
U
nc

or
re

ct
ed

 P
ro

of

Chapter 12
High-Level Synthesis of Loops Using
the Polyhedral Model
The MMAlpha Software

Steven Derrien, Sanjay Rajopadhye, Patrice Quinton, and Tanguy Risset

Abstract High-level synthesis (HLS) of loops allows efficient handling of inten-
sive computations of an application, e.g. in signal processing. Unrolling loops, the
classical technique used in most HLS tools, cannot produce regular parallel archi-
tectures which are often needed. In this Chapter, we present, through the example
of the MMAlpha testbed, basic techniques which are at the heart of loop analy-
sis and parallelization. We present here the point of view of the polyhedral model
of loops, where iterative calculations are represented as recurrence equations on
integral polyhedra. Illustrated from an example of string alignment, we describe the
various transformations allowing HLS and we explain how these transformation can
be merged in a synthesis flow.

Keywords: Polyhedral model, Recurrence equations, Regular parallel arrays, Loop
transformations, Space–time mapping, Partitioning.

12.1 Introduction

One of the main problems that High Level Synthesis (HLS) tools have not solved yet
is the efficient handling of nested loops. Highly computational programs occurring
for example in signal processing and multimedia applications make extensive use of
deeply nested loops. The vast majority of HLS tools either provide loop unrolling to
take advantage of parallelism, or treat loops as sequential when unrolling is not pos-
sible. Because of the increasing complexity of embedded code, complete unrolling
of loops is often impossible. Partial unrolling coupled with software pipelining tech-
niques has been successfully used, in the Pico tool [29] for instance, but a lot of
other loop transformations, such as loop tiling, loop fusion or loop interchange,
can be used to optimize the hardware implementation of nested loops. A tool able
to propose such loop transformations in the source code before performing HLS
should necessarily have an internal representation in which the loop nest structure

P. Coussy and A. Morawiec (eds.) High-Level Synthesis.
c© Springer Science + Business Media B.V. 2008

215

U
nc

or
re

ct
ed

 P
ro

of

216 S. Derrien et al.

is kept. This is a serious problem and this is why, for instance, source level loop
transformations are still not available is commercial compilers, whereas the loop
transformation theory is quite mature.

The work presented in this chapter proposes to perform HLS from the source lan-
guage ALPHA. The ALPHA language is based on the so-called polyhedral model
and is dedicated to the manipulation of recurrence equations rather than loops. The
MMAlpha programming environment allows a user to transform ALPHA programs
in order to refine the ALPHA initial description until it can be translated down to
VHDL. The target architecture of MMAlpha is currently limited to regular paral-
lel architectures described in a register transfer level formalism. This paradigm, as
opposed to the control+datapath formalism, is useful for describing highly pipelined
architectures where computations of several successive samples are overlapped.

This chapter gives an overview of the possibilities of the MMAlpha design envi-
ronment focusing on its use for HLS. The concepts presented in this chapter are not
limited to the context were a specification is described using an applicative language
such as ALPHA: they can also be used in a compiler environment as it has been done
for example in the WraPit project [3].

The chapter is organized as follows. In Sect. 12.2, we present an overview of
this system by describing the ALPHA language, its relationship with loop nests,
and the design-flow of the MMAlpha tool. Section 12.3 is devoted to the front-end
which transforms an ALPHA software specification into a virtual parallel architec-
ture. Section 12.4 shows how synthesizable VHDL code can be generated. All these
first sections are illustrated on a simple example of string alignment, so that the
main concepts are apparent. In Sect. 12.5, we explain how the virtual architecture
can be further transformed in order to be adapted to resource constraints. Implemen-
tations of the Samba application are shown and discussed in Sect. 12.6. Section 12.7
is a short review of other works in the field of hardware generation for loop nests.
Finally, Sect. 12.8 concludes the chapter.

12.2 An Overview of the MMAlpha Project

Throughout this chapter, we shall consider the running example of an algorithm for
genetic sequence comparison, as shown in Fig. 12.2. This algorithm is expressed
using the single-assignment language ALPHA. Such a program is called a system.
Its name is sequence, and it makes use of integral parameters X and Y. These
parameters are constrained (line 1) to satisfy the linear inequalities 3 ≤ X and
X ≤ Y−1. This system has two inputs: a sequence QS (for Query Sequence) of
size X and a sequence DB (for Data Base sequence) of size Y. It returns a sequence
res of integers. The calculation described by this system is expressed by equations
defining local variables M and MatchQ as well as result res. Each ALPHA variable
is defined on the set of integral points of a convex polyhedron called its domain. For
example, M is defined on the set {i, j|0 ≤ i ≤ X ∧ 0 ≤ j ≤ Y}. The definition of M
is given by a case statement, each branch of which covers a subset of its domain.

