
Automatic Phase detection for Stochastic On-Chip Traffic
Generation

ABSTRACT
During System on Chip (SoC) design, Network on Chip
(NoC) prototyping is used for adapting NoC parameters to
the application running on the chip. This prototyping is cur-
rently done using traffic generators which emulate the SoC
components (ips) behaviour: processors, hardware accelera-
tors, etc. Traffic generated by processor-like ips is highly non
regular, it must be decomposed into program phases. We
propose an original feature for NoC prototyping, inspired by
techniques used in processor architecture performance eval-
uation: the automatic detection of traffic phases. Integrated
in our NoC prototyping environment, this feature permits
to have a completely automatic toolchain for the generation
of stochastic traffic generators. We show that our traffic
generators emulate precisely the behavior of processors and
that our environment is a versatile tool for networks-on-
chip prototyping. Simulations are performed in a SystemC-
based simulation environment with a mesh network-on-chip
(DSPIN) and a processor running mp3 decoding applica-
tions.

Keywords
Traffic generation, Network-on-chip, Phase behavior, Sto-
chastic traffic modeling, Performance evaluation

1. INTRODUCTION
Systems on chip (SoC) are now commonly used in embed-

ded systems for multimedia and telecommunication applica-
tions. Most of these SoC are composed of a single processor
controlling various components (Intellectual Property: ip)
all connected together. The computing power required by
emerging applications running on mobile terminals, such as
video on mobile phone for instance, has induced the devel-
opment of a more complex SoC infrastructure, the so called
multi-processor SoC (MPSoC) typically composed of a num-
ber of master components (processors or dma for hardware
accelerators) connected to a network-on-chip (NoC) or a hi-
erarchy of busses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The advent of networks-on-chip (NoC) has significantly
increased the design complexity of such systems with some
hard problems related to parallelism: non-determinism, mem-
ory and cache coherency, efficient workload distribution and
network contention. Solving these problems during the short
time available for design requires fundamental improvements
in design methodologies. The most important shift is the
setting of a refinement methodology allowing designers to
explore design space at various levels of precision. These
levels, called transaction, bus-accurate, synthesizable, allow
the designer to check quickly that performances related to
various metrics are achieved before writing the complete de-
scription of the system.

During design space exploration, simulation time is a ma-
jor problem. There are two run-time behaviors very difficult
to model at a high level: cache behavior and network con-
tention. Precise simulation of these two behaviors can only
be done with a low-level description of the components. This
means hours (sometimes days) of simulation for a single ex-
ecution or, as it is usually preferred, the use of extremely ex-
pensive hardware emulators. Reducing simulation time can
be achieved by a clever analysis of the behavior of the system
during execution. We are interested in the simulation of on-
chip network behavior and performance evaluation. Traffic
generators (tg) are more and more used during SoC design
for platform prototyping or performance evaluation. When
using tgs, simulation time is decreased because the ip is not
fully simulated. Simulation is also more flexible: i) the same
generic tg can be used for a class of similar applications, ii)
the designer does not need to integrate the complete ip in
its simulation environment, which is useful in early stage of
design if the ip is not fully specified.

Most recent traffic generation methods use stochastic mod-
els. Statistical analysis and synthesis of on-chip traffic is dif-
ficult because this traffic usually presents complex statistical
behavior. As pointed out by [13], the behavior of application
code is decomposed into phases which have very different
characteristics. Each phases can appear several times dur-
ing the complete execution of the program. The precision of
the simulation and the possibility of integrating the whole
process in an automatic (or at least semi-automatic) frame-
work are important parameters for evaluating the usefulness
of a traffic generation environment.

