes

the proof of Theorem 5.8.

5.2.1 Joint Entropy

The joint entropy of two discrete random variables is defined as follows.

Definition 5.9 (Joint Entropy). Let X and Y be two discrete random vari-

ables and assume they induce the probability measure PXY on
(
R2,B

(
R2
))

.

Let also pXY : R2 → [0, 1] be their joint probability mass function. Then,

the joint entropy of X and Y , denoted by H(X,Y ), H (pXY ), or H (PXY ),

is:

H(X,Y ) =

∫
R2

ιXY dPXY = −
∑

(x,y)∈supp(pXY )

pXY (x, y) log pXY (x, y). (5.10)

The joint entropy of the random variables X and Y can also be written as

follows:

H(X,Y ) = EXY [ιXY (X,Y )] . (5.11)

The joint entropy of two or more discrete random variables exhibit the follow-

ing property.

Theorem 5.10. Let X and Y be two discrete random variables with joint

probability mass function pXY : R2 → [0, 1], with pX : R → [0, 1] and

pY : R→ [0, 1] the marginal probability mass functions. Then,

H(X,Y ) 6 H(X) +H(Y ), (5.12)

with equality if and only if the random variables X and Y are independent.
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Proof From (5.11), the following holds:

H(X,Y ) = −EXY
[
log

(
pX(X)pY (Y )pXY (X,Y )

pX(X)pY (Y )

)]
(5.13a)

= −EX [log pX(X)]− EY [log pY (Y )]

−EXY
[
log

(
pXY (X,Y )

pX(X)pY (Y )

)]
(5.13b)

= H(X) +H(Y ) + EXY

[
log

(
pX(X)pY (Y )

pX,Y (XY )

)]
(5.13c)

6 H(X) +H(Y ) + log

(
EpXY

[(
pX(X)pY (Y )

pXY (X,Y )

)])
(5.13d)

= H(X) +H(Y ) + log

 ∑
(x,y)∈supp(pXY )

pX(X)pY (Y )

 (5.13e)

= H(X) +H(Y ), (5.13f)

where (5.13d) follows from Jensen’s inequality (Theorem 3.45).

Note that when the random variables X and Y are independent, it holds from

(5.13c) that:

H(X,Y ) = H(X) +H(Y ) + EXY

[
log

(
pX(X)pY (Y )

pX(X)pY (Y )

)]
(5.14a)

= H(X) +H(Y ), (5.14b)

and this completes the proof of Theorem 5.10.

Definition 5.11 provides a definition of joint entropy with respect to an arbi-

trary number of discrete random variables.

Definition 5.11. Let X =
(
X1, X2, . . ., Xn

)T
be an n-dimensional discrete

random vector and assume that it induces the probability measure PX on

(Rn,B (Rn)). Let pX : Rn → [0, 1] be the probability mass function. Then,

the joint entropy of X, denoted by H(X), H(pX) or H(PX), is:

H(X) =

∫
Rn

ιXdPX = −
∑

x∈supp(pX)

pX(x) log pX(x). (5.15)

The joint entropy of a vector of discrete random variables X can also be

written as follows:

H(X) = EX [ιX(X)] . (5.16)

From Theorem 5.10, it follows that when X1, X2, . . . , Xn are mutually inde-

pendent, the following holds:

H(X) =

n∑
t=1

H(Xt). (5.17)
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5.2.2 Conditional Entropy

The conditional entropy of a discrete random variable Y conditioning on the

random variable X is defined hereunder.

Definition 5.12 (Conditional Entropy). Let X and Y be two discrete

random variables and assume they induce the probability measure PXY on(
R2,B

(
R2
))

. Let pXY : R2 → [0, 1] be the joint probability mass function.

Then, the entropy of Y conditioning on X, denoted by H(Y |X) or H(pY |X),

is:

H(Y |X) =

∫
R2

ιY |XdPXY = −
∑

(x,y)∈supp(pXY )

pXY (x, y) log
pY X(y, x)

pX(x)
. (5.18)

The entropy of the random variable Y conditioning on the random variable X

can also be written as follows:

H(Y |X) = EXY
[
ιY |X(Y |X)

]
. (5.19)

Note also that the conditional entropy in (5.18) can be written as follows:

H(Y |X) =
∑

x∈supp pX

pX(x)

− ∑
y∈supp pY |X=x

pY |X(y|x) log pY |X(y|x)


=

∑
x∈supp pX

pX(x)H(Y |X = x), (5.20)

where, H(Y |X = x) , −
∑

y∈supp pY |X

pY |X(y|x) log pY |X(y|x) is the entropy of Y condi-

tioning on the event X = x.

The following Theorem presents an important property of the conditional en-

tropy.

Theorem 5.13 (Chain rule for entropy and conditional entropy). Let X =(
X0, X1, X2, . . ., Xn

)T
be an (n + 1)-dimensional discrete random vector

with joint probability mass function pX : Rn+1 → [0, 1]. Then,

H(X1, . . . , Xn) = H(X1) +H(X2|X1)

+

n∑
n=3

H(Xn|X1, . . . , Xn−1), and (5.21)

H(X1, . . . , Xn|X0) = H(X1|X0) +H(X2|X0, X1)

+

n∑
n=3

H(Xn|X0, X1, . . . , Xn−1). (5.22)
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Proof Proof of (5.21): From (5.16), the following holds:

H(X1:n) = −EX1:n

[
log
(
pX1(X1)pX2|X1

(X2|X1) . . .

pXn|X1X2...Xn−1
(Xn|X1, X2, . . . , Xn−1)

)]
(5.23a)

= −EX1
[log pX1(X1)]− EX1X2

[
log pX2|X1

(X2|X1)
]
− . . .

−EX1:n

[
log pXn|X1,X2,...,Xn−1

]
(5.23b)

= H(X1) +H(X2|X1) + . . .+H(Xn|X1, X2, . . . , Xn−1), (5.23c)

and this completes the proof of (5.21).

