
Distributed Group Consensus Algorithms for Mobile
Wireless Sensor Networks

Mobihoc 2014, submitted for review

Abstract—This paper deals with distributed algorithms for
mobile wireless sensor networks, used for monitoring the config-
uration of a dynamic group. We first present a simple distributed
static group consensus algorithm allowing every node in the
network to obtain the knowledge of its connected components.
We give valid theoretical bounds on the convergence time for
this static algorithm. Then we propose two major extensions:
the first one consists in using more precision in the proximity
information of nodes sharing similar characteristics, the second
extension is designed for the case of mobile networks using a
periodical reevaluation of the group detection. We validate these
algorithms by implementing them in an original and challenging
application scenario, in the context of a bicycle race.

Keywords—mobile wireless sensor networks; distributed consen-
sus; topology estimation

I. INTRODUCTION

Distributed decisions within any group of agents, is a very
active research area and theoretical results as well as efficient
algorithms have been already proposed [22], [6], [5]. In the
context of wireless networks, the task is made harder due
to possible transmission errors, channel asymmetry, dynamic
behaviour of the channel and node mobility [12], [16].

In this paper, we use this formalism to assess a problem
that could be described as a topological problem but which is
here interpreted as a consensus problem. We consider a group
of mobile agents moving roughly in a common direction and
we aim at allowing each agent to discover periodically who are
its neighbours in the first vicinity as well as those reachable
with multi-hop transmissions. The reference scenario is a bike
race, during which groups are susceptible to split or merge.
Gathering the information about who is present in a group is
the objective. Of course, such an approach may be of interest
for various other applications such as group navigation support
in crowded environments, autonomous navigation of a fleet of
robots. . .

The objective is to derive a fully distributed approach
allowing a group of connected agents to achieve in a finite time
a consensus on the list of neighbours participating to the same
pack. Considering that each agent contains initially a vector
of possible neighbours set to zero except for himself. Then
each agent randomly accesses to the medium and transmits
its current list to its neighbours. When receiving a list of
neighbours, each node eventually updates its values by a OR
or MAX operation and prepares to broadcast the updated list
of neighbours. This approach is eventually proved to be a
straightforward generalisation of a max-consensus algorithm
(see [10], [8]), and an upper bound of the maximum delay
convergence as a function of the network topology is provided.
It is robust to packet losses which maight slightly increase the

convergence time. On the opposite, the approach reveals to
be extremely sensitive to any false identity transmission that
would propagate over the group. We compensate for this issue
by adding a strong channel coding to correct and/or detect
transmission errors on identity bits.

Last but not least, we extend this approach to a dynamic
context where the group knowledge is updated according
to possible group gathering or splitting. Unfortunately, the
loss of an agent cannot be propagated into a max-based
distributed computation. A first possible alternative may rely
on introducing a forgetting factor that would allow to remove
old information. However, we prefer a more controllable
and robust approach that relies on successive epochs at the
beginning of which information is reset over the network. Our
implementation is fully distributed and doesn’t require any
global synchronisation. Based again on a max-consensus, a
new round is started over the network by propagating a new
epoch indicator. All nodes converge to the new epoch at the
consensus rate.

Experimental validation has been done in the context of a
cycling race, with a sensor located on each bicycle to assess
the interactions between the players, i.e. live monitoring of the
dynamic evolution of the groups that can be formed during
the race. Each bicycle being equipped with a communicating
node, the group data aggregation and separation is based
on a distance criterion, which takes into account the packet
reception rate and received signal strength. We typically want
to identify a group separation when the distance between
cyclists is greater than 20 meters. Using industrial sensors,
we designed the communication protocol and implemented
our group consensus algorithm in the bicycle network. We
also designed the mobile sink nodes located on the motor-
bikes surrounding the race that permits the centralisation and
exploitation of the data (see Fig. 2). We were finally able to
store all the data received by the sensors in order to obtain
an accurate database about the behaviour of the network. The
designed platform was calibrated for a group of 20 cyclists,
experiments were conducted with 10 agents.

The rest of this paper is organised as follows. The next
section presents a brief state-of-the-art and highlight our major
contributions. The initial algorithm implementing a straight
extension of a max-consensus algorithm is presented in sec-
tion III-A and deals with static nodes (i.e. non-mobile). In
section III-B, two extensions are proposed. While the first
one explores the possibility to exchange more than the node
identities, the second one deals with mobility. Finally, our
solutions are tested on a real experiment. This experiment and
the results are presented in section IV and we provide practical
evidence of the efficiency of the Group Consensus Algorithm



that we propose.

II. STATE OF THE ART

As mentioned in the introduction our objective in this
work is to achieve a consensus, in each connected component
of a graph, about the identity of nodes included in this
component. This problem exhibits some similarities with a
clustering problem. However, a clustering problem aims at
exploiting the structure of the graph to form naturally some
subgroups to ensure a good structure of the network for further
communications. Typical approaches exploit connectivity and
distance measures.

This is why we rather focused on distributed decision algo-
rithms widely present in the literature. In this context, gossip
approaches are very appealing [8], [22], [6], [5]. While some
works focused on scaling issues to ensure a proper behaviour
when the size of the network grows [13], other works focused
on the consensus accuracy and convergence speed [22], [6]. In
the context of wireless networks, the task is made harder due
to possible transmission errors, channel asymmetry, dynamic
behaviour of the channel and node mobility [12], [16].

As mentioned in the introduction, our problem can be iden-
tified as a max-consensus problem which has been much less
studied than average consensus. In [8], the max-consensus is
mentioned as one of the possible consensus operation, but the
paper doesn’t provide specific results about the convergence
rate. The most relevant previous contribution is provided by
Iutzeler et al. in [10]. It is worth noting that, as mentioned
by these authors, the max-consensus problem presents strong
similarities with the rumour spreading problem but all previous
related works focused either on synchronised networks as done
for the Flood-Max algorithm [15] or on pairwise communica-
tions (see refs 13-20 in [10]).