In this paper, we present the automatic detection of traf-
fic phases by analyzing simulation traces and show that
these phases are necessary to emulate the traffic generated
by multi-media applications running on SoC. By gathering
different features presented individually in various recent

works, our traffic generation environment provides a very
flexible tool for networks-on-chip prototyping. It can run a
deterministic traffic replay (as in [5]) or generate a stochastic
traffic with first order (as in [9]) and second order (as in [15])
statistics fitted to a particular trace. The feature described
in this paper is the ability to run a traffic divided into sepa-
rate phases, each phase having different characteristics. This
makes our tg able to capture the inherent non-stationarity
present in the traffic generated by the processors. We vali-
date the precision of our traffic simulation in SystemC. We
show that the network latency, transaction delay and aggre-
gated throughput of a complete SoC platform are very close
when we use tgs replacing processors. With our environ-
ment, the designer can explore the design space in a very
flexible manner by, for instance, exploring other network ar-
chitectures on a single phase in which network contention
occurs.

The paper is organized as follows. In Section 2 we review
the different existing techniques of traffic generation. Sec-
tion 3 presents our traffic generator and the flow that we
propose for analyzing and synthesizing on-chip traffic. Sec-
tion 4 presents our experimental results that highlight the
points mentioned above.

2. RELATED WORK
Using traffic generator in a simulation platform involves

the following steps: i) the ip designer collects simulation
traces by observing the behavior at the interface of each
master component (if the ip is available), ii) he builds traf-
fic models as close as possible to these traces, iii) the plat-
form designer instantiates a traffic generator for each master
component based on these models, and iv) inserts them in
the simulation platform in place of the original components.
Traffic generators can be separated into two main categories:
the deterministic approach, in which traffic is produced us-
ing a finite state machine (fsm) configured by the ip designer
or using a previous simulation trace, and the stochastic ap-

proach, in which the traffic is produced by a parameterized
non-deterministic process.

Deterministic traffic generator (tg) [6, 5, 10] are derived
from real simulation traces or written from scratch by ip

designers. Such tgs can generate accurate transactions in
time, size, and idle time that match the behavior of an ip.
The advantages of this approach are the precision and the
speedup factor it can achieve compared to the complete ip

simulation. However, one limitation of the deterministic ap-
proach is that the length of the simulation is limited by the
length of input traces used. Furthermore, such tgs cannot
handle behaviors that are dependent on input data sets.

An alternative solution is to use stochastic traffic genera-
tors. These tgs build a model of the traffic. This modeling
permits to investigate how small variations in the model pa-
rameters impact performance. This is an interresting way
of testing a NoC robustness with reasonably accurate traf-
fic (much more accurate than completely random traffic).
Such a model can also be useful when the ip is not fully
available or when the behavior is likely to change slightly
from one execution to the other. However some traffics are
very difficult to model and the traffic generation environ-
ment should include advanced statistical analysis tools such
as multi-phase statistical analysis and second order statistics
fit. For instance Marculescu et al. [15] have isolated a long-
range-dependent behavior (i.e. second order statistical prop-

erties) at the coarse-grain level. Our simulation environment
is currently able to capture and generate traffic with second
order statistic fitted to a particular covariance [1]. However,
our experiments do not exhibit long-range dependence. This
result has to be confirmed by other simulations; our conjec-
ture is that this is due to the presence of caches that smooth
the communications.

The major part of NoC performance evaluation is cur-
rently done using random sources [16, 14, 9, 4]. These works
mainly focus on the evaluation of the NoC in its early stage
of development, and on its performance under random traf-
fic. However none of these works propose a fitting procedure

to determine the adequate statistical models that should be
used to simulate the traffic: most of them choose arbitrar-
ily the statistical behavior of each ip. To our knowledge,
none of these approaches have introduced multi-phase mod-
eling. A complete traffic generation environment should in-
tegrate both deterministic and stochastic traffic generation
techniques.

A processor associated with a cache generates a non-statio-
nary traffic, which can be divided into phases corresponding
to different parts of the executed program. Each phase is
stationary in the sense that the stochastic characteristics of
the process observed during this phase are almost constant.
This point has been thoroughly investigated in the domain
of processor architecture performance evaluation. A very
good summary of these works is presented by Calder et al.
in [13]. Calder et al. isolate program phases by analyzing ba-
sic blocs repartition in successive intervals (an interval can
represent 10 millions of instructions). Then, these phases
are compared and grouped using a k-mean algorithm [11].
We have adopted a similar approach to decompose the traf-
fic generated by a processor in phases. Our model is simpler
and the interval is approximately composed of a thousand
of transactions. The data used to represent the activity of
the processor are the traffic’s statistical caracteristics.