Proof of (5.22): From (5.19), the following holds:

H(X1:n|X0) = −EX

[
log pX1:n|X0

(X1:n|X0)
]

(5.24a)

= −EX

[
log
(
pX1|X0

(X1|X0)pX2|X0X1
(X2|X0, X1) . . .

pXn|X0X1X2...Xn−1
(Xn|X0, X1, X2, . . . , Xn−1)

)]
(5.24b)

= −EX0X1

[
log pX1|X0

(X1|X0)
]

−EX0X1X2

[
log pX2|X0X1

(X2|X0, X1)
]
− . . . (5.24c)

−EX

[
log pXn|X0:n−1

(Xn|X0, X1, . . . , Xn−1)
]

(5.24d)

= H(X1|X0) +H(X2|X0, X1) + . . .

+H(Xn|X0, X1, X2, . . . , Xn−1), (5.24e)

and this completes the proof of (5.22).

Conditioning a random variable on another one does not increase, in expecta-

tion, the information it provides. This observation is formalized by the following

result.

Theorem 5.14 (Conditioning does not increase entropy). Let X and Y be

two discrete random variables with joint probability mass function pXY :

R2 → [0, 1]. Then,

H(Y |X) 6 H(Y ), (5.25)

with equality if and only if the random variables X and Y are independent.
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Proof From (5.19), the following holds:

H(Y |X) = −EXY
[
log

(
pY (Y )pX|Y (X|Y )

pX(X)

)]
(5.26a)

= −EY [log pY (Y )]− EXY
[
log

(
pX|Y (X|Y )

pX(X)

)]
(5.26b)

= H(Y )− EXY
[
log

(
pXY (X,Y )

pX(X)pY (Y )

)]
(5.26c)

= H(Y ) + EXY

[
log

(
pX(X)pY (Y )

pXY (X,Y )

)]
(5.26d)

6 H(Y ) + log

(
EXY

[(
pX(X)pY (Y )

pXY (X,Y )

)])
(5.26e)

= H(Y ) + log

 ∑
(x,y)∈supp(pXY )

pX(x)pY (y)

 (5.26f)

= H(Y ), (5.26g)

where (5.26e) follows from Jensen’s inequality (Theorem 3.45) and holds with

equality, only if the random variables X and Y are independent. In this case, it

holds from (5.26d) that,

H(Y |X) = H(Y ) + EXY

[
log

(
pX(X)pY (Y )

pX(X)pY (Y )

)]
(5.27a)

= H(Y ). (5.27b)

Finally, if the random variables X and Y are independent, it holds that for all

(x, y) ∈ supp pX × supp pY , pXY (x, y) = pX(x)pY (y) (Theorem 4.17), and thus,

from Definition 5.12, it holds that H(Y |X) = H(Y ). This completes the proof

of Theorem 5.14.

The joint entropy of a collection of random variables is less than or equal to

the sum of the entropy of each random variable. This statement is formalized by

the following result.

Theorem 5.15. Let X =
(
X1, X2, . . ., Xn

)T
be an n-dimensional discrete

random vector with joint probability mass function pX : Rn → [0, 1]. Then,

H(X1, . . . , XN ) 6
n∑
t=1

H(Xt), (5.28)

with equality if and only if the random variables X1, X2, . . . , Xn are mutually

independent.

Proof The proof of Theorem 5.15 follows by combining Theorem 5.13 and The-

orem 5.14.
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The entropy of a Borel measurable function of the random variableX is smaller

than or equal to the entropy of the random variable X, with equality only when

the function is an injective function. This observation is formalized by the fol-

lowing Theorem.

Theorem 5.16 (Entropy of a function). Let X be a discrete random variable

with probability mass function pX : R → [0, 1]. Let also f : R → R be a

Borel measurable function. Then,

H(X) > H(f(X)). (5.29)

Proof Denote by Y ⊆ R the image of the support of pX through the function

f . That is,

Y , f−1 (supppX) . (5.30)

Consider the random variable Y = f(X), which satisfies Y ∈ Y, and let pY be

the corresponding probability mass function. That is, for all y ∈ Y,

pY (y) =
∑

x∈{a∈supppX :y=f(a)}

pX(x). (5.31)

Hence, for all y ∈ Y, assume that Iy , {a ∈ suppPX : y = f(a)}. From (5.6),

the following holds:

H(Y ) = −
∑
y∈Y

pY (y) log pY (y) (5.32a)

= −
∑
y∈Y

∑
x∈Iy

pX(x)

 log

∑
v∈Iy

pX(v)

 (5.32b)

6 −
∑
y∈Y

∑
x∈Iy

pX(x) log pX(x) (5.32c)

= −
∑

x∈supp pX

pX(x) log pX(x) (5.32d)

= H(X), (5.32e)

If f is an injective function, it holds that for all y ∈ Y, |Iy| = 1, and thus (5.32c)

holds with equality. This completes the proof of Theorem 5.16.

5.3 Entropy – Case of Absolutely Continuous Random Variables

The entropy of an absolutely continuous random variable X is often referred to

as differential entropy, and it is denoted by h(X) to distinguish from the discrete

case.
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Definition 5.17 (Differential Entropy). Let X be an absolutely continuous

random variable with probability density function fX : R → [0,∞). Then,

the differential entropy of X, denoted by h(X) or h(fX), is:

h(X) = −
∫ ∞
−∞
fX(x) log fX(x) dx. (5.33)

The differential entropy of a random variable X can also be written as follows:

h(X) = −EX [log fX(X)] . (5.34)

The following two theorems provide closed-form expressions for some absolutely

continuous random variables.

Theorem 5.18. Let X be an absolutely continuous random variable uni-

formly distributed on [0, a]. Then,

h(X) = ln a. (5.35)

Proof See Homework 3.

Note that h(X) in (5.35) is negative if a < 1. This is in sharp contrast with

the entropy of discrete random variables, which is always non-negative.

Theorem 5.19. Let X be a Gaussian random variable with zero mean and

variance σ2. Then,

h(X) =
1

2
ln
(
2πeσ2

)
in nats, (5.36)

where e is Néper’s constant.

Proof The probability density function of X is for all x ∈ R,

fX(x) =
1√

2πσ2
exp− x2

2σ2
. (5.37)
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Hence, the following holds:

h(X) = −
∫ ∞
−∞
fX(x) ln fX(x) dx (5.38a)

= −
∫ ∞
−∞
fX(x)

(
− x2

2σ2
− ln

√
2πσ2

)
dx (5.38b)

=
1

2σ2

∫ ∞
−∞
x2fX(x) dx+ ln

√
2πσ2

∫ ∞
−∞
fX(x) dx (5.38c)

=
EX

[
X2
]

2σ2
+ ln
√

2πσ2 (5.38d)

=
1

2
+

1

2
ln
(
2πσ2

)
(5.38e)

=
1

2
ln e+

1

2
ln
(
2πσ2

)
(5.38f)

=
1

2
ln
(
2πeσ2

)
in nats, (5.38g)

which completes the proof of Theorem 5.19.