U
nc

or
re

ct
ed

 P
ro

of

12 High-Level Synthesis of Loops Using the Polyhedral Model 217

X

j

0 i

Y

Fig. 12.1 Graphical representation of the string alignment. Each point in the graph represents a
calculation M[i,j] and the arcs show dependences between the calculations

If i = 0 or if j = 0, then its value is 0. Otherwise, it is the maximum of four quan-
tities: 0, M[i,j-1]− 8, M[i-1,j]− 8, and M[i-1,j-1]+MatchQ[i,j].
This definition represents a recurrence equation. Its last term depends on whether
the query character QS[i] is equal to the data base sequence character DB[j].
Such a set of recurrences is often represented as a dependence graph as shown in
Fig. 12.1. It should be noted, however that the ALPHA language allows one to repre-
sent arbitrary linear recurrences, which in general, cannot be represented graphically
as easily. ALPHA allows structured systems to be described: a given system can be
instantiated inside another one, by using a use statement which operated as a higher
order map operator. For example

use {k | 1<=k<=10} sequence[X,Y] (a, b) returns (res)

would allow ten instances of the above sequence program to be instantiated. For the
sake of conciseness, we do not detail in this chapter structured systems and refer the
reader to [12] (Fig. 12.2). AQ: Please check the

inserted citation of
figure 12.2

Figure 12.3 shows the typical design flow of MMAlpha. MMAlpha allows
ALPHA programs to be transformed, under some conditions, into a VHDL synthe-
sizable program. The input is nested loops which, in the current tools, are described
as an ALPHA program, but could be generated from loop nests in an imperative lan-
guage (see [16] for example). After parsing, we get an internal representation of the
program as a set of recurrence equations. Scheduling, localization and space–time
mapping are then performed to obtain the description of a virtual architecture also
described using ALPHA: all these transformations form the front-end of MMAlpha.
Several steps allow the virtual architecture to be transformed to synthesizable VHDL
code: hardware-mapping identifies ALPHA constructs with basic hardware elements
such as registers, multiplexers, and generates boolean signal control instead of
linear inequalities constraints. Then a structured HDL description incorporating a
controller and data-path cells is produced. Finally, VHDL is generated.

U
nc

or
re

ct
ed

 P
ro

of

218 S. Derrien et al.

system sequence :{X,Y | 3<=X<=Y-1}

(QS : {i | 1<=i<=X} of integer;

DB : {j | 1<=j<=Y} of integer)

returns (res : {j | 1<=j<=Y} of integer);

var

M : {i,j | 0<=i<=X; 0<=j<=Y} of integer;

MatchQ : {i,j | 1<=i<=X; 1<=j<=Y} of integer;

let

M[i,j] =

case

{| i=0} | {| 1<=i; j=0} : 0;

{| 1<=i; 1<=j} : Max4(0, M[i,j-1] - 8,

M[i-1,j] - 8, M[i-1,j-1] + MatchQ[i,j]);

esac;

MatchQ[i,j] = if (QS[i] = DB[j]) then 15 else -12;

res[j] = M[X,j];

tel;

Fig. 12.2 ALPHA program for the string alignment algorithm

VHDL

Nested loops

Virtual Architecture

Parsing and Code Analysis

Space−time mapping

F
ro

nt
−

en
d

Scheduling

Localization

Hardware−mapping

Structured HDL Generation

VHDL generationB
ac

k−
en

d

Fig. 12.3 Design flow of MMAlpha

U
nc

or
re

ct
ed

 P
ro

of

12 High-Level Synthesis of Loops Using the Polyhedral Model 219

In Sect. 12.3, we shall survey the front-end transformations whereas back-end
will be presented in Sect. 12.4.

12.3 The MMAlpha Front-End: From Initial Specifications
to a Virtual Architecture

The front-end of MMAlpha contains several tools to perform code analysis and
transformations.