Iutzeler et al propose a Random-Broadcast-Max algorithm
that relies on 3 steps: i) a node randomly wakes up and ii)
transmits its max value. Then iii) neighbour nodes receiving
the value update their max values. The algorithm is proved to
converge in finite time and the expectation of the convergence
time is upper-bounded. They also derived an upper bound for
the time convergence holding with a given probability.

In this paper we generalise these results to N-dimensional
values. Thus, our algorithm is a vector extension of this max-
consensus where the max operation is done component-wise
(v = max(v1, v2) ⇔ v(i) = max(v1(i), v2(i))). We also
integrate a reset mechanism that allows to deal with dynamic
behaviours and to update the consensus when a group split in
independent subgroups.

III. MAX CONSENSUS ALGORITHMS

A. Group Consensus Algorithm

In this section, we present the basic version of our algo-
rithm which deals with static nodes meaning that the connec-
tivity between nodes does not change over time.

The static wireless sensor network (WSN) is modelled as
an undirected graph G = (V,E). V is the set of sensors and
E the set of sensor connections. We denote ∆G the diameter
of graph G. i.e. the maximum number of edges, between two

nodes of the graph. Each link is supposed to be error-free
and constant in time without collision: either two sensors can
communicate (and in that case, the communication holds in
both directions), or they cannot communicate at all. We will
release these assumptions in the next section.

The network is asynchronous in the sense that no common
clock is available for all nodes. However, local clocks are as-
sumed sufficiently accurate to manage the random transmission
clocks. In the random transmission process, each node emits a
packet after a random independent and identically distributed
(i.i.d) duration t of exponential law of mean λ. It can be
shown [22] that, in that case, the process indicating the node
number sending a packet at the graph level corresponds to a
marked poisson process of density Nλ whose marks are i.i.d
following the uniform discrete law with values {1, 2, . . . , N}
These assumptions are commonly used to evaluate consensus
algorithms [11], [6], [5].

The Static Group Consensus (SGC) Algorithm aims at
allowing each node in a graph to obtain the list of its connected
components (i.e. the set of nodes which are connected to him
through a multi-hop path. Each node v possesses an internal
Boolean N -vector Bv containing the information of the nodes
it can reach. After running the SGC algorithm, Bvi will be 1
if node i and v are in the same connected component. For the
sake of clarity, and without lack of generality, the same index
in V and B is attributed to each node.

The SGC algorithm is presented in Algorithm 1, Max is
the componentwise maximum operation (i.e. boolean ’or’ as
long as components are boolean) , the ending condition is not
straightforward in general. We give below an estimation of
the convergence time (section III-A1) and we will discuss this
point in the practical experiment in section IV-B2.

Algorithm 1: STATIC GROUP CONSENSUS ALGORITHM

(Executed on each node v)
Initialize Bv with a 1 at component v and 0 elsewhere
repeat

Tmax = random(0− T )
While not expired backoff Tmax

receive(Bj) from node j
Bv=Max(Bv, Bj)

end While
broadcast (Bv)

until finished

This algorithm is a straight extension of a Max-Consensus
Algorithm [11] for which each node should become aware
of the maximal value held by all nodes. While in a Max-
Consensus algorithm, each node maximises its own value
with the one of its neighbours repeatedly, in SGC each node
performs the maximum of its own vector with the ones of its
neighbours. This extension increases the convergence time and
the data transmission load, because in SGC, all nodes must
send their values (i.e vectors) to all other nodes. However
the convergence time analysis performed in in [11] may be
extended for SGC.

1) Performance Analysis: As the graph is static, the algo-
rithm converges on each connected component independently
of the others, hence the convergence time can be studied on
a single connected component of size N . If the graph G is



composed of a single connected component, the convergence is
reached when all the Bv are equal to 1, hence we are interested
in the number of rounds τ needed to reach the state where all
Bv are equal to 1:

τ = Minn{n ∈ N|∀v ∈ V,Bv = 1}

Given the fact that the algorithm acts as flooding (the
Max operator only keeps the 1 in the B vectors), it is quite
obvious that the algorithm ultimately converges and hence that
τ < ∞, the following theorem gives an upper bound on the
mathematical expectation E[τ ].

Theorem 3.1: For the Static Group Consensus Algorithm
the convergence time τ is such that E[τ ] < N∆G(1+ log(N))

Proof: see appendix A

The upper bound obtained in theorem 3.1 is larger than
the one of the initial max-consensus algorithm [11] However,
the tightness is of the same order, as shown by simulation on
randomly generated graphs (section III-A2).

Following the approach of [11], we also provide an upper
bound on τ with arbitrary high probability.

Theorem 3.2: For the Static Group Consensus Algorithm
the convergence time τ can be bounded with probability 1− ε
by:

τ < N∆G

(
log(N) + log

(
∆G

ε

))
Proof: see appendix B.

2) Numerical Simulation: The validity of theorems 3.1 and
3.2 is now illustrated and SGC is compared to the Random
Broadcast Max algorithm (RBM), using a similar simulation
framework as in [11]. We generated random geometric graphs,
composed of N vertices randomly and uniformly placed in
the unit square and connected to each other if the distance
between them is at most an arbitrary radius r. In this case r =√

8 log(N)
N , as this value is known for ensuring connectivity

with a high probability [20].