Calder et al. use this phase decomposition in SimPoint [8]
for architecture performance evaluation. This is a powerful
technique that can provide huge improvement in simulation
by simulating only one simulation point per phase and repli-
cating the behavior during all the corresponding phase. This
is not our goal here because we target precise traffic simula-
tion of a given ip for NoC prototyping. Network contention
needs to be precisely simulated, and as it is the result of the
superposition of several traffics, picking simulation points
becomes a difficult task. However a study in the spirit of
[3] may be applicable of NoC prototyping, this is part of our
futur works.

3. MULTI PHASE TRAFFIC GENERATORS
We now present our analysis and synthesis flow for build-

ing multi-phase traffic generators that can be used to replace
an ip in cycle-accurate NoC performance evaluation.

3.1 On-chip traffic modelling
The traffic produced by a component is modelled as a

sequence of transactions. The ith transaction is a 4-uple
(A(i), C(i), S(i), D(i)) meaning in this order, target ad-
dress, command (read or write), size of transaction, and
delay (number of cycles between two successive requests).
This is illustrated in Figure 2. From this transaction se-
quence, we define the aggregated throughput W∆(j), which
corresponds to the amount of bus-words transferred in the

Performance EvaluationMulti-Phase Traffic Generator ConfigurationReference Trace

Parser

Segmentation

Analysis

Compression

Synthesis

Stochastic

Selection
Models

Compressed
Trace

TG Config

MPTG
Config

SocGen

Design Space
Exploration

Simulation

Platform
Description

Performance
Analysis

MPTG IP
Generic

SystemC
IP

without interconnect
Simulation

Trace

Application
IP

Processor

Figure 1: MPTG Framework: Traffic analysis and synthesis flow

time interval [j∆, (j + 1)∆]. We also define the latency of
the ith transaction L(i) as the number of cycles between the
start of a ith request and the start of the associated response.
This is basically the round-trip time in the network.

Time (cycles)

D(k)
Requests

Responses

S(k)

Req(

Resp(k)

)A(k),C(k)

L(k)

Figure 2: Traffic modelling formalism

Traffic is generated according to the 4-uple describing each
transaction, and this 4-uple can be either read from a previ-
ously recorded trace (replay), or generated as the realization
of a stochastic process.

3.2 Global methodology
The global simulation flow is depicted on Figure 1. First,

we generate a reference trace by simulating the processor ip

to be emulated. This trace is obtained with an ideal network
environment (no network contention), which makes the sim-
ulation very fast. Then, we process the trace in our traffic
analysis and synthesis tool [1] and we obtain configuration
files for our traffic generators. A parametric generic traf-
fic generator has been written once for all, it is referred to
further in the text as mptg. Transactions are generated by
mptg according to a phase description file and a sequencer
is in charge of switching between phases. Each phase con-
sists either of a replay of a recorded trace, or of a stochastic
model with parameters adjusted by the fitting procedure de-
scribed in [1]. Finally, the platform designer describes the
desired platform architecture (such as the one presented in
Figure 3) and uses a perl script (referred to as SocGen) that
generates all files needed for simulation. Thus the simula-
tion takes place and performance analysis indicates whether
some parameters of the platform have to be changed or not.

Two important features of our mptg are the following: i)
it is aware of the network latency (requests are sent only if
the network is ready), and ii) it can be configured to emulate
the communication scheme of the target ip. For example,
as we target processor/cache traffic, the mptg is configured
with blocking reads and non-blocking writes in order to em-
ulate the write buffer of the cache. These properties ensure

that the same mptg configuration files can be used on var-
ious on-chip interconnects, thus allowing fast design space
exploration of the NoC.