Code analysis and verification: The initial specification of the program, called
here a loop nest, is translated into an internal representation in form of recurrence
equations. Thanks to the polyhedral model, some properties of the loop nest can
be checked by analysis: one can check for example that all elements of an array
(represented by an ALPHA variable) are defined and used in a system, by means
of calculations on domains. More complex properties of code can also be checked
using verification techniques [8].

Scheduling: This is the central step of MMAlpha. It consists in analyzing the
dependences between the variables, and deriving for each variable, say V[i,j]
a timing-function tV(i, j) which gives the time instant at which this variable
can be computed. Timing-functions are usually affine, of the form tV(i, j) =
αVi+βV j+γV with coefficients depending on variable V. Finding out a schedule
is performed by solving an integer linear problem using parameterized integer
programming and is described in [17]. More complex schedules can be found:
multi-dimensional timing functions, for example, allow some forms of loop tiling
to be represented, but code generation is still not available for such functions.

Localization: It is an optional transformation (also sometimes referred to as
uniformization or pipelining) that helps removing long interconnections [28].
It is inherited from the theory of systolic arrays where data which are re-
used in a calculation should be read only once from memory, thus saving
input–outputs. MMAlpha performs automatically many such localization trans-
formations described in the literature.

Space–time mapping: Once a schedule is found, the system of recurrence equa-
tions is rewritten by transforming indexes of each variable, say V[i,j], in a new
reference index set V[t,p]where t is the schedule of the variable instance and p
is the processor where it can be executed. The space–time mapping amounts for-
mally to a change of basis of the domain of each variable. Finding out the basis is
done by algebraic methods described in the literature (unimodular completion).
Simple heuristics are incorporated in MMAlpha to discover quickly reasonable,
if not always optimal, changes of basis.

After front-end processing, the initial ALPHA specification becomes a virtual
architecture where each equation can be interpreted in term of hardware. To illus-
trate this, consider a sketch of the virtual architecture produced by the front-end
from the Samba specification, as shown in Fig. 12.4. In this program, only the

U
nc

or
re

ct
ed

 P
ro

of

220 S. Derrien et al.

system sequence :{X,Y | 3<=X<=Y-1}
(QS : {i | 1<=i<=X} of integer;
DB : {j | 1<=j<=Y} of integer)

returns (res : {j | 1<=j<=Y} of integer);
var
QQS_In : {t,p | 2p-X+1<=t<=p+1; 1<=p} of integer;
...

M : {t,p | p<=t<=p+Y; 0<=p<=X} of integer;
...

let
...
M[t,p] =

case
{ | p=0} : 0;
{ | t=p; 1<=p} : 0;
{ | p+1<=t; 1<=p} :

Max4(0[],
M[t-1,p] - 8,
M[t-1,p-1] - 8,
M[t-2,p-1] + MatchQ[t,p]);

esac;
QQS[t,p] =

case
{ | t=p+1} : QQS_In;
{ | p+2<=t} : QQS[t-1,p];

esac;

...
tel;

Fig. 12.4 Sketch of the virtual parallel architecture produced by the front-end of MMAlpha. Only
variables M and QQS are represented. Variable QQS was produced by localization to propagate the
query sequence to each cell of this array

declaration and the definition of variable M (present in the initial program) and of a
new QQS variable are kept. In the declaration of M, we can see that the domain of
this variable in now indexed by t and p. The constraints on these indexes let us infer
that the calculation of this variable is going to be done on a linear array of X + 1
processors. The definition of M reveals several informations. Lines 16–19 show that
the calculation of M[t,p] is the maximum of four quantities: the constant 0, the
previous value M[t-1,p]which can be interpreted as a register in processor p, the
previous value M[t-1,p-1] which was held in neighboring processor p−1, and
value M[t-2,p-1], also held in processor p− 1. All these informations can be
directly interpreted in term of hardware elements. However, the linear inequalities
guarding the branches of this definition are much less straightforward to translate
into hardware. Moreover, the number of processors of this architecture is directly
linked to the size parameter X, which may not be appropriate for the requirements
of a practical application: this is the rôle of the back-end of MMAlpha to trans-
form this virtual architecture into a real one. The QQS variable requires some more

U
nc

or
re

ct
ed

 P
ro

of

12 High-Level Synthesis of Loops Using the Polyhedral Model 221

explanations, as it is not present in the initial specification. It is produced by the
localization transformation, in order to propagate the query value QS from proces-
sor to processor. A careful examination of its declaration and its definition reveals
that this variable is present only in processors 1 to X and initialized by reading the
value of another variable QQS In when t = p + 1, otherwise, it is kept in a register
of processor p. As for M, the guards of this equation must be translated into simpler
hardware elements.