Fig.1a shows a comparison between the mean simulated
values obtained for the consensus performance of both RBM
and SGC algorithms, as well as their theoretical bounds.
Although SGC shows slower performance due to a higher
number of communications required to share all nodes infor-
mation instead of a single maximum value, its performance is
close to the upper bound of RBM. In both cases the algorithms
converge faster than their upper bounds, and the tightness of
the bounds is comparable. It is also interesting to analyse the
empirical probability density of the number of communications
needed to reach the maximum group consensus. Fig.1b shows
the convergence time distribution achieved after 1000 iterations
with the SGC algorithm and the associated upper bound
given by theorem 3.2 for a probability ε = 0.1. Though this
distribution is centred around the mean value, it is interesting
to observe the apparition of an outlier with a very small
probability due to the complete randomness of the transmitting
node selection process. Such a measurement is also useful for
tuning practical implementations.

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

N : Number of nodes

M
ea

n
nu

m
be

ro
fm

es
sa

ge
s

un
til

m
ax

co
ns

en
su

s SGC
SGC bound (th.1)
RBM
RBM bound

(a) Average convergence time versus bound on convergence time
expectation for RBM and SGC Algorithms

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nb of messages until consensus (N=50)

D
en

si
ty

of
co

nv
er

ge
nc

e
tim

e

Upper bound (th 3.2)
Mean value

Outlier

(b) Convergence time distribution for SGC.

Fig. 1: (a) Comparison between algorithms mean perfor-
mances and their upper bounds for Random Broadcast Max
(RBM, [11]) and our algorithm (SGC). (b) Simulation results:
density of the SGC convergence time (for 1000 iterations on
a N = 50 nodes graph), compared to theoretical upper bound
on convergence time with probability 1− ε, ε = 0.1.

3) Packet transmission errors: Wireless links are known
to present relative unreliability, as they are prone to momen-
taneous disconnections or erroneous received packets. Various
factors, depending on the environment, density, communication
protocol, have an influence on the communication efficiency.
Part of the work in the consensus community [12] have
focused on dealing with erroneous packets in order not to
propagate wrong information among all nodes. In the case
of transmission failure (collision or transmission errors), it is
obvious to that those won’t affect the consensus result, but
they will have a negative impact on the convergence time. Our
broadcast consensus algorithms has nevertheless the advantage
of naturally implementing spatial diversity which limits this
effect, all nodes acting as communication relays for the others.
On the opposite, our algorithm is not robust to faulty packets,
since a spurious identifier may eventually proppagate over
the whole connected component as if it was a real member.
,This problem is solved in practice by adding a strong channel
error detection code. The coding redondancy is indeed used
in priority for error detection than error correction, since false



positive errors are more critical than non detection errors.

B. Mate Group Consensus

The SGC algorithm (Algorithm 1) computes the connected
components of the network: nodes aggregate and transmit bi-
nary values and finally obtain a vector containing the neighbor
list. Depending on the application scenario, it is interesting
to extend the information shared by nodes to non binary
data (e.g. heat, moisture, pressure, location...). that allows to
detect groups according to an application-dependent criterion
representing similarity strength among nodes in a given group.

In the context of the platform described in section IV,
we propose to transmit an additional information about the
adjacent nodes of a group mate as detailed now.

First consider that a node may not take into account the
information it receives from a neighbour if a condition between
the transmitter and the receiver is not satisfied (e.g. neighbour
further than a threshold distance, sporadic connection...) as
if the two nodes were not connected. We thus define two
nodes being of mates if the application condition is satisfied
or if two nodes have common mates, to avoid confusion with
neighbours which refers to nodes able to communicate together
(neighbours might not be mates).

Since a node aggregates and transmits the data from its
mates, this notion is multi-hop extended, and communities of
multi-hop mates are built. This behaviour leads to an artificial
separation of the graph into several subgraphs, all composed of
multi-hop mates. This approach could be simply implemented
with a pure threshold that would remove all badly connected
nodes. However, the consensus algorithm is modified to allow
the nodes to keep the knowledge about these badly connected
nodes.

We present hereafter in Algorithm 2, the Group Mate
Consensus Algorithm (GMC), first extension of the SGC
algorithm. In section IV-B we give an explicit example of
how the mate criterion can be built according to a distance
estimation between the nodes using received signal strength
indicator (RSSI). The Bv vectors have now integer values
(rather than boolean): Bvi ∈ [0;M ],M ∈ N, which represent
how close nodes are with respect to the chosen criteria. When
the v node receives a message from node j, it updates its Bv
vector if v and j are mates. The set of edges EC associated
to matrix C models the partition of the graph. We also define
∆C the diameter of the graph given by the adjacency matrix
C.

Algorithm 2: GROUP MATE CONSENSUS

(Executed on each node v)
Initialize Bv with M at component v and 0 elsewhere
repeat

Tmax = random(0− T )
While not expired backoff Tmax

receive(Bj) from node j
proxim=f (RSSI) //proxim between 0 and M
if (proxim>Threshold) //i.e. j and v are mates

Bv=Max(Bv, Bj)
else

Bvj = Max(Bvj , proxim)
end If

end While
broadcast (Bv)

until finished

C. Extension for Node Mobility

When the nodes are mobile, we may have a situation for
which a connected component breaks down in two compo-
nents, or inversely, two independent components merge. Both
are referred to as merge-and-split variations. The mobile net-
work can be modelled as a dynamic graph G(t) = (V,EC(t)).
The timescale of these variations is assumed relatively large,
typically larger than several communication periods. The merg-
ing feature is natural with SGC since a new node entering a
group is eligible to send its vector which naturally propagates
over the group. When a new edge connecting two independent
components is created, the vertices of this edge serve as relays
to propagate information between the two groups. But, on
the contrary, if a node disappears from Ci, the Max opera-
tion cannot propagate this withdrawal.Dynamically forgetting
a node would require to share additional information and
to implement complex updating mechanisms with a lack of
stability and robustness. We rather introduce a periodical reset
of all vectors Bv . This method allows to periodically rebuild
the group information, and if a node (or a set of nodes) gets
out of a group, the withdrawal appears after the next reset.

