
Hardware Synthesis for Systems of Recurrence
Equations with Multi Dimensional Schedule

Anne-Claire Guillou
Irisa

Campus de Beaulieu
35042 Rennes cedex

France

Patrice Quinton
Irisa

Campus de Beaulieu
35042 Rennes cedex

France
Patrice.Quinton@irisa.fr

Tanguy Risset
Inria, Lip, ENS-Lyon

46 Allée d’Italie
69363 Lyon cedex 07

France
Tanguy.Risset@ens-lyon.fr

Abstract— This paper introduces methods for extending
the classical systolic synthesis methodology to multi-
dimensional time. Multi-dimensional scheduling enables
complex algorithms that do not admit linear schedules
to be parallelized, but it requires the use of memories
in the architecture. The synthesis of such an architecture
requires the definition of an allocation function that maps
the calculations on the processors, and memory functions
that define where the data are stored during execution.
As our approach targets custom VLSI architectures, we
constrain the synthesis method to produce parallel ar-
chitectures that that satisfy the computer owns rule, i.e.,
each processor computes the data which are stored in its
local memory. We explain how to combine the allocation
and memory functions in order to meet the computer
owns rule, and we present an original mechanism for
controlling the operation of the architecture. We detail
the different steps needed to generate a HDL description
of the architecture, and we illustrate our method on the
matrix multiplication algorithm. We describe a structural
VHDL program that has been derived and synthesized for a
FPGA platform using these design principles. Our results
show that the complexity added in each processor by the
memories and the control is moderate and justifies in
practice the use of such architectures.

Keywords: High-level synthesis, systolic architecture,
multi-dimensional scheduling, hardware synthesis for
FPGA platforms, System on a Chip, parallel architec-
tures for signal processing.

I. INTRODUCTION

In the context of System on Chip (SoC) design,
the components that are assembled use many differ-
ent design technologies ranging from general purpose
processors to custom VLSI blocks. In order to reduce
the time to market of such chips, the global design
time needs to be shortened as much as possible, and of
course, the most time-consuming design technologies

have to be considered first: accelerating the design of
custom blocks is therefore a key issue.

Today, custom VLSI blocks are mostly synthesized
from a register transfer level description, using lan-
guages such as VHDL or VERILOG. Attempts to syn-
thesize such elements from higher level descriptions,
called high-level synthesis of behavioural synthesis, still
belong to research, because tools based on this approach
have not proved to be efficient enough.

The research presented in this paper belongs to this
research domain. It is directed towards the automatic
design of architectures for regular applications pertain-
ing mainly to the signal processing domain. We start
from recurrence equation specifications [14], [10] that
we express using the Alpha language, and we use the
MMAlpha environment [15] to synthesize systolic-like
architectures. In this context, a typical design flow
comprizes the following steps: uniformization of the
recurrences, scheduling, mapping, and hardware gen-
eration. This design methodology has been prototyped
and shown to be effective for kernel signal process-
ing algorithms such as filters or basic linear algebra
operations, but it needs to be extended to complex
applications in order to become a useful tool for the
design of special-purpose blocks.

Multi-dimensional scheduling [11] is one of the
extensions worth to be considered for at least two
reasons. First, some algorithms do not admit simple
linear schedules, and they are therefore excluded de
facto from the usual synthesis approach. Second, multi-
dimensional scheduling reduces the number of proces-
sors – typically, by decreasing the dimension of the
allocation function – and this can be seen as a special
type of partitioning technique; this allows the method
to span a larger range of target architectures, thus



increasing its flexibility. Although multi-dimensional
scheduling of recurrence equations is a well known
technique, it has not been yet successfully applied to
hardware design, because it raises several new issues
such as memory management and control generation.

We start the paper by presenting a motivating ex-
ample in Section II. Then we review in Section III
the existing techniques and tools that constitute the
background of our methodology. In Section IV, we
present the main results of the paper: the combination
of memory function and allocation functions, and a
mechanism for controlling multi-dimensional scheduled
architectures. Implementation results are presented in
Section V: they give an idea of the additional com-
plexity that results from the use of a multi-dimensional
schedule. In Section VI, we compare our method to
related work, and we conclude the paper by Section VII.

II. MOTIVATING EXAMPLE

The matrix-multiplication algorithm is often used to
illustrate and prototype the synthesis of systolic arrays
because it combines a three-dimensional index space
with a simple, easy to understand dependence structure.
The initial specification we start from is shown in Fig. 1.
It is a set of uniform recurrence equations written in the
Alpha language: each equation is a single assignment
statement which defines one variable.

Most often, matrix-multiplication is mapped onto a
2-dimensional systolic array [22] using a linear – or
affine, – schedule. Let

����� ���	�
����
denote the schedule

of variable � , where ������� ��������� . The schedule
function could be for example:����� ���	�
���� �!� "#� ���	�
���� �!��$%�&$'� ���(#� ���	�
����)�*� $+�&$,�&$.-/� (1)

and the algorithm would then be executed in 0 $+12$3
steps on a 2-dimensional architecture as shown in

Fig. 2.

In practice [15], the architecture of Fig. 2 is con-
trolled by a clock enable signal that allows the execution
of all processors to be frozen if, for instance, input data
are not ready. This signal acts as a virtual clock and
establishes a correspondence between the virtual time�4$'��$.�

given by the schedule and the actual clock
of the circuit. The use of virtual clocks ensures that
the behavior of the architecture is really the one that is
expected after scheduling, and in addition, it allows the
architecture to be easily integrated as an IP [13] in a
complex design.

system MatMat :{M,N,P | 3<=M; 3<=N; 3<=P}
(a : {i,k | 1<=i<=M; 1<=k<=N} of real;
b : {k,j | 1<=k<=N; 1<=j<=P} of real)

returns
(c : {i,j | 1<=i<=M; 1<=j<=P} of real);

var
B : {i,j,k | 1<=i<=M; 1<=j<=P; 2<=k<=N}

of real;
A : {i,j,k | 1<=i<=M; 1<=j<=P; 2<=k<=N}

of real;
C : {i,j,k | 1<=i<=M; 1<=j<=P; 1<=k<=N}

of real;
let

B[i,j,k] = case
{ | i=1} : b[i+k-1,j];
{ | 2<=i} : B[i-1,j,k];

esac;
A[i,j,k] = case

{ | j=1} : a[i,j+k-1];
{ | 2<=j} : A[i,j-1,k];

esac;
C[i,j,k] = case

{ | k=1} : 0[];
{ | 2<=k} : A * B + C[i,j,k-1];

esac;
c[i,j] = C[i,j,N];

tel;

Fig. 1. Initial specification of the matrix-multiplication algorithm
using the Alpha language

For reasons related to the size, the power consump-
tion, or the throughput of the resulting architecture, a
designer might prefer a multi-dimensional schedule for
this program, for instance:� � � ���	�
���5���*� " � ���	�
���5���76 � $%�� 8 �

� ( � ���9�:������ 6 � $+��;$<- 8 = (2)

The lexicographic order imposed by this schedule
is denoted as > in what follows, and ? denotes the
corresponding strict order. It guarantees that the depen-
dencies between computations are satisfied. Here for
example,

�@� ���	�
���5�
is guaranteed to be computed strictly

after � � �BAC-:�	�DA,-
����
because6 � $+�EAGF� 8 ? 6 ��$%��;$*-H8 =

Fig. 3 shows the matrix-multiplication program of
Fig. 1 once all variables have been re-indexed by a
space-time transformation whose first two components
are the schedule.