12.4 The Back-End Process: Generating VHDL

The back-end of MMAlpha comprises a set of transformations allowing a vir-
tual parallel architecture to be transformed into a synthesizable VHDL descrip-
tion. These transformations can be regrouped into three parts (see Fig. 12.3):
hardware-mapping, structured HDL Generation, and VHDL generation.

In this section, we review these back-end transformations as they are imple-
mented in MMAlpha by highlighting the concepts underlying them rather than the
implementation details.

12.4.1 Hardware-Mapping

The virtual architecture is essentially an operational parallel description of the
initial specification: each computation occurs at a particular date on a particular pro-
cessor. The two main transformations needed to obtain an architectural description
are: control signal generation and simple expression generation. They are imple-
mented in the hardware-mapping component which produces a subset of ALPHA
traditionally referred to as ALPHA0.

12.4.1.1 Control Signal Generation

It consists in replacing complex, linear inequalities by the propagation of simple
control signals and is better explained here on an example. Consider for instance
the definition of the QQS variable in the program of Fig. 12.4. It can be interpreted
as a multiplexer controlled by a signal which is true at step t=p in processor number
p (Fig. 12.5a). It is easy to see intuitively that this control can be implemented by
a signal initialized in the first processor (i.e., value 1 at step 0 in processor 0) and
then transmitted to the neighboring processor with a one cycle delay (i.e., value 1
at step 1 in processor 1, and so on). This is illustrated on Fig. 12.5b: the control
signal QQS ctl is inferred and is pipelined through the array. This is what the
control signal generation achieves: to produce a particular cell (the controller) at
the boundary of the regular array and to pipeline (or broadcast) this control signal
through the array.

U
nc

or
re

ct
ed

 P
ro

of

222 S. Derrien et al.

Max

QQS

t == p

Proc p

M
uxQQS_In Max

QQS_ctrl

QQS_In

QQSProc p
M

ux
a) b)

Fig. 12.5 Control signal inference for QQS updating

QQSReg6[t,p] = QQS[t-1,p];
QQS_In[t,p] = QQSReg6[t,p-1];
QQS[t,p] =

case
{ | 1<=p<=X;} : if (QQSXctl1) then

case
{ | t=p+1;} : QQS_In;
{ | p+2<=t<=p+Y;} : 0[];

esac else
case

{ | t=p+1; } : 0[];
{ | p+2<=t<=p+Y; } : QQSReg6;

esac;
esac;

Fig. 12.6 Description in ALPHA0 of the hardware of Fig. 12.5b

12.4.1.2 Generation of Simple Expressions

This transformation deals with splitting complex equations in several simpler equa-
tions so that each one corresponds to a single hardware component: a register, an
operator or a simple wire.

In the ALPHA0 subset of ALPHA, the RTL architecture can be very easily deduced
from the code. For instance Fig. 12.6 shows three equations which represent: a reg-
ister (line 1), a connexion between two processors (line 2) and a multiplexer (lines
3–14). They are interconnected to produce the hardware shown in Fig. 12.5b.

12.4.2 Structured HDL Generation

The second step of the back-end deals with generating a structured hardware
description from the ALPHA0 format so that the re-use of identical cells explicitly
appears in the structuration of the program and provision is made to include other
components in the description. The subset of ALPHA which is used at this level is
called ALPHARD and is illustrated in Fig. 12.7. Here, we have a module including

U
nc

or
re

ct
ed

 P
ro

of

12 High-Level Synthesis of Loops Using the Polyhedral Model 223

Cell BCell B

Module

Start

clk

...
Module CCell A

Inputs Outputs

clk−enable
Controller

reset
Cell B

Fig. 12.7 An ALPHARD program is a complex module containing a controller and various
instantiations of cells or modules

a local controller, a single instance of a A cell, several instances of a B cell and an
instance of another module. Cells are simple data-paths whereas modules include
controllers and can instantiate other cells and modules. Thanks to the hierarchical
structure of ALPHA, it is easy to represent such a system in our language while
keeping its semantics.