Note that h(X) in (5.36) is negative when the variance of X is such that

σ2 < 1
2πe .

The following theorem provides an upper bound on the differential entropy.

Theorem 5.20. Let X be an absolutely continuous random variable with

probability density function fX : R → [0,∞), zero mean, and variance σ2.

Then,

h(X) 6
1

2
log
(
2πeσ2

)
, (5.39)

and equality holds if and only if fX satisfies (5.37).

Proof Proof See Homework 3.

5.3.1 Joint Entropy

The joint differential entropy of two absolutely continuous random variables is

defined as follows.

Definition 5.21 (Joint Differential Entropy). Let X and Y be two abso-

lutely continuous random variables with joint probability density function

fXY : R2 → [0,∞). Then, the joint differential entropy of the random

variables X and Y , denoted by h(X,Y ) or h(fXY ), is:

h(X,Y ) = −
∫ ∞
−∞

∫ ∞
−∞
fXY (x, y) log fXY (x, y) dx dy. (5.40)



5.3 Entropy – Case of Absolutely Continuous Random Variables 115

The joint differential entropy of the random variables X and Y can also be

written as follows:

h(X,Y ) = −EXY [log fXY (X,Y )] . (5.41)

The following theorem provides the differential entropy of two correlated Gaus-

sian random variables.

Theorem 5.22 (Differential Entropy of a Bivariate Gaussian Distribution).

Let X and Y be two random variables with joint probability function fXY
such that for all (x, y) ∈ R2,

fXY (x, y) =
1√

(2π)
2

detK
exp

(
−1

2

(
[x y]K−1

[
x

y

]))
, (5.42)

where,

K , EXY

[[
X

Y

] [
X Y

]]
=

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
, (5.43)

with σ2
X and σ2

Y are the variances of X and Y , respectively; and ρ ,
EXY [XY ]
σXσY

is the Pearson correlation coefficient. Then,

h(X,Y ) =
1

2
log
(

(2πe)
2

detK
)
, (5.44)

where e is the Néper’s constant.

Proof From (5.41), the following holds:

h(X,Y ) = −EXY [log fXY (X,Y )] . (5.45a)

Moreover, the determinant of the covariance matrix K is

detK = σ2
Xσ

2
Y

(
1− ρ2

)
, (5.45b)

and the inverse of the covariance matrix K is

K
−1 =

1

detK

[
σ2
Y −ρσXσY

−ρσXσY σ2
X

]
. (5.45c)

Plugging (5.45c) into (5.42) the following holds:

fXY (x, y) =
1√

(2π)
2

detK
exp

−
[x y]

[
σ2
Y −ρσXσY

−ρσXσY σ2
X

] [
x

y

]
2 detK

 (5.45d)

=
1√

(2π)
2

detK
exp

(
−x

2σ2
Y − 2xyρσXσY + y2σ2

X

2 detK

)
. (5.45e)

Plugging (5.45e) into (5.45a) and taking the logarithm yields:
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h(X,Y ) = −EXY

ln

 1√
(2π)

2
detK

exp

(
−X

2σ2
Y − 2X Y ρσXσY + Y 2σ2

X

2 detK

)
(5.45f)

= ln

(√
(2π)

2
detK

)
+
σ2
Y EX

[
X2
]
−2ρσXσY EXY [XY ]+σ2

XEY
[
Y 2
]

2 detK
(5.45g)

= ln

(√
(2π)

2
detK

)
+
σ2
Y σ

2
X − 2ρ2σ2

Xσ
2
Y + σ2

Xσ
2
Y

2 detK
(5.45h)

= ln

(√
(2π)

2
detK

)
+
σ2
Xσ

2
Y

(
1− ρ2

)
detK

(5.45i)

= ln

(√
(2π)

2
detK

)
+ 1 (5.45j)

=
1

2
ln
(

(2πe)
2

detK
)
, (5.45k)

where (5.45j) follows from (5.45b), which completes the proof of Theorem 5.22.

Theorem 5.22 can be generalized as follows:

Theorem 5.23. Let X = (X1, X2, . . . , Xn)
T ∈ Rn be an n-dimensional

absolutely continuous random vector with joint probability density function

fX such that for all x ∈ Rn

fX(x) =
1√

(2π)
n

detK
exp

(
−xT

K
−1x

2

)
, (5.46)

where K , EfXY

[
XXT

]
is the covariance matrix of X. Then, the joint

differential entropy of X is:

h(X) =
1

2
log ((2πe)

n
detK) . (5.47)

Proof See Homework 3

5.3.2 Conditional Entropy

The conditional entropy of an absolutely continuous random variable Y condi-

tioning on the random variable X is defined hereunder.
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Definition 5.24 (Conditional Differential Entropy). Let X and Y be two

absolutely continuous random variables with joint probability density func-

tion fXY : R2 → [0,∞). Then, the differential entropy of Y conditioning on

X, denoted by h(Y |X) or h(fY |X), is:

h(Y |X) = −
∫ ∞
−∞

∫ ∞
−∞
fXY (x, y) log fY |X(y|x) dxdy. (5.48)

The differential entropy of the random variable Y conditioning on the random

variable X can be written as follows:

h(Y |X) = −EXY
[
log fY |X(Y |X)

]
, (5.49)

and alternatively,

h(Y |X) =

∫ ∞
−∞
fX(x)

(
−
∫ ∞
−∞
fY |X(y|x) log fY |X(y|x)dy

)
dx

=

∫ ∞
−∞
fX(x)h(Y |X = x) dx, (5.50)

where h(Y |X = x) , −
∫ ∞
−∞
fY |X(y|x) log fY |X(y|x) dy, the differental entropy of

Y conditioning on the event X = x.

The following theorems highlight some of the properties of the differential

entropy. These properties are reminiscent to those of the entropy of discrete

random variables.