In spite of its power, multi-dimensional scheduling
is seldom used in practice, since translating such a
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Fig. 2. Two-dimensional architecture for the matrix-multiplication
with the linear schedule of equation (1)

system MatMat :{M,N,P | 3<=M; 3<=N; 3<=P}
(a : {i,k | 1<=i<=M; 1<=k<=N} of real;
b : {k,j | 1<=k<=N; 1<=j<=P} of real)

returns
(c : {i,j | 1<=i<=M; 1<=j<=P} of real);

var
Acom : {t1,t2,p | p+2<=t1<=p+M+1;

2<=t2<=N; 1<=p<=P-1} of real;
B : {t1,t2,p | p+1<=t1<=p+M;

2<=t2<=N; 1<=p<=P} of real;
A : {t1,t2,p | p+1<=t1<=p+M;

2<=t2<=N; 1<=p<=P} of real;
C : {t1,t2,p | p+1<=t1<=p+M;

2<=t2<=N+1; 1<=p<=P} of real;
let

Acom[t1,t2,p] = A[t1-1,t2,p];
B[t1,t2,p] = case

{ | t1=p+1} : b[t1+t2-p-1,p];
{ | p+2<=t1} : B[t1-1,t2,p];

esac;
A[t1,t2,p] = case

{ | p=1} : a[t1-1,t2];
{ | 2<=p} : Acom[t1,t2,p-1];

esac;
C[t1,t2,p] = case

{ | t2=2} : 0[];
{ | 3<=t2} : A[t1,t2-1,p] *
B[t1,t2-1,p] + C[t1,t2-1,p];

esac;
c[i,j] = C[i+j,N+1,j];

tel;

Fig. 3. Alpha system of Fig. 1 after applying the schedule of (2)
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Fig. 4. Architecture for the matrix-multiplication with the multi-
dimensional schedule of equation (2). Two random access memories
of size ����� are used to store rows of � and columns of � during
the calculation.

schedule into a real architecture is difficult. Indeed,
establishing a correspondence between the logical time
given by the schedule and the physical time in the chip
is not simple: a virtual clock is not as easy to identify
as for a linear schedule.

The multi-dimensional schedule of Equation (2) leads
to the architecture sketched in Fig. 4 where computa-
tions carried at logical time

�	��
 � ����
take place at virtual

clock cycle number
� 0 $,- ���
 $ ��

. Fig. 4 also shows
that memories are needed to store the data in each cell.
Note also that the control is not displayed: the signals
controlling the loading of the registers and memories
are quite tricky to set up, and this issue will be solved
in the remaining of the paper.

III. BASIC CONCEPTS AND TECHNIQUES

In this section, we briefly review the different con-
cepts and techniques that will be assembled to en-
able the automatic design of hardware for algorithms
with multi-dimensional schedule. For a more complete
description of these techniques, the readed is refered
to [16], [11], [21].
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A. Systems of uniform recurrence equations

Our initial specification is a system of uniform recur-
rence equations, i.e., a set of equations of the form:� � �������@� � �)�	� � = = = � � � � $�
�� � �9� = = = � (3)

where
� �

, the iteration space, is the set of integral
points of a domain (usually a convex polyhedron or a u-
nion of convex polyhedra) of Z � , and  is the dimension
of
�

. Note that all variables have the same dimension.
These equations recursively define the values of the
variables (

�
, � , etc.). For a given point � , we call

operation the instance � � � � of a variable.

We represent systems of recurrences by means of the
Alpha programming language. For instance, the Alpha
programs of Fig. 1 and Fig. 3 are uniform systems of
recurrence equations. Alpha and its associated synthesis
environment MMAlpha provide a framework for the
synthesis of regular architectures. In particular, how to
go from an affine system of recurrence equation to a
uniform system of recurrence equation has been studied
and implemented in the MMAlpha environment [19]. We
have also prototyped the design method proposed here
in this environment (see Section V).

B. Multi-dimensional schedules

A multi-dimensional schedule of a system of recur-
rence equations is a family of functions (one function
for each variable

�
)
� � � � � ��� � 
� � � � � = = � ���� � � ��� such

that
���� � � � is an affine function of � for all

�
. Here,

�
is

the dimension of the schedule. A schedule specifies an
execution order for the operations of the system:

�@� � �
is computed after � � ��� � if and only if

� � � ��� � ? ��� � � � .
Moreover, we suppose that the schedule meets the
following set of constraints.

1) For all variables � , the dimension of
� �

is
�

.
2) All functions have the same linear part. In other

words, for a given level
��� -�� ��� �

, and for
all variables � , the linear part of

��� � is the same
and we thus let

��� � � � � � ����� � � $�� � � . The
� � 

matrix
�

whose rows are the common linear part
of the

���
fonctions is called the schedule matrix.

3) The rank of all schedule functions is exactly
�

.
This is equivalent to say that the

�
function has

a right inverse.
4) The schedule matrix

�
can be completed to form

a  �  unimodular matrix.

For example, we can see that the schedule given by
equation (2) meets these conditions. The common linear

part of all functions is
� $ �

at level one and
�

at level

two, thus
�.� 6 -/-"!!#! -H8 . A possible right inverse

of
�

is
�%$ 
 � � 
 � �� � � � � 
 �&! � �� �

. whose matrix is
�'$ 
 �() -*!!#!! -

+,
. (In the following, we shall sometimes

identify a linear application with its matrix, whenever
no confusion can occur.) Finally, the schedule can be
completed into the function

1 � ���	�
��� � � � � $'�
��� �	� �
whose matrix is unimodular.

C. Allocation function

Given an  -dimensional system of uniform recur-
rence equations with a

�
-dimensional schedule, an

allocation function is a
�  AC� �

dimensional function� � � � � � - 
 � � � � = = = ��- � $ � � � � � that specifies the coor-
dinates of a processor where each computation is to
be executed. In the example of Fig. 3, the allocation
function � � ���9�:��� � �!�

was chosen. Two computations
allocated on the same processor must not be execut-
ed simultaneously. This condition is expressed by the
following constraints between

�
an � :.0/2131 � � �54 .0/6171 � � � � � ! � = (4)

D. Space-time transformation

Once a schedule and an allocation function have been
found, one can rewrite a system of recurrence equations
by applying to all variables a space-time transforma-
tion: the initial indexes of each variable are replaced by
their image by the schedule and the allocation function.
For example, the system of Fig. 3 is the result of a
space-time mapping of the program of Fig. 1.