3.3 Automatic phase determination
The contribution of the paper lies in the adaptation of the

work of [13] to NoC prototyping. In general, decomposing
a non-stationary process into stationary parts is very diffi-
cult. Nevertheless, it appears that our programs are piece-

wise stationary. We use the k-mean algorithm [11] which
is a classical technique to group multi-dimensional values
in similar sets, and we end up with a good clustering as
demonstrated in section 4. Our automatic phase determi-
nation algorithm is the following:

1. First, we select a list of M metrics that will be used
to perform the clustering. These metrics are choosen
in the ones introduced in Section 3.1 (delay, size, com-
mand, etc.). Each metric is a sequence of values.

2. Each on of these sequences is then splitted into inter-

vals of length L = 5000 transactions. Mean and vari-
ance are computed on each interval, and this makes
a 2M -dimensional representative vector used for the
clustering.

3. We perform clustering in k phases using the k-mean
algorithm with different values of k (2 to 7 in prac-
tice). This algorithm finds k centroids in the space of
representative vectors. Each interval will be assigned
the number of its closest center (in the sens of the
quadratic distance).

4. To evaluate different clustering, we compute the Baye-
sian Information Criterion (Bic) [12]. This informa-
tion gives a score of the clustering evaluating the log
of the probability of the data, given the model. A
higher Bic means better clustering.

Once the phases are identified, statistical analysis is per-
formed on each extracted phase by an automatic fitting pro-
cedure that adjusts the first and second statistical orders
(see [1]) for details). The designer has to choose which model
he wants to use before analyzing the trace.

We developed an independent random number genera-
tor that can produce realizations of a wide variety of pro-
cesses [1]. This generator is integrated in the mptg and the
analysis produces the adequate mptg configuration file.

Output

Data

RAM

TG 2

TTY

Back

TG
MIPS

RAM
Application

Code/Data

Data

Input

RAM

TG 1

MIPS

Input
Output

Application
Code/Data

Figure 3: Simulation platforms: direct (right) and
mesh1 (left)

4. EXPERIMENTATIONS
In this section, we present experimental results. With

these results, we want to demonstrate that i) the automatic
segmentation of traffic traces is efficient, and ii) the accuracy
of stochastic multi-phase traffic generation is good.

4.1 Experimental setup
We use an open source, SystemC-based, cycle-accurate

and bit-accurate simulation environment: SocLib [2]. We
use a tiny operating system for multiprocessor management
(Mutek). We present here the results on an implementa-
tion of the Mpeg-layer 3 audio decoding software, further
referred to as mp3. 2 frames are decoded in the results pre-
sented here, representing 350000 memory transactions when
executed on the processor (mips r3000). Similar results have
been obtained for mpeg2 and jpeg2000 applications, but
are not presented here because of space limitation. The
NoC used is DSPIN inherited from the research of the LIP6
laboratory (evolution of SPIN [7]). It uses wormhole mem-
orization strategy and XY routing. The processor caches
includes both data and instructions. It is composed of 32
lines of 8 words. Aggregated throughput has been computed
as the number of flits transferred in consecutive time window
of size 100 cycles. This is further referred to as throughput.

We intend by platform a particular physical interconnec-
tion of various ip. We used two platforms:

• The direct platform does not use any interconnect,
the processor is directly connected to a memory hold-
ing all necessary data. The latency is thus constantly
equal to 1 cycle. This platform is used for basic val-
idation of the mptg and for reference trace collection
as shown in Figure 1.

• The mesh1 platform is shown in Figure 3. The com-
ponents are interconnected with the DSPIN NoC. The
mips processor of Figure 3 is running the application.
The back tg of Figure 3 is used for introducing con-
tention over the network. It sends requests to both
memories ram tg1 and ram tg2, whereas the mips

communicates with the three other memories used for
code, data, input and output streams. In order to test
the mptg in a more realistic way, the back tg has
alternates between two phases, one with a high com-
munication load and another with a low one. This in-