Theorem 5.25 (Chain rule for differential entropy). Let X = (X0, X1, X2,

. . ., Xn) be a vector formed by n+1 absolutely continuous random variables,

with joint probability density function fX : Rn+1 → [0,+∞[. Then,

h(X1, . . . , Xn) = h(X1) + h(X2|X1) +

n∑
t=3

h(Xt|X1, . . . , Xt−1); (5.51)

and

h(X1, . . . , Xn|X0) = h(X1|X0)+h(X2|X0, X1)+

n∑
t=3

h(Xt|X0, X1, . . . , Xt−1).

(5.52)

Proof The proof of Theorem 5.25 follows along the same lines as the proof of

Theorem 5.13.

Theorem 5.26 (Conditioning reduces differential entropy). Let X and Y

be two absolutely continuous random variables. Then,

h(Y |X) 6 h(Y ), (5.53)
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with equality if and only if the random variables X and Y are mutually

independent.

Proof See Homework 3

Theorem 5.27. Let X1, X2, . . ., Xn be n absolutely continuous random

variables. Then,

h(X1, . . . , Xn) 6
n∑
t=1

h(Xn), (5.54)

with equality if and only if the random variables X1, X2, . . . , Xn are mutually

independent.

Proof See Homework 3

5.4 Mutual Information – Case of Discrete Random Variables

The mutual information between two discrete random variables X and Y is

defined as follows.

Definition 5.28 (Mutual Information). Let X and Y be two discrete ran-

dom variables and assume that they respectively induce the probability

measures PX and PY on (R,B (R)). Jointly, X and Y induce the probabil-

ity measure PXY on
(
R2,B

(
R2
))

. Let also pXY : R2 → [0, 1] be the joint

probability mass function. Then, the mutual information between X and

Y , denoted by I(X;Y ), I(pXY ) or I(PXY ), is:

I(X;Y ) ,
∫
R2

(ιPXPY
− ιPXY

) dPXY (5.55)

=
∑

(x,y)∈supp pXY

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
, (5.56)

with pX and pY the marginal probability mass functions obtained from pXY .

Note that in Definition 5.28, the information functions ιPXPY
and ιPXY

spec-

ify the probability measure that must be used. This notation might appear

overburden but it is useful to avoid confusion between − log (pXY (x, y)) and

− log (pX(x)pY (y)), which can both be denoted by ιXY (x, y), for all pairs (x, y) ∈
R2.

The mutual information between the random variables X and Y can be written

in a variety of ways. In order to avoid confusion in the following, the expectation

indicates the probability measures that must be used instead of the random

variables.
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Theorem 5.29 (Mutual Information). Let X and Y be two discrete random

variables and assume that they respectively induce the probability measures

PX and PY on (R,B (R)). Jointly, X and Y induce the probability measure

PXY on
(
R2,B

(
R2
))

. Let also pXY : R2 → [0, 1] be the joint probability

mass function. Then, the following holds:

I(X;Y ) = EPXY

[
log

(
pXY (X,Y )

pX(X)pY (Y )

)]
(5.57)

= EPXY

[
log

(
dPXY

dPXPY
(X,Y )

)]
(5.58)

= EPXY

[
log

(
pY |X(Y |X)

pY (Y )

)]
(5.59)

= EPXY

[
log

(
dPY |X

dPY
(X,Y )

)]
(5.60)

= EPXY

[
log

(
pX|Y (X|Y )

pX(X)

)]
(5.61)

= EPXY

[
log

(
dPX|Y

dPX
(X,Y )

)]
, (5.62)

where dPXY

dPXPY
,

dPY |X
dPY

, and
dPX|Y
dPX

are Radon-Nikodym derivatives; and pX
and pY are the marginal probability mass functions obtained from pXY .

Proof See Homework 3

The following Theorem presents some useful properties of the mutual infor-

mation.

Theorem 5.30. Given three discrete random variables X, Y , and Z, the

following holds:

I(X;Y ) = I(Y ;X), (5.63)

I(X;Y ) = H(X)−H(X|Y ), (5.64)

I(X;Y ) = H(Y )−H(Y |X), (5.65)

I(X;Y ) > 0, (5.66)

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (5.67)

I(X;X) = H(X). (5.68)

Proof Let PX and PY be the probability measures on (R,B (R)) induced by X

and Y . Let also PXY on
(
R2,B

(
R2
))

be the probability measure jointly induced

by X and Y . Let also pXY : R2 → [0, 1] be the joint probability mass function.

Proof of (5.63): This follows directly from Definition 5.28.
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Proof of (5.64): From (5.61), the following holds:

I(X;Y ) = −EPX
[log pX(X)] + EPXY

[
log pX|Y (X|Y )

]
(5.69a)

= H(X)−H(X|Y ), (5.69b)

and this completes the proof of (5.64).

Proof of (5.65): From (5.59), the following holds:

I(X;Y ) = EPXY

[
log

(
pY |X(Y |X)

pY (Y )

)]
(5.70a)

= −EPY
[log pY (Y )] + EPXY

[
log pY |X(Y |X)

]
(5.70b)

= H(Y )−H(Y |X), (5.70c)

and this completes the proof of (5.65).

Proof of (5.66): From (5.64) and (5.65), the following holds:

I(X;Y ) > H(X)−H(X) (5.71a)

= 0, (5.71b)

where, (5.71a) follows from Theorem 5.14. This completes the proof of (5.66).

Proof of (5.67): From (5.57), the following holds:

I(X;Y ) = −EPX
[log pX(X)]− EPY

[log pY (Y )]

+EPXY
[log pXY (X,Y )] (5.72a)

= H(X) +H(Y )−H(X,Y ), (5.72b)

and this completes the proof of (5.67).

Proof of (5.68): Let Y be a random variable identical to the random variable

X, i.e., Y = X. From (5.57), the following holds:

I(X;X) = EPXY

[
log

(
pXY (X,Y )

pX(X)pY (Y )

)]
(5.73a)

= EPX

[
log

(
pX(X)

pX(X)pX(X)

)]
(5.73b)

= EPX

[
log

(
1

pX(X)

)]
(5.73c)

= −EPX
[log pX(X)] (5.73d)

= H(X), (5.73e)

and this completes the proof of (5.68) and the proof of Theorem 5.30.