Given a variable � , we call space-time domain of � ,
and denote 829;: � � � , the domain of this variable after
space-time transformation. For example, the space-time
domain of variable A is

8<9;: � � � � � � 
 � �� �>=�?@=�$*-A� � 
 �B=�$,1DCF�� �� � 0 C -A�B= �!3 � =
E. Memory function

Given a system of recurrence equations with schedule�
, the memory function of a variable � is a

�  AFE+� �
-

dimensional linear function
1C�

which specifies for
each value of � , an address in a memory attached to �
where the value can be stored during its whole lifetime.
Memory functions can be built in a systematic way as
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shown in [21], [18] for example. A memory function is
valid if it ensures that the value � � � � is held in memory
until it is not needed anymore. The difficulty is to find
memory functions leading to small memories, possibly
by re-using the same memory for different data.

When the schedule is mono-dimensional (i.e.,
�@� -

),
one can prove that

E+� �  A -
. Therefore, memories

correspond exactly to registers as data are stored only
during a constant number of clock cycles.

If the schedule is multi-dimensional, we have in
general

E ���  A*�
. In the example of Fig. 1 and

for the schedule of Equation (2), the following memory
functions are valid:1

A
� ���9�
��� � � � �
��� AC- � �1

B
� ���9�
��� � � � �
��� AC- � �1

C
� ���9�
��� � � � � � = (5)

It is often convenient to express these functions in the
space-time basis, i.e., in term of the indexes of Fig. 3.
We have then:1

A
� � 
 � �� � = � � � =B� �� AC- � �1

B
� � 
 � �� � = � � � =B� �� AC- � �1

C
� � 
 � �� � = � � � = � = (6)

In other words, in the program of Fig. 3, A
� � 
 � � � �>= �

is stored in a common memory at address
� =B� � � A*- �

,
or equivalently, on a memory located on processor

=
at address

� � A<-
. The same memory function is used

for variable B. All instances of variables C for a given
processor are stored in a single memory element, which
could be implemented using a simple register.

The schedule, allocation and memory functions de-
fine an operational representation of the program. Once
the designer has choosen these functions, his work
is to refine (or rewrite) the description with respect
to a particular target architectural model (hardware
or software) and hence to obtain an implementation
derived from the initial functional representation.

IV. METHODOLOGY IMPROVEMENTS FOR

MULTI-DIMENSIONAL SCHEDULING

This section presents the original theoretical con-
tribution of this paper: how to combine allocation
and memory functions and how to control a multi-
dimensional scheduled architecture.

A. Merging allocation and memory functions

The method proposed by Quilleré and Rajopad-
hye [21] assumes an underlying shared memory ar-
chitecture model (we refer to this method as the SM

method in what follows). In the context of custom VLSI,
we want each processor of our architecture to store the
values that it computes in its local memory, whenever
these values need to be memorized; this policy is named
the computer owns rule (in opposition to the well-
known owner computes rule of parallel computing,
where data stay in the memory of one processor, and
processor compute the data which are located in their
own memory.) In other words, data may be moving
between different processors, but the processor which
computes a data stores the data it has computed in its
own memory as long as this data may be needed, and
sends it when necessary to the processors that need it.

As a consequence, the  A �
first coordinates of

the memory function of any variable must identify the
place where the variable is computed. This adds to the
constraints defining a memory function, as identified
by the SM method, a new condition: its first  A �
rows should be common to all variables and be equal
to the allocation function. In this section, we show
how allocation functions and memory functions can be
combined in order to meet the computer owns rule. We
begin by recalling definitions and results given by [21],
then we present an prove our main result, and finally,
we illustrate the method on our matrix multiplication
running example.

1) Background: In the following, we denote by. /2131 � 1 �
the null-space of a linear mapping

1
, and

by ������� �
	 
 � = = = � 	 � � the linear subspace generated by
vectors

	 

, . . . ,

	 � .
Let us denote by

1 �
the memory function of vari-

able � . In the SM method,
1 �

is a projection which
can be specified by a projection direction, that is to say
by the

E �
vectors of the null space of

1,�
. We use

the following property shown in [21]:

Proposition 4.1: Memory functions satisfy.0/6171 � � �54 . /2131 � 1'� � � � ! � �
hence,

E ��� �
, where

�
is the dimension of the

schedule, i.e., the number of rows of
�

.

Proof: See [21] �
Given a variable � , let us define the lifetime vector
 �

of � as the lexicographical maximum, upon all the
operations � � � � , of the difference between the time
at which � � � � is produced and the time of its last
consumption. Notice that the first non zero component
of a lifetime vector is allways positive, otherwise the
schedule would not be causal.

Let
�� 
 � = = = � ����� � be an integral basis of the null
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space of
1'�

. Quillere and Rajopadhye show the fol-
lowing proposition:

Proposition 4.2: Let
�

be the linear part of the
schedule. Then � � 
 � = = = � � � � � are integral null space
vectors of the memory function

1 �
if and only if for

any integral linear combination � ��� � ���� 
�� � � � :! ? � = ��� 
 � > � = � = (7)

Proof: See [21] �
2) Memory functions satisfying the computer owns

rule: We now show that it is possible to find memory
matrices of size

�  A E
	 � �  whose first  AG�
rows

have the same linear part. First, we show in Lemma 4.3
that we can choose null space vectors of

1 �
in such a

way that they are also null space vectors of a common
matrix

1 ���
. (Intuitively, the memory of a variable with

a short lifetime will always fit into the memory of a
variable with a longer lifetime.)

Second, we show in Lemma 4.4 that the memory
function of this common �� variable can be re-arranged
in such a way that its upper  �  sub-matrix is non
singular.

Third, Lemma 4.5 shows a technical result used to
extend the memory function of �  to any other variable.

Finally, Proposition 4.6 proves the main result.

Lemma 4.3: Given a system of recurrence equations
with a multi-dimensional schedule, there exists a vari-
able �  such that, for all variables � of the system, one
can choose the vectors of the memory function

1 �
in

the null space of
1 ���

.

Proof: The proof builds upon a procedure for choosing
the vectors of

.0/2131 � 1,� �
which is explained in section

4.1 of [21].

The dimension
E �

of
. /2171 � 1 � �

is the number
of leading 0 of the lifetime


 �
of � plus one (in

our example,

� � � -
��! �

hence, the dimension of.0/6171 � 1 � �
is 1). Let

�'$ 

be a right-inverse of

�
.

The method of [21] proposes the following null space
vectors for

1,�
:� � � � �%$ 
 ��� � � for

- � �'� E � A -
, where

� � is
the

�����
canonical basis vector,� ����� �.�%$ 
 � 
 � �

.

Consider the following partition of the set of variables� � � � � ? E �G� E%�
��E � -
��F � = = = ��� =
(In our example, for instance,

� 
 � ��� ��� � , � � � ��� � .)
Define ��� �"! #�$ ��% � as the lexicographic maximum of a

set. Let now & � be defined as follows:

& � �(' � $ 
 ��� � �
if

� � �*)
,�%$ 
 � ��� � ! #�$ �,+ �.-0/21 � 
 � � � � otherwise.

In other words, & � is the pre-image by the schedule
function of the lexicographic maximum lifetime vector
of the variables of

� �
. We now prove, using Proposi-

tion 4.2, that for any
E

the set ��& � � 
43 � 3 � is a valid
set of null space vectors for the memory function of
any variable � � � �

.