The main issue with this approach is the need of a
synchronisation method to implement these periodical resets.
Let us introduce a global network clock K, called epoch and
for each node v a local epoch indicator kv ∈ N, these clocks
are virtual clocks representing an epoch stamps and not to
be mistaken with hardware clocks. All local epochs kv are
initialised to 0 and indicate the current epoch. These epochs
are transmitted with Bv vectors. The synchronisation consists
in broacasting a new epoch indicator with a max-consensus
algorithm. the initiator may be one of the nodes or an external
source.

The initiator triggers a new epoch by incrementing its local
clock K and broadcasts it in a beacon. All nodes receiving the
beacon and for which kv < K, reset their vector Bv and update
their local clocks (kv = K). At they turn, they will broadcast
a new epoch with a reinitialised Bv . Nodes out of range
of the initiator may eventually update their epoch and reset
their vector when receiving the new epoch from one of their
neighbours. During a certain transition period, some nodes may
survive with the epoch K−1 while the others already swap to
the new epoch. However as the epoch is broadcasted, data of
epoch K−1 will not be used by nodes having already switched
to epoch K. Further, if two non connected components ran for
a while with different clocks and evolved to different epochs,
in the case they become merged, they will quickly synchronise
to the highest epoch.

The Mobile Group Mate Consensus Algorithm (MGMC) is
described in Algorithm 3, with external synchronisation.

Algorithm 3: MOBILE GROUP MATE CONSENSUS

(Executed on each node v)
Initialize Bv with M at component v and 0 elsewhere
Initialize kv to 0
repeat infinitely



Tmax = random(0− T )
While not expired backoff Tmax

receive packet P
If P = {kj , Bj} from node j

proxim=f (RSSI) // proxim between 0 and M
If kj > kv //change epoch

kv = kj
set Bv to its initial value

end If
If (proxim>Threshold) //i.e. j and v are mates

Bv=Max(Bv, Bj))
else

Bvj = Max(Bvj , proxim)
end If

If P is beacon with epoch K
If K > kv //change epoch

kv = K
set Bv to its initial value

end If
end If

end While
broadcast ({kv, Bv})

until

IV. EXPERIMENTS

In this section we present an original application scenario
which allowed us to implement and evaluate the performance
of MGMC under real mobile conditions and strong communi-
cation constraints. We designed a cycling race wireless sensor
network, for assessing interactions between the riders and
monitor the groups that can be formed during the race. A
group is considered to split when the distance between the
cyclists becomes greater than 20 meters.

As far as we know, very few studies have focused on
bicycle sensor networks. For instance, the BikeNet system [9]
aims at designing a network that collects various information
about the individual cycling experience rather than the inter-
bicycle communications. The empirical study conducted in [7]
shows that the human body has a strong negative impact on
the transmissions at the frequencies around 2.4 GHz. Also
considering studies performed on Body Area Networks [14]
at these frequencies, as our sensors are located in the vicinity
of human bodies, we can expect an important attenuation due
to the cyclists themselves, as well as very strong and fast
variations on the links’ qualities, also due to the multipath
fading and environment evolution. We need to be aware of
the topology changes at the timescale of the group motion,
i.e. detect group splitting or merging within a few seconds. In
addition, we have to take into account several mobile sinks
which may appear or disappear in an unknown manner, and
we expect a refresh rate inferior to 1 Hz.

A. Experimental setup

The whole network infrastructure illustrated in Fig.2 is
composed of three levels. The Bicycle Network refers to the
wireless sensor network formed by the nodes located on the
bicycles; the Local Collection Network located on motorbikes
surrounding the race aims at collecting the data shared by
the Bicycle Network and acts as a gateway, transmitting the

Bicycle Network

Global Collection
Network

Local Collection
Network

Fig. 2: Global infrastructure of the developed platform, illus-
trating the 3 data collection levels of the network.

collected information through a dedicated Global Collection
Network to a central sink located on a truck, where the
data exploitation is performed. In this section we describe
in details both the Bicycle Network and the Local Collection
Network, but not the Global Collection Network, which can be
considered as a long-range RF tunnel, since the central point
is located far away from the event.

1) Bicycle Network: Each bicycle is equipped with a
HiKoB FOX sensor [2], fixed under the saddle as imposed
for the cyclists’ comfort. These sensors embed an Atmel
AT86RF231 radio chipset embedding a IEEE 802.15.4 com-
pliant PHY layer in the 2.4GHz ISM band [1]; the integrated
processor, used for the implementation of application algo-
rithms and communication protocols, is a 32bits ARM Cortex
M3 processor. As required for mobility, the FOX sensors run
on batteries and embed a micro-SD storage facility, offering
several hours of autonomy and storage capacity.

The radio chipset gives access to an Energy Detection
(ED) measurement, which is an average of the instantaneous
Received Signal Strength Indication (RSSI) over the last 8
modulation symbols received, with a 1dBresolution, from -
91dBm to -8dBm. In all the experiments the transmission
power will be set to the maximum (3 dBm), to exploit the wider
ED measurement range. Table I summarises the important radio
features of the FOX sensors.

Bitrate 250kbps
Modulation Offset-QPSK with spreading

Frequency range 2408-2480 MHz
Inter-channel space 5 MHz

Max. transmission power 3 dBm (2 mW) ± 3 dBm
Sensitivity -101 dBm at 250 kbps

Energy Detection (ED) range [-91;-8] dBm ± 1 dBm
Antenna Chip (integrated on the PCB)

TABLE I: Main radio features of the FOX sensors.