In the case of the Samba application, the hardware structure contains, in addi-
tion to the controller, an instance of a particular cell representing processor p = 0,
and X − 1 instances of another cell representing processors 1 to X . It is depicted
in Fig. 12.8. (for the sake of clarity the controller and the control signal are not
represented).

The main difficulty of this step is to uncover, in the set of recurrence equations
of ALPHA0, the least number of common cells. To this end, the polyhedral domains
of all equations are projected on the space indexes and combined to form space
maximal regions sharing the same behavior. Each such region defines a cell of the
architecture. This operation is made possible thanks to the polyhedral model which
allows projection, intersection, unions, etc. of domains to be computed easily.

12.4.3 Generating VHDL

The VHDL generation is basically a syntax-directed translation of the ALPHARD
program as each ALPHA construct corresponds to a VHDL construct. For instance,
the VHDL code that corresponds to the ALPHA0 code shown in Fig. 12.6 is given
in Fig. 12.9. Line 1 is a simple connexion, line 3 represents a multiplexer and lines
5–8 model a register. One can notice that the time index t disappears (except in the
controller) as it is implemented by the clk and a clock enable signal.

If the variable sizes are not specified in the ALPHA program, the translator
assumes 16-bit fixed-point arithmetics (using std logic vector VHDL type)
but other signal types can be specified. VHDL Test benches are also generated to
ease the testing of the resulting VHDL.

U
nc

or
re

ct
ed

 P
ro

of

224 S. Derrien et al.

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

1
5

8 8

8 8

0
0

_
1

2

1
5

_
1

2

1
5

_
1

2

!) #

!) #

!) #!) #

- - -

!) #

-

!) #

,

!) #

, P
ro

c
0

P
ro

c
1

P
ro

c
X

M

Q
S

D
B

Mux Mux

Mux

Mux

Mux

MuxMux

Mux

+ +

X
−1

 ti
m

es

=

8 8

+ + +

0

Fi
g.

12
.8

A
rc

hi
te

ct
ur

e
of

th
e

st
ri

ng
m

at
ch

in
g

ap
pl

ic
at

io
n

U
nc

or
re

ct
ed

 P
ro

of

12 High-Level Synthesis of Loops Using the Polyhedral Model 225

QQS_In <= QQSReg6_In;

QQS <= QQS_In WHEN QQSXctl1 = ‘1’ ELSE QQSReg6;

PROCESS(clk) BEGIN IF (clk = ‘1’ AND clk’EVENT) THEN
IF CE=‘1’ THEN QQSReg6 <= QQS; END IF;

END IF;
END PROCESS;

Fig. 12.9 VHDL code corresponding to the ALPHA0 code shown in Fig. 12.6

12.5 Partitioning for Resource Management

In MMAlpha, the choice of the various scheduling and/or space–time mappings can
be seen as a design space exploration step. However there are practical situations in
which none of the virtual architectures obtained through the flow matches the user
requirements. This is often the case when iteration domains involved in the loop
nests are very wide: in such situations, the mapping may result in an architecture
with a very large number of processing elements, which often exceeds the allowed
silicon budget. As an example, assuming a Samba program with a query size X =
103, the architecture corresponding to the mapping proposed in Sect. 12.3 and shown
in Fig. 12.4 would result in 103 processing elements, which represents a huge cost
in term of hardware resources.

Many methods can be used to overcome such a difficulty. In the context of regular
parallel architectures, partitioning transformations are the method of choice. Here,
we consider a processor array partitioning transformation, which can be applied
directly on the virtual architecture (i.e., at the RTL level).

Partitioning is a well studied problem [14, 25] and it is essentially based on
the combination of two techniques. Locally Sequential Globally Parallel (LSGP)
partitioning consists in merging several virtual PE into a single PE with modi-
fied time-sliced schedule. Locally Parallel Globally Sequential (LPGS) partitioning
consists in tiling the virtual processor array into a set of virtual sub-arrays, and in
executing the whole computations as a sequence of passes on the sub-array.

In the following, we present an LSGP technique based on serialization [13]:
serialization merges σ virtual processors along a given processor axis into a single
physical processor. One can show that a complete LSGP partitioning can be obtained
through the use of successive serializations along the processor space axis.