Consider a variable � � � �
, and let � ��� ��5� 
 � � & �

be a linear combination of the & � such that
! ? � = � .

We must prove that

 � > � = � . Notice that


 � � � = & �
is the lifetime vector of some variable � � � � � , and
therefore, its

�)A -
first components are

!
. On the other

hand, we have � = � � �6 ��� 
 � � � = & �� �6 ��� 
 � � 
 � =
Let � � be the first non null coefficient of this sum. We
consider two cases.

Case 1: 87 E . Then the first non null component
of
� = � is the first non null component of � � 
 � . But since

by hypothesis,
! ? � � , necessarily

! ?*� � 
 � . On the
other hand, since 97 E , and since the first

E A -
coordinates of


 �
are 0,


 � > � = � .

Case 2:  � E . By hypothesis and for the same
reason ! ?:� � � = � � � � � 
 � =
Thus the first non null component of � � � = � � is the
first non null component of � � 
 � and
5� > 
 � �
by definition of


 �
. As the first non null component

of a lifetime vector is positive, and as
! ?;� � 
 � ,

necessarily, � �=< !
. Therefore,


 � >9� � 
 � � � = � ,
which proves that �>& � � 
43 � 3 � is a valid set of null
space vectors for the memory function of any variable� � � �

.

Let now
E  be the largest

E
such that

� �@?�A)
,

and let �B be any variable belonging to
� � �

. Then,
for any other variable � , the null-space vectors of1,�

are also null-space vectors of
1C� �

. � For our
example,


 � � 
 " � � -:�&! � � � 

and


 ( �
� ! � - � � � �

. The memory functions shown in equa-
tion (5) are such that

.0/6171 � 1'� � � .0/2131 � 1G" � �
6



��� � � � � -:�&! �&! � � � ��� � � � �%$ 
 � 
 � and
.0/2131 � 1 ( � �

��� � � � � -:�&! �&! � � � ! ��! � - � � � � ������� � � $ 
 � 
 � � $ 
 � � � .
Lemma 4.4: Let �B the variable selected by Lem-

ma 4.3. It is possible to find a permutation of the rows
of

1'� �
such that the permuted matrix

1 �� � is a valid
memory function for �� and the upper  �  submatrix
of

1 �� � is non singular.

Proof: By Proposition 4.2,
.0/6171 � � � 4 .0/2131 � 1 ��� � �� ! � . As a consequence,

1 ���
is a

�  A E ��� � �  matrix

(with
E � � � �

) such that the matrix
6 �1 �  8 is

full-column rank. Therefore, it is possible to find a
permutation of the rows of

1,� �
which gives a new

matrix
1 �� � such that the upper  �  square sub-matrix

of
6 �1 �� � 8 is non-singular. As a permutation does

not change the null space,
. /2171 � 1 ��� � � .0/6171 � 1 �� � � .

Therefore,
1 �� � is still a valid memory function for �  .

Now let � be the sub-matrix of
1 ��>� composed of its

first  AG�
rows. Then matrix

6 �� 8 is non singular.

Moreover, as
. /2171 � � � 4 .0/2131 � � � � � ! � , � is a valid

allocation function.

The following technical Lemma will be used to
complete the � matrix into a memory function for all
other variables.

Lemma 4.5: Given
E �

linearly independent integral
vectors

�� 
 � = = = � ����� � and a
�  A � � �  full row

rank integral matrix � such that ��� � � �
� 
 � = = = � ��� � ���.0/6171 � � � (
� � E �

), one can find a
�  A E � � �  full-

row rank matrix
1 �

, built by completion of � , such
that

.0/2131 � 1'� � � ������� �� 
 � = = = � � � � � .
Proof: Consider the  � E � matrix � whose columns

are the
� � vectors. This matrix is clearly full column

rank. Consider the Hermite normal decomposition of
� :

� � �
� 
 = = = � � � � � � � �
where

�
is a  �  unimodular matrix and � � is  �E �

upper triangular. Let � � � � � . We claim that the
columns of � � belong to

.0/6171 � � � � . Indeed, if we denote
by

� �� the
�����

column of � � , then� � � �� � � � � �� � � � � � ! =
Hence as the columns of � � span exactly the first

E+�
dimensions of the space, � � is of the form � ! � � ��� ,
where � � � is a

�  A@� � � �  A E � � full row rank matrix.
Therefore, � � � can be completed with

�DABE+�
rows to

obtain a square  A E+�
non singular integral matrix� � � � � 6 � � �� 8 .

Consider now the
�  A E � � �  matrix1 �� � 6 ! � � �! � 8 =

It is such that � ��� � �� � 
 � = = = � � ���� �	� .0/2131 � 1 �� � be-
cause the last  A E �

components of each
� �� are

null. Moreover, we know that


� E � .0/2131 � 1 �� � � � E �

because � � � � is non singular. Thus,
1 �� is full-row

rank and
.0/2131 � 1 �� � � � ��� � �
� � 
 � = = = � � �� � � . If we note1 � �.1 �� ��$ 
 , then

1 �
is the matrix we are looking

for. Indeed,1'� � � �<1 �� � $ 
 � � � 1 �� � �� �	! �
and, as

� ! � � � � � $ 
 � � � � $ 
 � � �'� $ 
 � � �1,�
is a full row rank

�  A E � � �  matrix whose first AG�
rows are exactly � . �

Proposition 4.6: Let �  the variable chosen by ap-
plication of Lemma 4.3, and � the allocation function
resulting from application of Lemma 4.4. Then for any
variable � ?� �B of the program, � can be completed
into a valid memory function

1,�
of � .

Proof: By application of Lemma 4.3, the
E �

vectors�
� 
 � = = = � � � � � which generate the null space of the
memory function of � are already in

.0/2131 � � � .
Hence the problem amounts to finding for variable �

a
� �#A E � � �  matrix 0 � such that

1'�G� 6 �0 � 8
is a memory function for � .

Applying Lemma 4.5 to
�� 
 � = = = � � ��� � and � , we

can extend � into a matrix
1 �

such that
. /2131 � 1 � � �

������� �� 
 � = = = � ����� � . It follows that
1 �

is a valid mem-
ory function for � . �

In summary, we have been able to find an alloca-
tion function � for the computations of the program
and moreover, for all variables � , we found memory

functions which have the form
1C� � 6 �0 � 8 . As

a consequence, in the resulting architecture, operation� � � 
 � = = = ��� � � is computed on processor � � � 
 � = = = ��� � �
and is stored in memory location

1 � � 
 � = = = � � � � �6 � � � 
 � = = = � � � �0 � � � 
 � = = = � � � � 8 . One can interpret this loca-

tion as being a memory 0 � � � 
 � = = = ��� � � of processor� � � 
 � = = = � � � � , which meets the computer owns rule.