2) Local Collection Network: The system located on each
motorbike is a HiKoB LION router [3], which embeds a
processor from the same family as the FOX sensor, and the
same AT86RF231 radio chipset. It is connected to an external,
high gain antenna, and directly powered on the motorbike.
The received data is then formatted and transmitted through a
USART on a standard asynchronous RS232 serial link with a



9600 bps bitrate before entering the Global Collection Network
RF tunnel.

B. Calibration

Before the real race, preliminary experiments have been
performed to build a rough distance estimator and to adapt
and validate the communicaiton protocols.

1) Empirical distance evaluation: According to the exper-
imental scenario, every node must be able to estimate a rough
distance with its 1-hop neighbours. Various methods can be
found in the literature for evaluating the distance between
two sensor nodes, both hardware and software-based, using
either GPS,D-GPS, Angle of Arrival, Time of Arrival, RSSI,
and algorithms such as multilateration [4], [18], [21], [19],
with various technologies, accuracy and energy consumption.
Dedicated hardware extensions for localisation or distance
estimation, in spite of a better accuracy, are usually costly in
terms of energy or form factor, and many works envetually turn
out to consider the Received Signal Strength Indicator (RSSI),
which is directly available on the 802.15.4 compliant radio
chipset. In our case we used the ED measurement described
earlier. Although this measurement is known to be unstable
both due to the body motion [14], [7] and the environment
changes, we propose to build a rough empirical distance
indicator based on smoothed ED measurements, using a series
of experiments in dynamic cycling conditions.

In order to assess the channel behaviour between several
nodes, we developed a communication platform based on
a classical time-slotted protocol, illustrated in Fig.3a which
behaves as follows : during the measurement period, each
node transmits a packet in a reserved timeslot (according to
its identifier), after what it switches to the reception mode in
order to collect all the packets sent by the other nodes, and the
associated ED measurement. In addition, 2 transmission slots
are reserved for control nodes which are used as markers, and
for triggering the data storage. This platform self-adapts to
the number of nodes, and every node synchronise on the last
packet received. Transmission power is set to the maximum
value 3 dBm, in order to get the widest measurement range.
Thanks to this system, we can obtain the state of all links in
the network, in a quasi-simultaneous manner, as the duration
of the whole period is 24 ms. It is important to notice that this
platform is only dedicated to preliminary measurements, the
platform developed for the implementation of our algorithm is
described in IV-B2.

Using this platform, we made measurements according to
the following scenario, as described in Fig.3b: 3 bikes A, B
and C, each equipped with one FOX node form a straight line.
A is fixed at a distance d = 0, while B and C progressively
move away from A, until they reach a distance d = 40m. The
protocol described above is executed during the motion, and
every 10m a marker is logged on the nodes. This experiment
was repeated 10 times, without controlling the cyclists motion.
The database obtained consists in about 1000 samples per link
at each experimental run.

As expected and illustrated in Fig.4, in spite of a global
decrease, the raw ED data collected shows important fast and
slow variations and its direct reading would be irrelevant, but
considering the relative slowness of a group motion regarding

the transmissions, we may be able to obtain a consistent
distance information by smoothing the channel measurement
over a few seconds. As a rough empirical distance estima-
tion, we propose the combination of a short and long term
smoothing on the last ED samples received, based on moving
average methods, also taking into account the packet loss.
Consider the directed link lAB from A to B and the associated
ED measurement signal s(tn) received at time tn. Let us
first switch s(tn) to positive values for convenience, say
p(tn) = s(tn)−EDmin, as in our case EDmin = −91dBm.
The short term moving average of size W1, which acts as a
high frequency noise remover, is defined as follows : let V1

be the vector containing at most the W1 last measurements
received within ∆t1:

V1 :

{
v1
i = p(tn−i), if (tn − tn−i) ≤ ∆t1

v1
i = 0, else

, 0 ≤ i ≤W1 − 1

The short term average s1(tn) is:

s1(tn) =
1

W1

W1−1∑
i=0

v1
i

The value of s1(tn) is then sampled every ∆t2 period and
stored in vector V2, of size W2, such that

V2 = [s1(k∆t2), s1((k − 1)∆t2), ..., s1((k −W2 + 1)∆t2)]

k∆t2 being the last sampling instant of s1. Finally the long
term average s2(tn) is obtained by averaging V2 :

s2(tn) =
1

W2

W2−1∑
i=0

v2,i

This long term average tends to smooth the slower variations
(shadowing) due to the motion and environment changes. To
limit the quantity of information exchanged in the network,
it is finally quantified on 2 bits, according to thresholds th20

and th30 determined as the values of s2 at d = 20m and d =
30m, averaged between all the 10 realizations. An example
of the smoothing and quantization process with the retained
parameters is given in Fig.4. Its accuracy is hard to assess,
and may be variable, but this method has the advantage to
extract a monotonous distance criterion in the case of a group
splitting. It also responds to a major constraint of embedded
systems, which is the small memory capacities, as in this case
only W1 +W2 samples per link are required, and the moving
averages are easily implemented using circular buffers.

2) Algorithm and Protocol Calibration: The practical algo-
rithm we implemented is the fully extended MGMC Algorithm
(algorithm 3), with an external beacon periodically sent by
the LION routers for new epoch propagation. Let d(v, j) be
the quantified proximity estimation computed by node v when
receiving a packet from node j. The condition for v accepting
j as a mate is if the distance between v and j is smaller
than 20m. According to the quantification process, we have
the maximum value M = 3, and Cvj = 1 if d(v, j) ≥ 3. In
addition to this, in order to observe interconnections among
groups, if d(v, j) ≥ 3, we don’t perform the Max operation
upon the whole vector Bv , but only on the Bvj component,
i.e. Bvj = Max(Bvj , d(v, j). This will not modify the result
of group detection, but add information about the strength
of the links between groups, and the nodes at which these



Time

· · · 1 2 3 Mark Ctrl · · ·

Control slotMarker slotMeasurement slots

(a) Protocol used for the measurement campaign

A B C

A B C

d(m)

0 10 20 30 40

(b) Links measurement with dynamic distance evolution.