The occurrence of one random variable does not provide any information about

the occurrence of another random variable, when the random variables are in-

dependent. Hence, the mutual information between two independent random

variables must be equal to zero. This is proved hereunder.
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Theorem 5.31 (Mutual information of independent random variables). Let

X and Y be two independent discrete random variables. Then,

I(X;Y ) = 0. (5.74)

Proof Let PX and PY be the probability measures on (R,B (R)) induced by

X and Y , respectively. Let also PXY be the probability measure jointly induced

by X and Y on
(
R2,B

(
R2
))

. Let pX : R → [0, 1] and pY : R → [0, 1] be the

probability mass functions of X and Y , respectively. From the assumption of the

theorem, it follows that pXY (x, y) = pX(x)pY (y) for all (x, y) ∈ R2. Hence, from

(5.57) the following holds:

I(X;Y ) = EPXY

[
log

(
pX(X)pY (Y )

pX(X)pY (Y )

)]
(5.75a)

= EPXY
[log 1] (5.75b)

= 0. (5.75c)

This completes the proof.

Given three discrete random variables X, Y , and Z, the mutual information

between X and both Y and Z is bigger than or equal to the mutual informa-

tion between X and one of the random variables Y or Z. This observation is

formalized hereunder.

Theorem 5.32. Let X, Y , and Z be three discrete random variables. Then,

I(X;Y, Z) > I(X;Y ), (5.76)

with equality if and only if X → Y → Z.

Proof From (5.64), the following holds:

I(X;Y,Z) = H(Y, Z)−H(Y,Z|X) (5.77a)

= H(Y ) +H(Z|Y )−H(Y |X)−H(Z|X,Y ) (5.77b)

= I(X;Y ) +H(Z|Y )−H(Z|X,Y ) (5.77c)

> I(X;Y ), (5.77d)

where, (5.77d) follows from the fact the fact that H(Z|Y ) − H(Z|X,Y ) > 0

given that conditioning does not increase entropy (Theorem 5.14). Note that the

equality holds if H(Z|Y ) − H(Z|X,Y ) = H(Z|Y ) − H(Z|Y ) = 0. This means

that the random variables X and Z are independent conditioning on the random

variable Y , i.e., X → Y → Z. This completes the proof of Theorem 5.32.

5.4.1 Conditional Mutual Information
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Definition 5.33 (Conditional Mutual Information). Given three discrete

random variables X, Y , and Z, the mutual information between X and Y

conditioning on Z, denoted by I(X;Y |Z), is:

I(X;Y |Z) = −
∑

(x,y,z)∈supp(pXY Z)

pXY Z(x, y, z) log

(
pXY |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)

)
. (5.78)

Let X, Y and Z be three discrete random variables and assume that they

respectively induce the probability measures PX , PY and PZ on (R,B (R)).

Jointly, X, Y and Z induce the probability measure PXY Z on
(
R3,B

(
R3
))

. Let

also pXY Z : R2 → [0, 1] be the joint probability mass function. Then, the mutual

information between the random variables X and Y conditioning on the random

variable Z can also be written as follows:

I(X;Y |Z) = EPXY Z

[
log

(
pXY |Z(X,Y |Z)

pX|Z(X|Z)pY |Z(Y |Z)

)]
(5.79a)

= EPXY Z

[
log

(
pY |XZ(Y |X,Z)

pY |Z(Y |Z)

)]
(5.79b)

= EPXY Z

[
log

(
pX|Y Z(X|Y,Z)

pX|Z(X|Z)

)]
. (5.79c)

Note also that the conditional mutual information in (5.78) can be written as

follows:

I(X;Y |Z) =
∑

z∈supp(pZ)

pZ(z)

(
−

∑
(x,y)∈supp(pXY |Z=z)

pX,Y |Z(x, y|z) log

(
pXY |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)

))

=
∑

z∈supp(pZ)

pZ(z)I(X;Y |Z = z), (5.80)

where, I(X;Y |Z = z) = −
∑

(x,y)∈supp(pXY |Z=z)

pXY |Z(x, y|z) log

(
pXY |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)

)
is

the mutual information between X and Y conditioning on the event Z = z.

The following Theorem presents some useful properties of the mutual infor-

mation and conditional mutual information.

Theorem 5.34. Given three discrete random variables X, Y and Z, the

following holds:

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z) (5.81)

= H(X|Z)−H(X|Y, Z) and (5.82)

I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) (5.83)

= I(Y ;Z) + I(X;Z|Y ). (5.84)
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Proof Let PX , PY and PZ be the probability measures on (R,B (R)) induced

by X, Y and Z, respectively. Jointly, X, Y and Z induce the probability measure

PXY Z on
(
R3,B

(
R3
))

. Let also pXY Z : R2 → [0, 1] be the joint probability mass

function.

Proof of (5.81): From (5.79b), the following holds:

I(X;Y |Z) = EPXY Z

[
log pY |XZ(Y |X,Z)

]
− EPY Z

[
log pY |Z(Y |Z)

]
(5.85a)

= H(Y |Z)−H(Y |X,Z), (5.85b)

and this completes the proof of (5.81).

Proof of (5.82): From (5.79c), the following holds:

I(X;Y |Z) = EPXY Z

[
log pX|Y Z(X|Y, Z)

]
− EPXZ

[
log pX|Z(X|Z)

]
(5.86a)

= H(X|Z)−H(X|Y,Z), (5.86b)

and this completes the proof of (5.82).

Proof of (5.83): From (5.64), the following holds:

I(X,Y ;Z) = H(X,Y )−H(X,Y |Z) (5.87a)

= H(X) +H(Y |X)−H(X|Z)−H(Y |X,Z) (5.87b)

= I(X;Z) + I(Y ;Z|X), (5.87c)

and this completes the proof of (5.83).

Proof of (5.84): From (5.64), the following holds:

I(X,Y ;Z) = H(X,Y )−H(X,Y |Z) (5.88a)

= H(Y ) +H(X|Y )−H(Y |Z)−H(X|Y,Z) (5.88b)

= I(Y ;Z) + I(X;Z|Y ), (5.88c)

and this completes the proof of (5.84). This completes the proof of Theorem

5.34.

The mutual information between the random variables X and Y conditioning

on the random variable Z is equal to zero if X and Y are independent condi-

tioning on Z, i.e., X → Z → Y .