3) Illustration of the method: We illustrate this
method on our program of Fig. 1 with schedule of
Equation (2). The lifetime vectors are



C

� � ! � - �
,


A
� 


B
� � -:�&! �

. our method gives the following null
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t1=1
3 t2=1
2 if (t2 <= t1-1) then

t2=t2+1
GOTO 2

endif
if (t1 <= N-1) then

t1=t1+1
GOTO 3

endif
1 // end of time

t1=3
3 t2=2
2 //enable settings

set all enable to 0
if (p+2<=t1) && (t2<=N) enableAcom <- 1
if (t1<=p+M) && (t2<=N) enableA <- 1

enableB <- 1
if (t1<=p+M) enableC <- 1
//control settings

if (t2<=N-1) then
t2=t2+1
GOTO 2
endif

if (t1<=p+M) then
t1=t1+1
GOTO 3
endif

1 // end of time

(a) Automaton for time domain of equation (9) (b) Automaton for controlling the architecture deduced of the
program of Fig. 3

Fig. 5. Automata used to enumerate time domains.

space basis vectors:
.0/6171 � 1

C
� � � � -:�&! ��! � � � ! �&! � - � � ,.0/6171 � 1

A
� �	.0/2131 � 1

B
� � � � -:��! ��! � � . C is the variable

with the minimal lifetime, a valid memory function
matrix for C is

1
C
� ���	�
��� � � � � �

, this gives us the
allocation function.

As explained above, we can complete the
1
C matrix

with one row to obtain
1
A and

1
B, which gives for

instance:
1
A
� ���	�
��� � � 1

B
� ���	�
��� � � � �
��� A<- �

. The
resulting linear architecture is represented in Fig. 4.
In addition, we also have the information that in each
processor

=
, C needs only a register to be stored (its

memory function has a 0 local dimension) while A and
B both need a memory of size 0 A -

: A
� ���9�:����

is stored
in processor

�
at memory location

�
.

B. Controllers for multi-dimensional schedules

We now turn to the problem of generating a controller
for a multi-dimensional scheduling.

In a linear schedule, the resulting architecture can be
controlled by a single counter which enumerates the
time steps. To extend this idea to multi-dimensional
time, we propose to control the architecture by means of
a multi-dimensional counter. An illustration of this idea
is a watch enumerating hours, minutes, and seconds.
Here, however, each hour may have a different num-
ber of minutes and each minute may have a different

number of seconds, as our time spans a polyhedron
of any shape. In the following, we propose to provide
each processor with a simple hardware mechanism that
implements this multi-dimensional counter. However,
we must guarantee that in our solution, a given hour
has the same number of minutes in every processor, in
order to avoid the need of synchronizing the processors.

1) Time domains: Let us introduce the notion of time
domain of a variable. For a given variable � of an Alpha
program with a schedule

�
and an allocation � , we call

time domain of � with respect to processor
=

, and we
denote 9;: � � �>= � the values that its time indexes may
take, for processor

=
. For instance, if a variable has the

space time domain:

9;: � � �>= � � � � 
 � �� �>=�? - � �� � � 
 �B= C -A�B= � 0 �
(8)

its time domain in processor
= � -

is

9;: � � � - � � � � 
 � �� ? � 
 � - C �� � - � �
and its time domain on processor

= �.F
is

9;: � � ��F � � � � 
 � �� ? -A� �� � � 
 �!F � =
We call global time domain of � , and we denote9;: � � � , the union, over all processors

=
, of the time

domains of � with respect to
=

. The global time domain
of a variable can equivalently be obtained by projecting
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the space-time domain 8<9;: � � � of this variable on the
time dimensions. For our example, the time domain of
variable � is:

9;: � � � � � � 
 � �� ? -%� � 
 � �� � 0 C �� � � 
 � = (9)

Similarly, we define the global time domain 9;: of
a system as being the union of all the time domains of
the variables of the program.

Our proposed multi-dimensional counter scans the
global time domain of a system in lexicographic order,
one new point at each clock cycle. In any given pro-
cessor, it generates an enable signal for each variable.
For example, for the above variable � with space-time
domain of equation (8), each hour contains 0 minutes
as indicated on the global time domain of equation (9),
but on processor

=�� -
, � is only computed in the first

minute of the first our, i.e., for
� 
 � -

,
� � � -

, and
the computation of � must be cancelled on all other
clock cycles. The enableV signal in processor

= � -
is true only when

� 
 � -
and

� � � -
, and the loading

of the computed value of � is only validated when
the enableV signal is true. This signal acts exactly
as a clock enable signal: the computation is performed
in the combinatorial logic of the hardware, but the
result is stored in the register of memory only when
the enableV signal is valid.

2) Scanning polyhedra by means of automata: In
this section, we briefly survey a method to generate the
controller.

Among the various techniques which have been pro-
posed to scan the integer points of a given polyhedron,
Boulet and Feautrier [2] express the scanning program
as a finite automaton. This method fits very well the
context of hardware synthesis, as automata are efficient-
ly mapped to hardware by synthesis tools.

For the time domain presented in equation (9), the
automaton is shown on Fig. 5(a) with the convention
that the labels represent states and goto statements,
transitions. A possible control automaton for the pro-
gram of Fig. 3 is shown in Fig. 5(b). The exact
setting of the automaton must be discussed further with
respect to complexity of the resulting hardware (many
optimization are already presented in [2]).

Assuming that such an automaton is available in each
processor

=
, we dispose of several useful signals: two

clock signals indicating new hours and new minutes,
and two counters giving the current values of

� 

and��

. The latter counter can be used for address gen-
eration for instance. In addition, we can also easily
build a monodimensional clock

��� �
which generates the

actual clock cycles of the architecture. As explained
in section II, one can implement

��� �
using a clock

enable signal controlling all memory elements, so that
the entire architecture may be frozen during some time
steps.

V. PUTTING IT ALL TOGETHER IN ALPHA

In this section, we describe how the results of Sec-
tion IV is implemented in the Alpha language. Our
goal is to provide an Alpha program which is as close
as possible to the VHDL code we would write for
implementing the architecture. In such a way, most of
the transformations are done within the Alpha formal-
ism and we make as few semantic changes during the
translation to VHDL, which helps in performing correct
designs. Here we describe how we systematically derive
a new Alpha program from the one of Fig. 3 with
explicit use of memories. We first present the program
containing the memory of A and B, then we explain
how the domains of the new program can be built
using polyhedral computations and we detail a few
optimizations. This Alpha program is then translated
into VHDL by following systematic rules so that this
translation can be easily implemented in the MMAlpha
system. We presents results of the synthesis of the
architecture and compare it with a classical systolic
design for the same application (Fig. 2).

A. Implementing memories

Memories are usually implemented by instantiat-
ing predefined components which greatly depend of
the target technology. As we primarily target FPGA

technologies, we consider memories for reconfigurable
platforms. There are usually several level of memories
on FPGA chips. Memories can be implemented as FIFO

using the Configurable Logic Blocks (CLBs) of the
FPGA; recent chips provide additional predefined area
for memory blocks of various kinds. These memory
blocks can be accessed in one clock cycle, and have a
limited storage capacity.