To explain the principles of serialization, consider the Samba architecture data-
path shown in Fig. 12.10. We distinguish temporal registers (shown in grey) which
have both their source and sink in the same processor, and spatial registers, the
source and sink of which are in distinct processors. (We assume that registers have
always a single sink, which is easy to ensure by transformation if needed.) Besides
we assume that the communications between processing elements are unidirectional
and pipelined.

U
nc

or
re

ct
ed

 P
ro

of

226 S. Derrien et al.

Max

15

−12

8

8

0

i,j

i,j M

DB

QS

 M

i,j

i,j

i,j

i,j

i,j

QS

 M

DBi,j

 M

m
ux

=

m
ux

m
ax

+

m
ax

m
ax

sub
sub

Fig. 12.10 Samba original datapath

Under these assumptions, serialization can be done in two steps:

– Any temporal register is transformed into a shift register line of depth σ .
– A one cycle delay feedback loop is associated to each spatial register; this feed-

back loop is controlled (through an additional multiplexer) by a signal activated
every σ cycles.

Obviously, a serialization by a factor σ replaces an array of X processor by a
partitioned array containing �X/σ� processors. Figure 12.11 shows the effect of
a serialization with σ = 3. This kind of transformation can be used to adjust the
number of processors to the needs of the application. It can also be combined with
various other transformations to cover a large set of potential hardware configura-
tions. An example of hardware resource exploration for a bioinformatics application
is presented in [11].

12.6 Implementation and Performance

To illustrate the typical performance of a parallel implementation of an applica-
tion, we implemented on a Xilinx Virtex-4 device several configurations of Samba
with or without partitioning. The results are shown in Table 12.1. For each config-
uration, the number X of processors, the total resources of the device, – look-up
tables, flip-flops and number of slices – the clock frequency and the performance,
in Giga Cell Update per second (GCUps) are given. The last four lines present par-
titioned versions. As a reference, we show the typical performance of a software

U
nc

or
re

ct
ed

 P
ro

of

12 High-Level Synthesis of Loops Using the Polyhedral Model 227

Max

8

8

0

−12

15

 M

=

m
ux

i,j

i,j

QS

 M

DBi,j

m
ux

DB

QSi,j

i,j

m
ux

m
ux

sub
sub

i,j

i,j M

 M

m
ux

m
ax

+

m
ax

m
ax

i,j

Fig. 12.11 The Samba processors datapath after serialization by σ = 3

Table 12.1 Performance of various Samba hardware configurations measured in Giga Cell
Updates per seconds

Description LUT/DFF/Slices Clock (MHz) Perf. (GCUps)

Software – – 0,1
X = 10 1,047/1,619/1,047 110 1.1
X = 50 8,088/4,130/4,771 110 5.5
X = 100 16,300/8,233/9,542 110 11
X = 100,σ = 2 10.8K/4,308/6,628 95 5.5
X = 100,σ = 10 2K/1K/1,543 102 ≈1.0
X = 100,σ = 20 1.2K/550/931 93 ≈0.45
X = 100,σ = 50 5.6K/231/517 98 ≈0.2

LUT is the number of look-up tables, DFF is the number of data flip-flops,
and Slices is the number of Virtex-4 FPGA slices used by the designs

implementation of Samba on a desktop computer which achieves 100 MCUps. The
speed-up factor reaches up to two orders of magnitude depending on the number of
processors. It is also noteworthy that the derived architecture is scalable: the achiev-
able clock period does not suffer from an increase in the number of processing
elements, and the hardware resource cost grows linearly with that number.

12.7 Other Works: The Polyhedral Model

The polyhedral model has been used for memory modeling [9, 15], communi-
cation modeling [33], cache misses [24], but its most important use was done in
parallelizing compilers and HLS tools.

U
nc

or
re

ct
ed

 P
ro

of

228 S. Derrien et al.

There is an important trend in commercial high level synthesis tools to perform
hardware synthesis from C programs: CatapultC (Mentor Graphics), Pico (Syn-
fora) [30], Cynthesizer (Forte Design System) [18], and Cascade (Critical Blue) [4].
However all these tools suffer from inefficient handling of arbitrary nested loops
algorithms.