 0

 1

 0 50000 100000 150000 200000 250000 300000 350000

N
o

rm
a

liz
e

d
 d

e
la

y

Transaction index

(a) original trace

−1
 0
 1
 2
 3
 4
 5

 0 50000 100000 150000 200000 250000 300000 350000

C
lu

st
e

r
ID

Transaction index

(b) 3-means clustering

−1
 0
 1
 2
 3
 4
 5

 0 50000 100000 150000 200000 250000 300000 350000

C
lu

st
e

r
ID

Transaction index

(c) 4-means clustering

−1
 0
 1
 2
 3
 4
 5

 0 50000 100000 150000 200000 250000 300000 350000

C
lu

st
e

r
ID

Transaction index

(d) 5-means clustering

Figure 4: Phases discovered by our algorithm on the
MP3 traffic trace using delay as metric, for different
phase numbers.

troduce a time-varying contention and approximately
multiply the number of cycles of the execution by 3.

4.2 Segmentation of the MP3 application
Figure 4a shows the delays of transactions D(i) as a func-

tion of the transaction index i. One can distinguish the boot
at the start, and then the two frames being decoded. For
each frame, several phases can be identified (for instance
a long one at the end). This shows two important points.
Firstly, the time evolution of the traffic is not stationary,
so a stochastic fit on the whole trace would be meaningless.
Secondly, from the moment similar behaviors appear, a seg-
mentation should be done. This was already noticed in the
high performance computing community [13], however this
is, to our knowledge, the first time a traffic trace is being
analyzed in this way.

We have run the phase segmentation algorithm described
in Section 3.3 for different values of k, using delays of trans-
actions as the metric. Figures 4b, 4c and 4d show the re-
sults for various number of phases. One can see that the
algorithm finds the analogy between the two frames, and
identifies phases inside each one of them. The segmenta-
tion seems valid and pertinent. As the segmentation is done
with mean and variance as representative vectors, one ex-
pects that each identified phase exhibits a stationnary be-
havior, likely to be processed by a stochastic analysis. In
order to investigate on which metric (delay, size, command)
the segmentation should be based, we have performed the
segmentation with different representative vectors. Address
sequence is not considered in these results because the dy-
namics of address values is such that the clustering fails.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000

N
o

rm
a

liz
e

d
 m

e
a

n

Transaction index

(a) Mean delay evolution

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000

N
o

rm
a

liz
e

d
 m

e
a

n

Transaction index

(b) Mean size evolution

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000

N
o

rm
a

liz
e

d
 m

e
a

n

Transaction index

(c) Mean command evolution

Figure 5: Evolution of the mean of different met-
rics (delay, size, command) of the mp3 application,
computed in intervals of size L = 5000 transactions.

Figures 5a, 5b and 5c show respectively the evolution of
the mean for three different metrics. As mentioned in Sec-
tion 3.3, variance is also taken into account but it is not
reported here because it shows a similar evolution. One
can clearly see that all metrics are highly correlated. This
was expected because program phases have an impact on
all these metrics. This confirms that the segmentation done
on delays is meaningful for all other metrics. Segmentations
based on other metrics, or on a mixture of them, exhibit
similar results. Table 1 presents the Bayesian Information
Criterion (Bic). It should be read row by row, for instance
the first row gives the Bic of the clustering done with the de-
lay metric, giving the other metrics (delay, size, command).
The highest value per row is always situated on the diagonal
which is expected (the clustering score is always higher on
the metric it was builded with). However, on each row, the
Bic decay remains reasonably low, so that we can trust the
fact that clustering on any metric should provide the same
kind of results. Further-down in the experimentations, we
used a segmentation based on the delay metric.

4.3 Accuracy of the traffic generation
Let us first detail the statistical analysis introduced in Sec-

tion 3.2. In order to build mptg configuration files, we auto-
matically compute for each identified phase: the probability
distribution function of the delay, the access probability of
each memory segment, and for each segment, the read/write
probability. As we are emulating a processor and its cache,
we fixed the read transaction size to the cache line size, and
we also computed the probability distribution function of
the write transaction’s sizes.