Theorem 5.35. Let X, Y and Z be three discrete random variables such

that X → Z → Y . Then,

I(X;Y |Z) = 0. (5.89)

Proof Let PXY Z be the probability measure jointly induced by X, Y and Z

on
(
R3,B

(
R3
))

. Let also pXY Z : R2 → [0, 1] be the joint probability mass
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function. From (5.79c), the following holds:

I(X;Y |Z) = EPXY Z

[
log

(
pX|Z(x|z)
pX|Z(x|z)

)]
(5.90a)

= EPXY Z
[log 1] (5.90b)

= 0. (5.90c)

where, (5.90a) follows from the fact that the random variables X and Y are

mutually independent conditioning on the random variable Z, i.e., X → Z → Y .

This completes the proof of Theorem 5.35.

The following Theorem presents some additional useful properties of the mu-

tual information and conditional mutual information.

Theorem 5.36 (Chain rules). Let X = (X1, X2, . . . , Xn)
T

be an n-dimensional

discrete random vector and let also Y and Z be two discrete random vari-

ables. Then,

I(X1, X2, . . . , Xn;Y ) = I(X1;Y ) + I(X2;Y |X1)

+

n∑
n=3

I(Xn;Y |X1, X2, . . . , Xn−1), (5.91a)

I(X1, X2, . . . , Xn;Y ) > 0, and (5.91b)

I(X1, X2, . . . , Xn;Y |Z) = I(X1;Y |Z) + I(X2;Y |Z,X1)

+

n∑
n=3

I(Xn;Y |Z,X1, X2, . . . , Xn−1). (5.91c)

Proof Proof of (5.91a): Let PXY be the probability measure jointly induced

by X, and Y on
(
Rn+1,B

(
Rn+1

))
. Let also pXY : Rn+1 → [0, 1] be the joint

probability mass function. Hence, from (5.57), the following holds:

I(X;Y ) = EPXY

[
log

(
pXY (X, Y )

pX(X)pY (Y )

)]
(5.92a)

= EPX1Y

[
log

pX1Y (X1, Y )

pX1
(X1)pY (Y )

]
+EPX1X2Y

[
log

pX2|X1Y (X2|X1, Y )

pX2|X1
(X2|X1)

]
+EPX1X2X3Y

[
log

pX3|X1X2Y (X3|X1, X2, Y )

pX3|X1X2
(X3|X1, X2)

]
+ . . .

+EPXY

[
log

pXn|X1X2...Xn−1Y (Xn|X1, X2, . . . , Xn−1, Y )

pXn|X1X2...Xn−1
(X3|X1, X2, . . . , Xn − 1)

]
(5.92b)

= I(X1;Y ) + I(X2;Y |X1) + I(X3;Y |X1, X2) + . . .

+I(Xn;Y |X1, X2, . . . , Xn−1), (5.92c)
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where, (5.92c) follows from (5.57) and (5.79b). This completes the proof of

(5.91a).

Proof of (5.91b): From (5.91a), the following holds:

I(X1, X2, . . . , Xn;Y ) = I(X1;Y ) + I(X2;Y |X1)

+

n∑
n=3

I(Xn;Y |X1, X2, . . . , Xn−1) (5.93a)

= H(Y )−H(Y |X1) +H(Y |X1)−H(Y |X1, X2)

+

n∑
n=3

H(Y |X1, X2, . . . , Xn−1)

−H(Y |X1, X2, . . . , Xn−1, Xn) (5.93b)

> 0, (5.93c)

where (5.93c) follows from Theorem 5.14 and the fact that H(Y ) > H(Y |X1),

H(Y |X1) > H(Y |X1, X2), . . ., and for all n > 2, H(Y |X1, X2, . . . , Xn−1) >
H(Y |X1, X2, . . . , Xn−1, Xn). This completes the proof of of (5.91b).

Proof of (5.91c): Let PXY Z be the probability measure jointly induced by

X, Y and Z on
(
Rn+2,B

(
Rn+2

))
. Let also pXY Z : Rn+2 → [0, 1] be the joint

probability mass function. Hence, from (5.79c), the following holds:

I(X;Y |Z) = EPXY Z

[
log

(
pX|Y Z(X|Y, Z)

pX|Z(X)

)]
(5.94a)

= EPX1Y Z

[
log

pX1|Y Z(X1|Y,Z)

pX1|Z(X1|Z)

]
+EPX1X2Y Z

[
log

pX2|X1Y Z(X2|X1, Y, Z)

pX2|X1Z(X2|X1, Z)

]
+EPX1X2X3Y Z

[
log

pX3|X1X2Y Z(X3|X1, X2, Y, Z)

pX3|X1X2Z(X3|X1, X2, Z)

]
+ . . .

+EPXY Z

[
log

pXn|X1X2...Xn−1Y Z(Xn|X1, X2, . . . , Xn−1, Y, Z)

pXn|X1X2...Xn−1Z(X3|X1, X2, . . . , Xn − 1, Z)

]
= I(X1;Y |Z) + I(X2;Y |X1, Z) + I(X3;Y |X1, X2, Z) + . . .

+I(Xn;Y |X1, X2, . . . , Xn−1, Z), (5.94b)

where (5.94b) follows from (5.79c). This completes the proof of (5.91c). This

completes the proof of Theorem 5.36.

The following Theorems state some properties of the mutual information be-

tween the discrete random variables X, Y and Z when they form a Markov chain,

i.e., X → Y → Z.

Theorem 5.37 (Data Processing Inequality). Let X, Y , and Z be three
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discrete random variables forming the Markov chain X → Y → Z. Then,

I(X;Z) 6 I(X;Y ) and (5.95a)

I(X;Z) 6 I(Y ;Z), (5.95b)

and when Z = g(Y ), for a given Borel measurable function g : R→ R, then

I(X; g(Y )) 6 I(X;Y ). (5.95c)

Proof Proof of (5.95a): From (5.91a), the following holds:

I(X;Y,Z) = I(X;Z) + I(X;Y |Z) (5.96a)

> I(X;Z) (5.96b)

and

I(X;Y,Z) = I(X;Y ) + I(X;Z|Y ) (5.96c)

= I(X;Y ), (5.96d)

where (5.96d) follows from the fact that the random variables X and Z are

mutually independent conditioning on the random variable Y , i.e., X → Y → Z.

From (5.96b) and (5.96d), the following holds:

I(X;Z) 6 I(X;Y ), (5.96e)

and this completes the proof of (5.95a).