Academic HLS tools are numerous and reflect the focus of recent researches on
efficient synthesis of application-specific algorithms. Among the most important
tools: Spark [19], Compaan/Laura [32], ESPAM [27], MMAlpha [26], Paro [6],
Gaut [31], UGH [2], Streamroller [22], xPilot [7]. Compaan, Paro and MMAlpha
have focused of the efficient compilation of loops, and they use the polyhedral
model to perform loop analysis and/or transformations. Another formalism, called
Array-OL, has been used for multidimensional signal processing [10] and revisited
recently [5].

Parallelizing compiler prototypes have also provided a lot of research results on
loop transformations [23]: Tiny [34], LooPo [20], Suif [1] or Pips [21]. Recently,
WraPit [3], integrated in the Open64 compiler, proposed an explicit polyhedral
internal representation for loop nest, very close to the representation used by
MMAlpha.

12.8 Conclusion

We have shown the main principles of high-level synthesis for loops targeting par-
allel architectures. Our presentation has used the MMAlpha tools as an example to
explain the polyhedral model, the basic loops transformations, and the way these
transformations may be arranged in order to produce parallel hardware. MMAlpha
uses the ALPHA single-assignment language to represent the architecture, from its
initial specification to its practical, synthesizable hardware implementation.

The polyhedral model, which underlies the representation and transformation of
loops, is a very powerful vehicle to express the variety of transformations that can
be used to extract parallelism et take benefit of it for hardware implementations.
Future SoC architectures will increasingly need such techniques to exploit available
multi-core architectures. We therefore believe that it is a good basis for carrying
research on HLS whenever parallelism is considered.

References

1. S. Amarasinghe et al. Suif: An Infrastructure for Research on Parallelizing and Optimizing
Compilers. Technical report, Stanford University, May 1994.

2. I. Augé, F. Pétrot, F. Donnet, and P. Gomez. Platform-Based Design From Parallel C Speci-
fications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(12):1811–1826, 2005.

3. C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting Polyhedral Loop
Transformations to Work. In LCPC, pages 209–225, 2003.

U
nc

or
re

ct
ed

 P
ro

of

12 High-Level Synthesis of Loops Using the Polyhedral Model 229

4. Critical Blue. Boosting Software Processing Performance With Coprocessor Synthesis, 2005.
http://www.criticalblue.com.

5. P. Boulet. Array-OL Revisited, Multidimensional Intensive Signal Processing Specification.
Research Report 6113, INRIA, February 2007.

6. M. Bednara and J. Teich. Automatic Synthesis of FPGA Processor Arrays from Loop
Algorithms. Journal of Supercomputer, 26(2):149–165, 2003.

7. J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. Platform-Based Behavior-Level and System-
Level Synthesis. In International SOC Conference, pages 199–202. IEEE, 2006.

8. D. Cachera and K. Morin-Allory. Verification of Safety Properties for Parameterized Regular
Systems. Transaction on Embedded Computing Systems, 4(2):228–266, May 2005.

9. F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle.
Custom Memory Management Methodology. Kluwer Academic Publishers, 1998.

10. A. Demeure and Y. Del Gallo. An Array Approach for Signal Processing Design. In SAME
98, October 1998.

11. S. Derrien and P. Quinton. Parallezing HMMER for Hardware Acceleration on FPGAs. In
ASAP07, pages 10–17, Montreal, Quebec, July 2007.

12. F. Dupont de Dinechin, P. Quinton, and T. Risset. Structuration of the Alpha Language. In Int.
Conf. on Massively Parallel Programming Models, Berlin, Germany, October 1995.

13. S. Derrien, S. V. Rajopadhye, and S. Sur-Kolay. Combined Instruction and Loop Parallelism
in Array Synthesis for FPGAs. In ISSS’01 : Proceedings of the International Symposium on
System Synthesis, pages 165–170, 2001.

14. A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. Constructing and Exploiting Linear Schedules
with Prescribed Parallelism. ACM Trans. Des. Autom. Electron. Syst., 7(1):159–172, 2002.

15. A. Darte, R. Schreiber, and G. Villard. Lattice-Based Memory Allocation. IEEE Transactions
on Computers, 54(10):1242–1257, 2005.

16. P. Feautrier. Dataflow Analysis of Array and Scalar References. Int. J. Parallel Programming,
20(1):23–53, February 1991.