The left part of Fig. 6 shows for instance the interface
of the True Dual Port Synchronous Ram available on
a Virtex XCV800 chip. Based on this architecture, we
abstract our vision of a memory as shown on the right
part of Fig. 6: a memory has two (read and write)
ports, and these ports are controlled by means of clock
enables signals which come directly from the controller
mentioned in section IV-B; these signals indicate at
which virtual clock steps the data stored in the memory
are either read or written.

9
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WriteData

WriteAddress

WenableRenable

  

Fig. 6. Architecture of a dual port RAM as proposed on Xilinx Virtex chips (left part). The size of such a memory can be parameterized. The
abstraction of such a memory in our design flow is shown on the right part

This choice brings several restrictions which could
be easily overcome in future designs (but again, this
depends largely on the target architecture implemen-
tation): one memory block is used for a single Alpha
variable (sharing of resources is not considered); as the
size needed to store the Alpha variable is not necessary
a power of two, the size used on chip is the smallest
power of two larger that the needed size. Would the
size available on a one cycle access memory be not
sufficient, one would have to use external memories
which are bigger and slower; the design would then
be much more complex because data would have to be
pre-fetched in order not to slow down the execution.

B. Alpha code for the memories

a) The A memory: Consider first the case of the
A variable. Fig. 7 recalls the equations of the initial
program (equations defining A and C) and Fig. 8 shows
the corresponding elements in the final program, after
memory interpretation. First, note that the transforma-
tion of the Alpha program has been chosen in such a
way that each processor computes the variables it stores:
each processor read its A memory, assigns it to Acom
and ”sends” it to the next processors.

In the original program (Fig. 7), the A variable is read
twice (A[t1-1,t2,p] in the definition of Acom and
A[t1,t2-1,p] in the definition of C) and written
once.

The memory function of A is
� =B� � F)A�- �

, which means
that, on processor

=
, A[t1,t2,p] is stored at address

t2-1. Thus, a memory of size N-1 is needed in each
processor. In general, the adresses are expressed by a
linear function of the time and space indices.

Address generation should be done by the controller
of the program (seen in section V-E), and one can
manage to have a single address generator shared by

... A : {t1,t2,p | p+1<=t1<=p+M;
2<=t2<=N; 1<=p<=P} of real;

let
...

A[t1,t2,p] =
case

{ | p=1} : a[t1-p,t2+p-1];
{ | 2<=p} : Acom[t1,t2,p-1];

esac;
Acom[t1,t2,p] = A[t1-1,t2,p];
C[t1,t2,p] =

case
{ | t2=2} : 0[];
{ | 3<=t2} : A[t1,t2-1,p] *

B[t1,t2-1,p] + C[t1,t2-1,p];
esac;

... tel;

Fig. 7. Initial definition of variable A

every variables, because the initial program has uni-
form dependencies. We do not address the problem
of efficient address generation here, the adaptation
of classical compilation techniques such as strength
reduction would provide efficient mechanism. Note, for
instance that the second read occurrence A[t1,t2-
1,p] is exactly the data that has been written in the
A memory at previous t2 clock cycle: hence this read
does not require a memory access, and one can just
store the written value of A in a register clocked on t2.
This simplification is important because it allows one to
implement the A memory with a dual port memory (one
port for writing, one port for reading, see section V-D
below).

The first read occurrence (A[t1-1,t2,p]) requires
one address port named ReadAddrA and one data port
named ReadDataA. Similarly, the write occurrence
requires one address port named WriteAddrA and
one data port named WriteDataA. The A memory is
represented in Alpha as three variables named MemA,

10



...
1 MemA_Prec : {ad,t1,t2,p |1<=ad<=N-1; p+1<=t1<=p+M+1; 2<=t2<=N; 1<=p<=P} of real;
2 MemA : {ad,t1,t2,p |1<=ad<=N-1; p+1<=t1<=p+M+1; 2<=t2<=N; 1<=p<=P} of real;
3 MemA_Succ : {ad,t1,t2,p |1<=ad<=N-1; p+1<=t1<=p+M; 2<=t2<=N; 1<=p<=P} of real;
4 ReadAddrA : {t1,t2,p | p+2<=t1<=p+M+1; 2<=t2<=N; 1<=p<=P} of integer;
5 ReadDataAcom :{t1,t2,p | p+2<=t1<=p+M+1; 2<=t2<=N; 1<=p<=P} of real;
6 WriteAddrA : {t1,t2,p | p+1<=t1<=p+M; 2<=t2<=N; 1<=p<=P} of integer;
7 WriteDataA : {t1,t2,p | p+1<=t1<=p+M; 2<=t2<=N; 1<=p<=P} of real;
....

8 ReadAddrA[t1,t2,p] = t2-1;
9 WriteAddrA[t1,t2,p] = t2-1;

10 Acom[t1,t2,p] = ReadDataAcom[t1,t2,p];
11 use {t1,t2,p |p+2<=t1<=p+M+1; 2<=t2<=N; 1<=p<=P}
12 Read[N-1](MemA_Prec,ReadAddrA) returns (ReadDataAcom);
13 WriteDataA[t1,t2,p] =
14 case
15 { | p=1} :a[t1-1,t2];
16 { | 2<=p} :Acom[t1,t2,p-1];

esac;
18 use {t1,t2,p | p+1 <=t1<=p+M; 2<=t2<=N; 1<=p<=P}

Write[N-1] (MemA_Prec, WriteAdrA, WriteDataA) returns (MemA_Succ);
20 MemA[ad,t1,t2,p]=

case
{ | p+1<=t1<=p+M; 2<=t2<=N; 1<=p<=P}: MemA_Succ[ad,t1,t2,p];
{ | t1=p+M+1 } : MemA_Prec[ad,t1,t2,p];

esac;
25 MemA_Prec[ad,t1,t2,p]=

case
27 { | t2=2; t1=p+1} : 255[];

{ | t2=2; t1>p+1} : MemA[ad,t1-1,N,p];
{ | t2>2} : MemA[ad,t1,t2-1,p];

30 esac;
...
tel;

Fig. 8. AlpHard code showing the implentation of the A memory

MemA succ and MemA prec. These variables are de-
fined in Fig. 8 on lines 1-3: they have four indices, the
first one being the address of each memory cell in each
processor. These variables have the following meaning:� MemA Prec represents the state of the memory at

the beginning of a clock cycle (or equivalently at
the end of previous clock cycle);� MemA represents the memory at the end of a cycle;� MemA Succ is a subset of memA and represents
the memory cells that are written during the cycle.

Note that we made the choice of a cylindric extension
for the memories variables (basically, as soon as one
cell of the memory is alive, all the memory is alive).

Consider now the equations defining the use of the
MemA memory. Two equations (lines 8 and 9) define
the read and write addresses, which are given by the
memory function. Line 11-12 is a call to a Read
subsystem which emulates a read operation on the

memory: its input variables are the value of the memory
at the beginning of the cycle (MemA Prec), the read
address (ReadAddrA), and it returns the value of the
read data (ReadDataAcom).

Lines 13 to 16 represent the definition of the data to
be written in the memory, depending on the value of the
processor number p. Line 18-19 represents a write op-
eration on the memory. It takes the value of the memory
at the beginning of the current cycle (MemA Prec), the
write address (WriteAddrA) and the data to be written
(WriteDataA) and returns the value of the memory
at the end of the cycle (MemA Succ).