Proof of (5.95b): From (5.91a), the following holds:

I(X,Y ;Z) = I(Y ;Z) + I(X;Z|Y ) (5.97a)

= I(Y ;Z) (5.97b)

and

I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) (5.97c)

> I(X;Z), (5.97d)

where (5.97b) follows from the fact that the random variables X and Z are

mutually independent conditioning on the random variable Y , i.e., X → Y → Z.

From (5.97b) and (5.97d), the following holds:

I(X;Z) 6 I(Y ;Z), (5.97e)

and this completes the proof of (5.95b).

Proof of (5.95c): Plugging Z = g(Y ) into (5.96e), yields:

I (X; g(Y )) 6 I (X;Y ) , (5.98)

and this completes the proof of (5.95c).

Theorem 5.38. Let X, Y and Z be three discrete random variables such
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that X → Y → Z. Then,

I(X;Y |Z) 6 I(X;Y ) and (5.99a)

I(Y ;Z|X) 6 I(Y ;Z). (5.99b)

Proof Proof of (5.99a): From (5.91a), the following holds:

I(X;Y,Z) = I(X;Z) + I(X;Y |Z) (5.100a)

> I(X;Y |Z). (5.100b)

From (5.96d) and (5.100b), the following holds:

I(X;Y |Z) 6 I(X;Y ), (5.100c)

and this completes the proof of (5.99a).

Proof of (5.99b): From (5.91a), the following holds:

I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X)

> I(Y ;Z|X). (5.101a)

From (5.97b) and (5.101a), the following holds:

I(Y ;Z|X) 6 I(Y ;Z), (5.101b)

and this completes the proof of (5.99b). This completes the proof of Theorem

5.38.

Theorem 5.39. Let X, Y and Z be three discrete random variables with

joint probability mass function pXY Z : R3 → [0, 1] such that for (x, y, z) ∈
R3, pXY Z(x, y, z) = pX(x)pY (y)pZ|XY (z|x, y). Then,

I(X;Y |Z) > I(X;Y ). (5.102)

Proof From the assumption of the theorem, X and Y are two independent

random variables, then I(X;Y ) = 0. Hence, the inequality follows from the

non-negativity of mutual information.

The following two theorems play central roles in the analysis of the fundamen-

tal limits of data transmission.

Theorem 5.40. Let X = (X1, X2, . . . , Xn)
T

and Y = (Y1, Y2, . . . , Yn)
T

be two n-dimensional discrete random vectors with joint probability mass

function pXY : R2n → [0, 1]. Assume that for all (x,y) ∈ R2n,

pXY (x,y) = pY |X(y|x)

n∏
t=1

pX(xt), (5.103)
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for some probability mass function pX : R→ [0, 1]. Then,

I (X;Y ) >
n∑
n=1

I (Xn;Yn) . (5.104)

Proof Let PXY be the probability measure jointly induced by X and Y on(
R2n,B

(
R2n

))
. Similarly, for all t ∈ {1, 2, . . . , n}, let PXtYt

be the probability

measure jointly induced by Xt and Yt on
(
R2,B

(
R2
))

. Hence, from (5.61), the

following holds:

I (X;Y ) = EPXY

[
log

(
pX|Y (X|Y )

pX(X)

)]
(5.105a)

= EPXY

[
log

(
pX|Y (X|Y )

pX1(X1)pX2(X2) . . . pXn(Xn)

)]
, (5.105b)

where, (5.105b) follows from the fact that X1, X2, . . . , Xn are mutually indepen-

dent. On the other hand,

n∑
t=1

I (Xt;Yt) =

n∑
t=1

EPXtYt

[
log

(
pXt|Yt

(Xt|Yt)
pXt(Xt)

)]
= EPXY

[
log

(
pX1|Y1

(X1|Y1)pX2|Y2
(X2|Y2) . . . pXn|Yn

(Xn|Yn)

pX1
(X1)pX2

(X2) . . . pXn
(Xn)

)]
.

Hence,

n∑
t=1

I (Xt;Yt)− I (X;Y )

= EPXY

[
log

(
pX1|Y1

(X1|Y1)pX2|Y2
(X2|Y2) . . . pXn|Yn

(Xn|Yn)

pX|Y (X|Y )

)]
6 log

(
EPXY

[(
pX1|Y1

(X1|Y1)pX2|Y2
(X2|Y2) . . . pXn|Yn

(Xn|Yn)

pX|Y (X|Y )

)])
(5.105c)

= log

( ∑
y∈supp pY

pY (y)
∑

x∈supp pX

(
pX1|Y1

(x1|y1)pX2|Y2
(x2|y2) . . . pXn|Yn

(xn|yn)
))

= log

( ∑
y∈supp pY

pY (y)

)
= log 1

= 0, (5.105d)

where (5.105c) follows from Jensen’s inequality (Theorem 3.45). Then,

I (X;Y ) >
n∑
t=1

I (Xt;Yt) , (5.105e)

and this completes the proof of 5.40.
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Theorem 5.41. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be 2n discrete ran-

dom variables with joint probability mass function pXY : R2n → [0, 1], such

that for all (x,y) ∈ R2n it holds that

PXY (x,y) =

n∏
t=1

PY |X(yt|xt)PX(xt), (5.106)

for some given probability mass functions pY |X and pX . Then,

I (X;Y ) 6
n∑
t=1

I (Xt;Yt) . (5.107)

Proof Let PXY be the probability measure jointly induced by X and Y on(
R2n,B

(
R2n

))
. Similarly, for all t ∈ {1, 2, . . . , n}, let PXtYt be the probability

measure jointly induced by Xt and Yt on
(
R2,B

(
R2
))

. Hence, from (5.59), the

following holds:

I (X;Y ) = EPXY

[
log

(
pY |X(Y |X)

pY (Y )

)]
= EPXY

[
log

(
pY1|X1

(Y1|X1)pY2|X2
(Y2|X2) . . . pYn|Xn

(Yn|Xn)

pY (Y )

)]
.

On the other hand,

n∑
t=1

(Xt;Yt) =

n∑
t=1

EPXtYt

[
log

(
pYt|Xt

(Yt|Xt)

pYt
(Yt)

)]
= EPXY

[
log

(
pY1|X1

(Y1|X1)pY2|X2
(Y2|X2) . . . pYn|Xn

(Yn|Xn)

pY1(Y1)pY2(Y2) . . . pYn(Yn)

)]
.