We have performed simulations with different configura-
tions: “mips”, which this is the reference simulation of the
mp3 application running on the mips, “mptgN” for which
traffic is generated with a mptg with N phases, “dr” which

- Delay Size Command
Delay 610.111 562.737 550.671
Size 231.061 439.377 427.349

Command 913.042 1124.68 1112.66

Table 1: Bayesian Information Criterion (Bic) for
each metric (colums), given the metric used for clus-
tering (rows).

corresponds to a deterministic replay (the trace has been
recorded and is replayed), and “random” which is a con-
stant rate traffic with uniformly distributed target selection
(the rate is fixed to the mean observed rate in order to do a
fair comparison). Each configuration is run on both direct

and mesh1 platforms.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20

M
e

a
n

 t
h

ro
u

g
h

p
u

t

Inteval number

mips
mptg1
mptg3
mptg5

(a) Throughput evolution (1 interval = 100000 cycles)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 2 4 6 8 10

M
e

a
n

 t
h

ro
u

g
h

p
u

t

Inteval number

mips
mptg1
mptg3
mptg5

(a) Throughput evolution (1 interval = 200000 cycles)

Figure 6: Evolution of the mean throughput of the
mp3 application on the direct platform for various
scales and configurations.

In order to compare a given configuration with the refer-
ence mips one, we should not look at global metrics such as
the average delay or the average throughput. This would
not point out the interest of the multi-phase approach. So,
we have defined an accuracy measure that can be computed
on each metric (delay, size, command and throughput). We
compare the mean evolution of the metrics, just as repre-
sented in figure 5, for both simulations (mips and the one
under study). This can be done graphically as depicted in
figures 6 and 7. But, to summarize the resultsn we de-
fined the error as the mean of absolute values of relative
differences between two mean evolutions. Let Mref (i) be
the mean evolution of some metric for the reference simu-
lation, let further M(i) be the evolution of the same met-
ric for another simulation, and let finally n be the number
of points of both functions. The error (in percent) reads:
Err = 1

n

P

i |Mref (i) − M(i)|/Mref (i) ∗ 100.
This error is reported in tables 2 and 3. As expected,

the higher the phase number is, the more accurate the re-
sults are. This highlights the importance of multi-phase
traffic generation. Accuracy is lower on the mesh1 plat-
form because the stochastic nature of traffic generation has
a stronger impact. Still the multi-phase stochastic traffic
generation lies in between the very accurate deterministic
replay and the very inaccurate random traffic.

Figures 6 and 7 show the evolution of throughput (being
a combination of size and delay) at different scales. The
mptg1 is naturally a straight line (one phase only) on di-

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 10 20 30 40 50 60

M
e

a
n

 t
h

ro
u

g
h

p
u

t

Inteval number

mips
mptg1
mptg3
mptg5

(a) Throughput evolution (1 interval = 100000 cycles)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 5 10 15 20 25 30

M
e

a
n

 t
h

ro
u

g
h

p
u

t

Inteval number

mips
mptg1
mptg3
mptg5

(b) Throughput evolution (1 interval = 200000 cycles)

Figure 7: Evolution of the mean throughput of the
mp3 application on the mesh1 platform for various
scales and configurations.

Config. Delay Size Cmd Throughput Latency
dr 0 0 0 0 0

random 31.784 34.315 6.911 13.640 0
mptg1 7.833 15.184 6.431 11.449 0
mptg3 1.972 8.336 3.279 5.577 0
mptg5 1.334 3.270 1.154 2.600 0

Table 2: Error (in percent) on various metrics with
respect to the reference Mips simulation (direct

platform).

rect. On the mesh1 platform, the sort of wave oscilation
in Figure 7 is a consequence of the two traffic phases of the
back tg. On can see that mptg3 and mptg5 configurations
follow the evolution of the reference simulation.

Config. Delay Size Cmd Throughput Latency
dr 1.153 0 0 0.197 0.117

random 41.278 75.242 7.709 102.316 27.825
mptg1 18.604 14.759 6.256 12.696 10.086
mptg3 17.194 8.169 3.255 6.212 0.767
mptg5 14.772 3.239 1.210 5.651 0.626

Table 3: Error (in percent) on various metrics with
respect to the reference Mips simulation (mesh1

platform).