Fig. 3: Dynamic distance evolution scenario: Nodes B and C
progressively move away from A, meanwhile all the links in
the network are being sequentially measured. A marker packet
triggered by a specific node is logged each time node B gets
past 10 meters.

0 5 10 15 20 25
−100

−90

−80

−70

−60

Time (s)

E
D
(d
B
m
) d=10m d=20m d=30m

0 5 10 15 20 25
0

5

10

15

20

Time (s)

S
m
oo
th
ed

lin
k d=10m d=20m d=30m

th20 = 8
th30 = 5

0 5 10 15 20 25
0

1

2

3

4
d=10m d=20m d=30m

Time (s)

2−
bi
tq
ua
nt
iz
ed

lin
k

Fig. 4: Example of the smoothing and quantification process
for link lAB using the retained parameters: W1 = 10, W2 = 5,
∆t1 = 1s, ∆t2 = 1s, th20 = 8, th30 = 5. The black curve is
the raw link measurement, blue and green are respectively the
short and long term averages, while the red one is the result
of quantification.

weaker links are present. We also added in the transmitted
packets the vector Bv(kv−1), which corresponds to the last
local vector of node v before the current epoch, that supposedly
converged. This part of the packet is addressed to the sink:
when approaching a group, the mobile router can get the
convergence information at epoch KN − 1 without interfering
with the bicycle network. This is to avoid more complex
protocols such as the exchange of control packets (RTS, CTS,
ACK), and the election of a transmitter among the bike nodes.
As the design was made for N = 20 sensors and 2 bits
quantification, each vector Bv is composed of N × 2 = 40
bits, i.e. 5 Bytes.

If we now focus on the communication design, we need
to ensure the reception of at least 10 packets per node per
second for neighbours in a close communication range, to
obtain a correct distance estimation. Our algorithm relies on
a random organisation protocol, which is justified by the
simple fact that in those conditions synchronised protocols
may be very difficult to implement, and not easy to adapt
to topology changes. In practice, we experimentally fixed the
parameter Tmax = 70ms as this value ensures a globally
fair reception rate around 15 packets per second per node
for a static experiment, i.e. all nodes on a table, giving a
maximum convergence time of 200 ms. To limit collisions, the
implemented communication protocol is based on CSMA/CA
without acknowledgement, Tmax being considered as a random
backoff, each node freezing the decrease of Tmax when sensing
the channel busy.

The duration TP was set to 400 ms to ensure the con-
vergence in moving conditions, i.e. taking into account faulty
links. To avoid the propagation of erroneous packets in the
network, the AT86RF231 radio chipset implements a CRC-16
error detection algorithm, allowing us to drop the erroneous
packets. Bike nodes packets are composed of 21 bytes, which
corresponds to a transmission time of 656µs.

All the received packets were locally stored on micro-
SD cards, as well as additional information, such as the ED
value measured for each packet, the local reception timestamp,
the number of packets sent every second, and the amount of
erroneous (wrong-CRC) packets received.

C. Experimental Conditions and Results

We will first explain under which conditions the experiment
was realised, before presenting some interesting results ex-
tracted from the collected data. The presented results concern
the performance of our algorithms for a stable group behaviour,
we also show that we were able to dynamically detect group
splittings and fusions, as requested for the application.

1) Experimental Conditions: The experiment was con-
ducted with a group of ten racers, using the global infrastruc-
ture represented in Fig.2, in the region of Paris, for about 1
hour, which allowed us to test the reliability of our algorithms
and the whole communication platform over time. The circuit
was a 2 km loop, in a semi-urban environment, i.e. with both
buildings and rather clear areas. As we explained in IV-B2,
for the whole duration of the race every node stored all the
packets it received, plus additional data, on its micro-SD card.
We could then build an important database of the network,
and focus in detail on the behaviour of our algorithms given
2 major racing situations : stable group and dynamic splitting.
Indeed, the race started with a long period during which all
the racers were forming a unique pack. During this period,
one racer shortly moved away before joining in again. After
that move, the group split in two sub-groups until the end
of the event, one motorbike following each formation. The
progress of the race was extracted from the stored data, and
is described in Fig.5, which validates our platform from the
application point of view.

2) Stability and Performance: We will focus here on the
first part of the experiment, for t ∈ [0; 1603s], during which
all the cyclists are riding together, without controlling more



1
2
3
4
5
6
7
8
9
10

3

1
2
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

1
2
3
5
6
9
10

7
8

4

t(s)
0 1603 1834 2454

Fig. 5: Global progression of the bicycle network during the
experiment. We represent here the three main events that were
detected and the instants of detection, i.e. isolated racer moving
away and joining again the pack, and the pack splitting in two
parts.

10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of messages before consensus

de
ns
ity

(%
)

Experimental mean value
Bound of th.1,Delta=1
Bound of th.2,ε=0.1

Fig. 6: Experimental distribution obtained for the number of
messages transmitted before convergence, N = 10, ∆C ≤ 2.

their motion, i.e. relative positions and distances may vary.
This first step is important to estimate the performances on the
full graph before focusing on group splitting. We should first
have an estimation on the amount of packets lost during that
period. Given the number of packets emitted and the received
packets stored by each node, we obtained an average packet
loss over all this period of 22%, which is non negligible but
seems reasonable given the important traffic and the transmis-
sion conditions (motion, bikers acting as obstacles, channel
instability. . . ). It is now interesting to focus on the density of
the number of messages exchanged before reaching the con-
sensus, and compare it to our theoretical bounds. According to
our measurements, during this period the application-oriented
graph diameter (i.e. taking into account the distance criterion)
is low, 1 ≤ ∆C ≤ 2, which means that all nodes are almost
direct mates. Fig.6 shows the performance distribution. It is
interesting to notice that in spite of a non negligible packet
loss, the mean value for our algorithm remains lower than the
upper bound on the expectation given by 3.2. The shape of
that experimental distribution is also in accordance with the
one obtained by simulation (Fig.1b).