17. P. Feautrier. Some Efficient Solutions to the Affine Scheduling Problem, Part I, One
Dimensional Time. Int. J. of Parallel Programming, 21(5), October 1992.

18. Forte Design Systems. Cynthesizer Closes the ESL-to-Silicon Gap. http://www.forteds.com/
products/cynthesizer.asp.

19. S. Gupta, R. Gupta, N. Dutt, and A. Nicolau. SPARK: A Parallelizing Approach to the High-
Level Synthesis of Digital Circuits. Kluwer Academic, 2004.

20. M. Griebl and C. Lengauer. The Loop Parallelizer LooPo. In M. Gerndt, editor, Proceed-
ings of Sixth Workshop on Compilers for Parallel Computers, volume 21 of Konferenzen des
Forschungszentrums Jülich, pages 311–320. Forschungszentrum Jülich, 1996.

21. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical Interprocedural Parallelization: An Overview
of the PIPS Project. In ACM International Conference on Supercomputing, ICS’91, Cologne,
June 1991.

22. M. Kudlur, K. Fan, and S. Mahlke. Streamroller: Automatic Synthesis of Prescribed Through-
put Accelerator Pipelines. In CODES+ISSS ’06: Proceedings of the 4th International Confer-
ence on Hardware/Software Codesign and System Synthesis, pages 270–275, New York, NY,
USA, 2006. ACM Press, New York.

23. C. Lengauer. Loop Parallelization in the Polytope Model. In E. Best, editor, CONCUR’93,
Lecture Notes in Computer Science 715, pages 398–416. Springer, Berlin Heidelberg New
York, 1993.

24. V. Loechner, B. Meister, and P. Clauss. Precise Data Locality Optimization of Nested Loops.
The Journal of Supercomputing, 21(1):37–76, 2002.

25. D. I. Moldovan and J. A. B. Fortes. Partitioning and Mapping Algorithms into Fixed Size
Systolic Arrays. IEEE Transactons on Computers, 35(1):1–12, 1986.

26. A. Mozipo, D. Massicotte, P. Quinton, and T. Risset. Automatic Synthesis of a Parallel
Architecture for Kalman Filtering using MMAlpha. In International Conference on Paral-
lel Computing in Electrical Engineering (PARELEC 98), pages 201–206, Bialystok, Poland,
September 1998.

U
nc

or
re

ct
ed

 P
ro

of

230 S. Derrien et al.

27. H. Nikolov, T. Stefanov, and E. Deprettere. Efficient Automated Synthesis, Programming, and
Implementation of Multi-Processor Platforms on FPGA Chips. In 16th International Con-
ference on Field Programmable Logic and Applications (FPL’06), pages 323–328, Madrid,
Spain, August 2006.

28. P. Quinton and V. Van Dongen. The Mapping of Linear Recurrence Equations on Regular
Arrays. The Journal of VLSI Signal Processing, 1:95–113, 1989.

29. R. Schreiber et al. PICO-NPA: High-Level Synthesis of Nonprogrammable Hardware Accel-
erators (HPL-2001-249), October 2001.

30. R. Schreiber, S. Aditya, B. R. Rau, V. Kathail, S. Mahlke, S. Abraham, and G. Snider. High-
Level Synthesis of Nonprogrammable Hardware Accelerators. In ASAP’00: Proceedings of
the IEEE International Conference on Application-Specific Systems, Architectures, and Pro-
cessors, page 113, Washington, DC, USA, 2000. IEEE Computer Society, Washington, DC.

31. O. Sentieys, J. P. Diguet, and J. L. Philippe. GAUT: A High Level Synthesis Tool Dedicated
to Real Time Signal Processing Application. In European Design Automation Conference,
September 2000. University booth stand.

32. T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. System Design Using
Kahn Process Networks: The Compaan/Laura Approach. In DATE ’04: Proceedings of the
Conference on Design, Automation and Test in Europe, page 10340, Washington, DC, USA,
2004. IEEE Computer Society, Washington, DC.

33. A. Turjan, B. Kienhuis, and E. F. Deprettere. Translating Affine Nested-Loop Programs to
Process Networks. In International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 220–229, 2004.

34. M. Wolfe. A Loop Restructuring Research Tool. Technical Report CSE 90-014, Oregon
Graduate Institute, August 1990.