Hence,

I (X;Y )−
n∑
t=1

I (Xt;Yt) = EY

[
log

(
pY1

(Y1)pY2
(Y2) . . . pYt

(Yt)

pY (Y )

)]
6 log

(
EY

[(
pY1(Y1)pY2(Y2) . . . pYn(Yn)

pY (Y )

)])
= log

( ∑
y∈supp pY

(pY1
(y1)pY2

(y2) . . . pYn
(yn))

)
= log 1

= 0, (5.108a)

where the inequality follows from Jensen’s inequality (Theorem 3.45). Then,

I (X;Y ) 6
n∑
t=1

I (Xt;Yt) , (5.108b)

which completes the proof of Theorem 5.41.
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5.5 Mutual Information – Case of Absolutely Continuous Random
Variables

The mutual information between two absolutely continuous random variables is

defined as follows.

Definition 5.42 (Mutual Information). Let X and Y be two absolutely

continuous random variables with joint probability density function fXY :

R2 → [0,∞). Then, the mutual information between X and Y , denoted by

I(X;Y ), is:

I(X;Y ) = −
∫ ∞
−∞

∫ ∞
−∞
fXY (x, y) log

(
fXY (x, y)

fX(x)fY (y)

)
dx dy. (5.109)

The mutual information between the real-valued random variables X and Y can

also be written as follows:

I(X;Y ) = EXY

[
log

(
fXY (X,Y )

fX(X)fY (Y )

)]
(5.110a)

= EXY

[
log

(
fY |X(Y |X)

fY (Y )

)]
(5.110b)

= EXY

[
log

(
fX|Y (X|Y )

fX(X)

)]
. (5.110c)

Theorems 5.30-5.32 can be extended to real-valued random variables.

Theorem 5.43 (Mutual information between two Gaussian random vari-

ables). Let X and Y be two random variables with joint probability function

fXY such that for all (x, y) ∈ R2,

fXY (x, y) =
1√

(2π)
2

detK
exp

(
−1

2
[x y]K−1

[
x

y

])
, (5.111)

where,

K , EfXY

[[
X

Y

] [
X Y

]]
=

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
, (5.112)

with σ2
X and σ2

Y are the variances of X and Y , respectively; and ρ ,
EXY [XY ]
σXσY

is the Pearson correlation coefficient. Then,

I(X;Y ) = −1

2
log
(
1− ρ2

)
. (5.113)

Proof From Theorem 5.67, the following holds:

I(X;Y ) = h(X) + h(Y )− h(X,Y ). (5.114a)
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Plugging (5.36) and (5.44) into (5.114a), the following holds:

I(X;Y ) =
1

2
log
(
2πeσ2

X

)
+

1

2
log
(
2πeσ2

Y

)
− 1

2
log
(

(2πe)
2

detK
)
(5.114b)

=
1

2
log

(
σ2
Xσ

2
Y

detK

)
(5.114c)

= −1

2
log
(
1− ρ2

)
, (5.114d)

where (5.114d) follows from the fact that detK = σ2
Xσ

2
Y

(
1− ρ2

)
. This completes

the proof.

Note that if ρ = ±1 (perfect correlation) then I(X;Y ) is infinite.

5.5.1 Conditional Mutual Information

Definition 5.44 (Conditional Mutual Information). Let X, Y , and Z be

three absolutely continuous random variables with joint probability density

function fXY Z : R3 → [0,∞). Then, the mutual information between X

and Y conditioning on Z, denoted by I(X;Y |Z), is:

I(X;Y |Z) = −
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
fXY Z(x, y, z) log

(
fXY |Z(x, y|z)

fX|Z(x|z)fY |Z(y|z)

)
dxdy dz.

(5.115)

The mutual information between the real-valued random variables X and Y

conditioning on the real-valued random variable Z can also be written as follows:

I(X;Y |Z) = EXY Z

[
log

(
fXY |Z(X,Y |Z)

fX|Z(X|Z)fY |Z(Y |Z)

)]
(5.116)

= EXY Z

[
log

(
fY |XZ(Y |X,Z)

fY |Z(Y |Z)

)]
(5.117)

= EXY Z

[
log

(
fX|Y Z(X|Y Z)

fX|Z(X|)

)]
. (5.118)

Theorems 5.34-5.41 can be extended to real-valued random variables.
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Darboux, J.-G. (1875), ‘Mémoire sur les fonctions discontinues’, Annales scientifiques
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Denjoy, A. (1912), ‘Une extension de l’intégrale de M. Lebesgue’, Comptes rendus des
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Riemann, G. F. B. (1868), ‘üeber die darstellbarkeit einer function durch eine

trigonometrische reihe’, Abhandlungen der Königlichen Gesellschaft der Wis-

senschaften zu Göttingen 13, 87–132.


	Foreword
	Part I Theoretical Foundations
	Algebra of Sets
	Notation
	Basic Operations
	Subsets of Rn
	Partitions and Covers
	Sequences of Sets
	Set Fields and -fields
	Set-Valued Functions

	Integration
	Notation
	Darboux's Integral
	Riemann's Integral
	Riemann Integrable Functions
	Properties of Riemann's Integral
	The Extended Real Numbers
	Limitations of Riemann Integral
	Henstock–Kurzweil Integral
	The Problem of Measure
	Jordan Measure and Jordan Measurable Sets
	Lebesgue Outer Measure
	Lebesgue Measure and Lebesgue Measurable Sets
	Lebesgue Measurable Functions
	Lebesgue Integral

	Abstract Measure Theory
	Measurable Spaces and Measurable Functions
	Measures
	General Integration
	Monotone Convergence
	Dominated Convergence
	Radon-Nikodym Derivative
	Distances and Pseudo-Distances between Measures
	Inequalities

	Probability Theory
	Independence
	Conditional Probability
	Random Variables
	Random Vectors
	Independent Random Variables
	Expectation
	Moments
	Markov Chains

	Information Measures
	Information
	Entropy – Case of Discrete Random Variables
	Entropy – Case of Absolutely Continuous Random Variables
	Mutual Information – Case of Discrete Random Variables
	Mutual Information – Case of Absolutely Continuous Random Variables

	Bibliography