3) Dynamic Splitting: After validating our algorithm in
terms of convergence performance, we can now observe with

1580 1585 1590 1595 1600 1605 1610
0

5

10

15

20

25

Time(s)

Li
nk

(8
−b

it)

Dynamic links (node 3, 5 closer neighbors)

1580 1585 1590 1595 1600 1605 1610
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time(s)

Li
nk

(2
−b

it)

Splitting
detection

Transition
phase ended

Fig. 7: Dynamic link behaviour at node 3 when getting away
from the pack (5 closer links). Splitting is detected when all
nodes have a weaker proximity index with node 3. During the
transition phase, both groups share a weaker link, after what
they are out of each other’s communication range.

more detail how it combines with the distance estimation
in real conditions, i.e. evaluate its behaviour in dynamic
scenarios, with evolving topologies. From the application point
of view, an interesting dynamic scenario is typically when
the pack comes to split in case a breakaway occurs. For this
we selected the first event described in Fig.5, when node 3
moves away rapidly from the rest of the racers, and analyzed
the distance indicators that were computed according to the
method described in IV-B1. Fig.7 shows the evolution of the
links between node 3 and its 5 closer neighbours, during that
splitting phase. The first observation is that in practice our
distance index remains stable and monotonous for the most
direct links (i.e. the last decreasing); in this case, having
the pack forming a single line, every racer behaves as a
communication obstacle, which adds uncertainty on the link
measurement for nodes located at several hops. The second
observation is that after the two groups were detected, a
transition phase occurs, during which both groups share the
list of their mates, but also the information of an active but
weaker link between the groups. After that transition phase,
the groups are fully independent.

V. CONCLUSION

We described in this paper efficient algorithms for group
consensus, self-organised and adapted to mobile applications,
capable to detect fast topology changes. We provided theoret-
ical bounds on their convergence performances, which were
experimentally validated through a challenging application
scenario, for which all the functionalities were implemented.
One limitation is that in the context of a cycling race, a high
proportion of messages are transmitted for the computation
of the distance estimation, due to the lack of accuracy of
the RSSI measurement. The lack of accurate technological
solutions for distance estimation may not be an issue in the



future, with the apparition of UWB chipsets implementing
time-based distance measurements, which are less dependent
to the communication environment. This important network
load must be taken into account according to the number of
nodes communicating together, to avoid channel saturation and
unefficient communications due to a high number of collisions.
In the case of a growing number of nodes, it would be
necessary to implement mechanisms that control the nodes’
communication range, e.g. by adapting the transmission power
to the density. As the packet size is also proportional to
the number of nodes, the use of adaptive data compression
methods could be of interest, in order to reduce the data
exchanged without degrading the quality of the measurements.

ACKNOWLEDGEMENT

We wish to thank the company Euromedia France for the
funding of this project, and for their technical collaboration for
the realization of the experiment, giving us the opportunity to
design an original experimental scenario with the complete
data collection infrastructure. We are also grateful to the
company HiKoB, for their important technical support with
the design of the platform.

REFERENCES

[1] “AT86RF231,” http://www.atmel.com/devices/at86rf231.aspx, 2012.
[2] “HiKoB FOX sensor,” http://www.hikob.com/hikob-fox, 2012.
[3] “HiKoB LION sensor,” http://www.hikob.com/hikob-azure-lion, 2012.
[4] I. Amundson and X. Koutsoukos, “A survey on localization for

mobile wireless sensor networks,” in Mobile Entity Localization
and Tracking in GPS-less Environnments, ser. Lecture Notes in
Computer Science, R. Fuller and X. Koutsoukos, Eds. Springer
Berlin Heidelberg, 2009, vol. 5801, pp. 235–254. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04385-7 16[1]

[5] T. Aysal, M. Yildiz, A. Sarwate, and A. Scaglione, “Broadcast gossip
algorithms for consensus,” Signal Processing, IEEE Transactions on,
vol. 57, no. 7, pp. 2748–2761, 2009.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” Information Theory, IEEE Transactions on, vol. 52, no. 6,
pp. 2508–2530, 2006.

[7] N. Chohan and C. Fiorese, “Cyclenet: Empirical analysis of 802.15. 4
in mobile scenarios,” 2008.

[8] J. Cortes, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, no. 3, pp. 726 – 737, 2008.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0005109807003664

[9] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson,
G.-S. Ahn, and A. T. Campbell, “Bikenet: A mobile sensing
system for cyclist experience mapping,” ACM Trans. Sen. Netw.,
vol. 6, no. 1, pp. 6:1–6:39, Jan. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1653760.1653766

[10] F. Iutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of max-consensus
algorithms in wireless channels,” Signal Processing, IEEE Transactions
on, vol. 60, no. 11, pp. 6103–6107, 2012.

[11] ——, “Analysis of max-consensus algorithms in wireless channels,”
Signal Processing, IEEE Transactions on, vol. 60, no. 11, pp. 6103–
6107, 2012.

[12] S. Kar and J. M. Moura, “Distributed consensus algorithms in sensor
networks with imperfect communication: Link failures and channel
noise,” Signal Processing, IEEE Transactions on, vol. 57, no. 1, pp.
355–369, 2009.

[13] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh, “Probabilistic
reliable dissemination in large-scale systems,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 14, no. 3, pp. 248–258, 2003.