Lines 20-24 define the value of MemA: it is updated
using MemA Succ (for the part which is written during
the current cycle) and with MemA Prec (i.e. state of
the memory at the end of the previous clock cycles)
everywhere else (see section V-C below).

Lines 25 to 30 define the value of MemA Prec:
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MemA Prec gets the value of MemA at the previous
cycle. Line 27 is used for initialisation (before being
written, memory words are initalized to an arbitrary
value).

The final program (Fig. 8) represents both the be-
havioural and the structural implementation of the ar-
chitecture:� it is a behavioural description, in the sense that this

program can be executed, and behaves functionally
as the initial one;� it is also a structural description, in the sense that
its expressions can be translated directly into a
hardware description langage to describe the use
of a memory.

b) The B memory: The setting of the B memory
is very similar to the setting of the A memory. The B
variable has two read occurrences (B[t1-1,t2,p]
and B[t1,t2-1,p]) and one write occurrence. As
for the A case, the second read can be implemented as
a register applied on the write occurrence. In addition,
an obvious optimization can be performed here. It is
very easy to see on the program of Fig. 3 that the B
memory is initialized (with b[t1+t2-p-1,p]) and
then refreshed with the same value at each write in the
memory (the value read is just written at the place it has
been read without any modification). Hence, in the par-
ticular case, the memory of B can just be written once at
the beginning (for t1=p+1) and then only read. These
hidden refreshing situations often occur because of the
uniformization process used in the design methodology.
Detecting, during uniformization, which dependencies
should not be uniformized is difficult because they
depend on the schedule which is usually found after
uniformization. In the VHDL implementation that we
present in Section V-E, we did the optimization.

C. Domain calculation

One tricky part of the translation process is how to
compute the domains of the variables. This is done
using the POLYLIB library.

In the original program of Fig. 3, domains of vari-
ables are spatio-temporal domains: indices are either
time indices (t1,t2), or spatial indices (p). This is
also true in the program after transformation in Fig. 8,
except for the variable representing the memory for
which domains have been extended with a new index
(ad) representing the address in the memory of a given
processor. For this program to be correct, we need to

set up the spatio-temporal domains of all the variables
precisely. We illustrate this with the A variable.

Given a read occurrence, we define its read domain
as the domain on which it occurs (expression domain
of the read expression). Similarly, the write domain of
a variable is its declaration domain (expression domain
of the write expression). The memory variables have to
be defined on both read and write domains. Thus, their
domain is the union of the read domains and of the
write domain, extended with a new address dimension,
which has the size of the memory. (see the definition
of MemA for example.) For technical reasons related
to the semantics of the Alpha language, we need two
additional variables: MemA Prec which has the same
domain as the MemA variable (in a given clock cycle, we
can read from and write to the memory, MemA Prec
represents the state of the memory before the write
of the current cycle occurred) and MemA Succ which
corresponds to the write domain (i.e. MemA restricted to
the domain where the memory is written at each step).
The use Read occurs on the read domain and the
use Write occurs on the write domain. At each clock
cycle, the memA variable is updated with memA succ
(when a write occurs in the memory) and memA prec
(when no write occur in the memory).

In our example, the domain of the read occurrence
A[t1-1,t2,p] is computed using the MMAlpha
command: expDomain(A[t1-1,t2,p]). The re-
sult gives:� � 
 � � � � =�?D=�$'F � � 
 � =@$'1 $*- CF � � � � 0 CD-%� = �!3 � =
The definition domain of A is:� � 
 � �� � =�?D=�$*-%� � 
 � =@$'1 CF � �� � 0 CD-%� = �!3 � =

We do the union of these domains, and extedn it
to the address set by adding new dimensions which
correspond the memory function. The memory function
of A is:

1 � � � -:� � F �>= � � � F;AC-
, its range is � -�
 ?�- �-�
F� 0 A+- �

. All these computations can be done with
elementary commands of the MMAlpha system. The
result gives the domain of MemA (and of MemA Prec):����� � � 
 � � � � =�? -%� ��� � 0 AC- C =�$.-A� � 
 C

� 
 �B=�$,1 $*- C�F�� � AGF � 0 C-%�B= �!3 � =
Note that the write domain, i.e., the domain of
MemA succ, is different because the A memory is
read but not written at each time

� ��
 � �� �
where

��
 �=@$'1 $*-
.
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D. Optimizations

As mentioned previously, many optimizations have
to be associated with this systematic translation. We
mention a few such optimization.

1) ROM detection: ROM detection occurs when, as
for the B variable, the memory is written once and then
only read until the end of the program. In such cases, the
Alpha program describes a memory where the same da-
ta is written at every clock cycle. Usually the detection
of such situation is easy, but it depends on the memory
function. If, for instance the memory function for B had
been

1 " �	� -:� � F �>= � � � -�$ � F
(which is valid) then, the

B data would have been moving at each hour and the
systematic complete rewrite of the memory would have
been necessary, which is obviously very bad for power
consumption (the global behaviour of the program is
unchanged). Most often, this problem appears because
of the uniformization process. A solution to avoid it
would be to compute the memory function using the
program before uniformization, but using the schedule
of the program obtained after uniformization.

2) Use of FIFOs: The memory functions proposed
in [21] assume that a data stays in the memory location
where it has been written, which forbids the use FIFOs
in our designs. In order to model FIFO memories, other
types of memory functions could be considered. This
would lead to a solution simular to the one chosen in
Pico [1].

3) Sharing address generation: In our example, an-
other obvious optimization is the sharing of adress
generation: all our read and write adresses for A and
B occur at the same address, t2-1. As our programs
are uniform, different accesses to the same variable at
a given cock cycle differ by a constant translation. If
this translation concerns the last time index – as for
instance between the two accesses A[t1,t2,p] and
A[t1,t2-1,p], – one of them can be replaced by
storing in a register the data used in the other one. This
register is loaded at each clock cycle of the read domain.

If the translation concerns another time index – as for
instance the two accesses A[t1,t2,p] and A[t1-
1,t2,p], – then those accesses really represent access
of different data and several ports are needed. If we end
up with more than two ports, it might be interesting to
slow down the schedule so that these accesses occur
on different clock cycles. This is a classical resource
constrained problem.

E. The VHDL program

The VHDL code was manually written from the
AlpHard program described above and the controller
presented in Fig IV-A.3. The architecture is shown
on Fig V-D.3 it is composed of a linear array of
identical cells (except the first one), each cell contain-
ing a controller, a datapath and an address generator.
Writing a cell of the array was quite easy because the
memory access modeling in Alpha was very close to
the corresponding VHDL expression. Fig 10 present a
portion of the VHDL code for the first cell of the array
which instantiates the A memory. This code is close
to the code of Fig 8 and the correspondence can be
easily made because the name of the different signals
are preserved.