These results show that multi-phase stochastic traffic gen-
eration is worth a try for NoC prototyping. Even though it
is not as precise as deterministic replay, the phase behavior
of the ip is preserved, which is in our opinion a key point of
emulating the true contention on the network. The choice
between stochastic and deterministic traffic generation de-
pends on the purpose of the study. For instance random traf-
fic generation is a good way to evaluate and compare routing
strategies and other large scale design choices, whereas de-
terministic trace replay can provide very good accuracy for
tuning the implementation details in the routers. We believe
that the multi-phase stochastic traffic generation is inter-
esting as a compromise between random and deterministic
approaches. It combines a good accuracy and overcomes de-
terministic limitations. It especially provides the designer a
phase description of traffic, and a stochastic model for each
identified phase. This allows more flexibility in the traffic
generation. For instance, the parameters of the models can

be slightly changed in order to evaluate the robustness of
the NoC.

5. CONCLUSION AND FUTURE WORKS
In this paper, we have explained how traffic phases are au-

tomatically identified and synthesized in our traffic genera-
tion environment. Experimental results show that this auto-
matic clustering is meaningful and that it can be performed
on various metrics. This feature, coupled with the advanced
stochastic analysis, fitting and synthesis procedure already
available, makes our traffic generation environment an ef-
ficient NoC prototyping tool. Experimental results show
the accuracy and the versatility of our mptg, highlighting
some of its key features : accurate replay over various inter-
connections, multi-phase traffic generation, stochastic traffic
analysis and generation. Future works include the study of
other applications, and the investigation of simulation time
reduction using the phase behavior of each ip of the SoC.

6. REFERENCES
[1] Reference omitted.
[2] Soclib simulation environment. On-line, available at

http://soclib.lip6.fr/, 2005.
[3] M. V. Biesbrouck, T. Sherwood, and B. Calder. A co-phase

matrix to guide simultaneous multithreading simulation. In
SPASS, 2004.

[4] S. G. P. et al. Cost-performance trade-offs in networks on
chip: A simulation-based approach. In DATE, pages
764–769, 2004.

[5] S. M. et al. A network traffic generator model for fast
network-on-chip simulation. In DATE, pages 780–785, 2005.

[6] N. Genko, D. Atienza, G. D. Micheli, J. M. Mendias,
R. Hermida, and F. Catthoor. A complete network-on-chip
emulation framework. In DATE, pages 246–251, 2005.

[7] A. Greiner and P. Guerrier. A generic architecture for
on-chip paquets-switched interconnections. In DATE, 2000.

[8] G. Hamerly, E. Perelman, and B. Calder. How to use
simpoint to pick simulation points. Sigmetrics Perform.
Eval. Rev., 31(4):25–30, 2004.

[9] K. Lahiri, S. Dey, and A. Raghunathan. Evaluation of the
traffic-performance characteristics of system-on-chip
communication architectures. In VLSID ’01, page 29, 2001.

[10] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and
R. Zafalon. Analyzing on-chip communication in a mpsoc
environment. In DATE, page 20752, 2004.

[11] J. MacQueen. Some methods for classification and analysis
of multivariate observations. pages 281–297, 1967.

[12] D. Pelleg and A. Moore. X-means: Extending k-means with
efficient estimation of the number of clusters. In
International Conference on Machine Learning, pages
727–734, San Francisco, 2000.

[13] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
IEEE Micro, 23(6):84–93, 2003.

[14] R. Thid, M. Millberg, and A. Jantsch. Evaluating NoC
communication backbones with simulation. In 21th IEEE
Norchip Conference, Riga, Nov. 2003.

[15] G. Varatkar and R. Marculescu. On-chip traffic modeling
and synthesis for mpeg-2 video applications. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 12(1):108–119, 2004.

[16] D. Wiklund, S. Sathe, and D. Liu. Network on chip
simulations for benchmarking. In IWSOC, pages 269–274,
2004.