[14] M. Lauzier, P. Ferrand, A. Fraboulet, H. Parvery, and J. Gorce, “Full
mesh channel measurements on body area networks under walking
scenarios,” in Antennas and Propagation (EuCAP), 2013 7th European
Conference on, 2013, pp. 3508–3512.

[15] N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.
[16] N. Maréchal, J.-M. Gorce, and J. Pierrot, “Joint estimation and gossip

averaging for sensor network applications,” Automatic Control, IEEE
Transactions on, vol. 55, no. 5, pp. 1208–1213, 2010.

[17] R. Motwani and P. Raghavan, Randomized Algorithms. New York,
NY, USA: Cambridge University Press, 1995.

[18] A. Pal, “Localization algorithms in wireless sensor networks: Current
approaches and future challenges,” Network Protocols and Algorithms,
vol. 2, no. 1, pp. 45–73, 2010.

[19] N. Patwari, J. Ash, S. Kyperountas, A. Hero, R. Moses, and N. Cor-
real, “Locating the nodes: cooperative localization in wireless sensor
networks,” Signal Processing Magazine, IEEE, vol. 22, no. 4, pp. 54–
69, 2005.

[20] M. Penrose, Random geometric graphs. Oxford University Press
Oxford, 2003, vol. 5.

[21] S. Čapkun, M. Hamdi, and J.-P. Hubaux, “Gps-free positioning in
mobile ad hoc networks,” Cluster Computing, vol. 5, no. 2, pp.
157–167, Apr. 2002. [Online]. Available: http://dx.doi.org/10.1023/A:
1013933626682

[22] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed
sensor fusion based on average consensus,” in Proceedings of the
4th International Symposium on Information Processing in Sensor
Networks, ser. IPSN ’05. Piscataway, NJ, USA: IEEE Press, 2005.

APPENDIX

A. Proof of theorem 3.1

Before reaching the convergence state, the network will go
through a succession of stage Si, we denote ti their associate
dates (i.e. number of clock cycle). ti is a random variable
representing the date at which the stage goes from Si−1 to Si.

• S0 is the starting stage (t0 = 0).

• S1 stage is an stage where each node has (at least)
received the vector of the nodes which are at distance
1 with him, t1 is the first date at which this situation
occurs.

. . .

• Si stage is reached when each node has (at least)
received the vector of the nodes which are at distance
i with him.

It is clear that S∆G
is the end of the algorithm as every node

has received the vector of all other nodes.

Stage S1 is reached when each nodes has received the Bv
vector of its neighbors v, hence it occurs when all the nodes
have sent their packet at least once as no communication are
lost. The well known coupon theorem [17] will help us in
getting the expectation of ti. The coupon collector problem
indicates, given a random variable taking N possible values
with a uniform distribution, the expectation of the number of
trial necessary to obtain each of the N values. This expectation
is proved to be NhN with hn = (1+ 1

2 + 1
3 +. . .++ 1

N ). As the
event S1 occurs exactly when each node has sent his packet
once and as it can be considered that the node that sends his
packet is chosen with a uniform distribution, we are exactly
faced with a coupon collector problem, and the expectation of
t1 is:

E(t1) = NhN = N(1 +
1

2
+

1

3
+ . . .+ +

1

N
)



Again, being in stage S1, the transition to S2 occurs when
each node has again sent its B vector, then all node will receive
a vector from their neighbor containing the information of
the neighbors of their neighbors. Again, we have to wait an
additional number of clock cycle t2 − t1 which expectation is

E(t2 − t1|S1) = NhN

.

As we have:

τ = t∆G
= t∆G

− t∆G−1 + t∆G−1 − t∆G−2 + . . . t1 − t0
We can write:

E(τ) ≤
∆G−1∑
i=0

E(ti+1 − ti|Si) =

∆G−1∑
i=0

NhN = N∆GhN

By using the inequality hN ≤ 1 + log(n), we get the result of
theorem 3.1:

E[τ ] < N∆G(1 + log(N))

B. Proof of theorem 3.2

Let Avk(t) be the event that, during stage Sk, the node v
has not send its packet after t iteration. The probability of this
event is P(Avk(t)) =

(
N−1
N

)t
: node v did not send his packet

during the t time step following the beginning of Sk. If we
have tk+1 − tk ≥ t, it implies that the event Avk(t) has taken
place for at least one node v, hence using union bound:

P(tk+1−tk ≥ t) ≤ P

(⋃
v∈G

Avk(t)

)
≤
∑
v∈G

P(Avk(t)) =
∑
v∈G

(1−1/N)t

Using the fact that 1− y ≤ exp(−y) for 0 ≤ y ≤ 1, we get:

P(tk+1 − tk ≥ t) ≤ N exp(−t/N)

For any ε ≥ 0, if we choose tε = NLog(N) + NLog
(

∆G

ε

)
we get:

P
(
tk+1 − tk ≥ NLog(N) +NLog

(
∆G

ε

))
≤

N ∗ exp
(
−
(
NLog(N) +NLog

(
∆G

ε

))
/N

)
=

N ∗ exp(−log(N)− Log(
∆G

ε
)) =

ε

∆G

Hence, using union bound again, the probability that at least
one stage last more than tε is such that:

P

(
∆G−1⋃
k=0

(tk+1 − tk ≤ tε)

)
≤

∆G−1∑
k=0

P(tk+1−tk ≤ tε) ≤ ∆G.
ε

∆G
= ε

If each stage last less than tε, it implies that the algorithm will
converge in less than ∆G.tε, we have the result:

P(t∆G
< ∆G.tε) ≥ P

(
∆G−1⋂
k=0

(tk+1 − tk < tε)

)
=

1− P

(
∆G−1⋃
k=0

(tk+1 − tk ≥ tε)

)
≥ 1− ε

which completes the proof:

P
(
τ < N.∆G.

(
Log(N) + Log

(
∆G

ε

)))
≥ 1− ε