The behaviour of the controller can be systemati-
cally derived from Fig. IV-A.3. Our implementation is
composed of two VHDL processes: one increasing the
counter over the two clocks (t1 and t2) and selecting
the states, the other selecting the write enable de-
pending on the state. The address generator was trivial
is our case (all addresses where equal to t2-1. In the
general case, it might be more efficient to include the
address generator in the controller to take advantage of
an incremental update of the adresses at each steps.

F. Synthesis results

The synthesis has been done for the matrix-matrix
product program of Fig. 1 with the schedules of equa-
tions (1) (classical array represented in Fig. 2) and (2)
(linear architecture with memory represented in Fig. 4).
The target FPGA platform is a Xilinx Virtex XCV800.
The area complexity is expressed in term of Slices (one
CLB contains two slices, each one containing two look-
up tables). The value chosen for the parameters are3 ���

, 0 ���
,
1 � - !

; the coefficients of the matrices
are 8 bits integers.

These results show that the cost of the additional
control is not negligible, as the size of a cell is
approximately multiplied by 3, but the total area is
still decreasing. A good point is that this complex
control mechanism does not affect the frequency which
is mainly constrained by the data path. Both control and
data path could be optimized further. The RAMs used
in each cell are not included in the area complexity
because these RAM blocks are already present on the
chip: if not used, they would be lost anyway.
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Fig. 9. Architecture of the hardware described in VHDL

...
WriteDataA <= A_In;
A_Out <= Acom;
Acom <= ReadDataAcom;

A_memory : RAMB4_S8_S8
port map (ADDR1 => ReadAddrA, ADDR2 => WriteAddrA,

DI1 => gnd_bus, DI2 => WriteDataA,
WE1 => gnd, WE2 => write_allowA
CLK1 => CLK, CLK2 => CLK,
RST1 => gnd, RST2 => gnd,
EN1 => read_allowA, EN2 => pwr,
DO1 => ReadDataAcom);

....

Fig. 10. Part of the VHDL code implementing the access to the A memory. Port 1 (first column of the port maps) is used for reading, port 2 is
used for writing. Signals read allowA, write allowA, ReadAddrA, WriteAddrA are generated in the controller.

One cell of the array Clock Execution Full
Control Memory Data path Cycle time array

Multi-dimensional time
(Fig. 4)

65 Slices 2 Ram blocks 26 Slices 16.5 ns 2227 ns 581 Slices

Linear time - - 26 Slices 16.5 ns 363 ns 1560 Slices
TABLE I

RESULT OF THE SYNTHESIS OF THE MATRIX-MATRIX PRODUCT OF FIG. 1 FOR VALUES ����� , ����� , �	� ��


VI. RELATED WORK

This paper deals with several topics related to auto-
matic hardware design: scheduling, computation allo-

cation, memory allocation and HDL code generation.

It is also linked to research concerning efficient
code generation for data parallel programs on SIMD or
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SPMD architectures, as studied for High-Performance
Fortran (HPF) compilers [4], [17] for example. However,
results obtained for HPF cannot be applied directly,
because they rely upon the strong assumption that
communications between processors are much more (up
to one thousand times more) costly than computations.
Here to the contrary, we target custom single chip
VLSI architectures, where processors are hard-wired,
and communications between processors can be done
in one clock cycle.

To our knowledge, our work is the first attempt to
automate the hardware synthesis of multi-dimensional
scheduled parallel programs, except for the develop-
ment made in Pico [7] which targeted a particular
class of multidimensional scheduling: systolic array
with partitionning. They also made a different choice
for memories: they used FIFOs where data is constantly
moving, while we use classical memories. Our method
also allow the parameterized design while parameter
have to be fixed at design time in [7]. Wilde et al [3]
consider the issue of generating control signals when
control conditions are polynomials in the time counter.
Our implementation of control is inspired from [2] and
covers a larger variety of control signals, as parameters
do not need to be fixed during controller generation,
and can be used for other purposes such as address
generation for instance.

Multi-dimensional scheduling has been introduced
by Karp et al [16] and studied by Feautrier [11], and
Darte [8] among others. The particular problem of
scheduling uniform equations is however simpler than
the general problem of scheduling affine systems of
recurrence equations. Expressing the dependency con-
straints that must be satisfied by the schedule functions
and optimizing the dimension of the schedule are well
understood problems. Scheduling of both uniform or
affine recurrences is implemented in MMAlpha and has
been applied to real-life applications [20]. The problem
of finding ”optimal” multi-dimensional schedules is
however still open, and in MMAlpha we have adopted a
guided scheduling method in which the user can either
find the scheduling completely automatically or guide
the scheduler by adding constraints that he/she wants
the schedule to satisfy.

As far as computation allocation is concerned, most
authors use linear schedules with  AD- dimensional allo-
cation, combined with partitionning techniques [5], [6],
[9], [7], [12], [24]. This approach allows the resulting
architecture to meet constraints on available hardware
or bandwidth resources. Some approaches propose to
choose the allocation direction before scheduling [23],

but this tends to be more complicated. Allocating com-
putations of a system of recurrence equations with a
multi-dimensional schedule simply adds the additional
condition that

� ��� � � ��4 � ��� � � � � � ! � [21], and does
not differ much from the monodimensional schedule
case. Combining our results with partitioning would be
an interesting extension to investigate.

Two independent papers [18], [21] have shown how
to find, given a multi-dimensional schedule, an efficient
memory function for a shared memory. The memory
functions targeted by these authors are more general
than the one we have considered here, as they may con-
tain modulo operations. Extending the results presented
here to modulo functions is easy provided that the
memory function is not combined with the allocation
function as is done in this paper; indeed, it only amounts
to adding a modulo operation to the address generator.
A general extension to modulo memory functions re-
mains to be done, however.

VII. CONCLUSION

We have shown that we can extend the classical
systolic space-time mapping to multi-dimensionally
scheduled uniform recurrence equations. This raises the
issue of mapping computations to memories. Starting
from an Alpha representation of uniform recurrences
together with a

�
-dimensional schedule, we have shown

that we can map such a program on a  AE� dimensional
parallel systolic architecture, where each processor has
local memories. We have proven that linear allocation
functions and linear memory functions as obtained by
previous research can be combined to obtain a memory
function which maps the data to local memories. We
have presented a method to generate a controller for
this architecture, using an existing polyhedron scanning
method. These theoretical results can be used to gen-
erate in a systematic way a VHDL description of these
architectures. Our method was illustrated on the matrix-
multiplication architecture, and VHDL code resulting
of this method has been written, validated and the
additional complexity (compare to a classical systolic
design) has been evaluated.

The work presented here is already completed e-
nough to be implemented in synthesis tools such as
MMAlpha. Nevertheless, several questions remain open,
especially concerning the complexity of the solutions
to problems such as the control of the architecture,
the memory implementation, broadcast versus pipelined
control information, etc., but also concerning many
minor technical problems not solved here (unimodular
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completion of the schedule function, automatic detec-
tion of FIFOs, handling large memories outside the
FPGA, etc.). All these problems require an implementa-
tion of the design methodology presented here because
manual execution of the different steps (scheduling,
memory function and allocation, control automaton
generation, VHDL generation and simulation) is painful.
We therefore plan to implement this methodology in the
MMAlpha environment.
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