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22.1 Introduction

Software means programmable. Hence software defined radio means that the
radio should now be programmable. We know what computer programming
means, and we agree, up to a certain level, on how it should be done. But do we
know what programming a radio means? Several questions are still open: what
will a sdr platform look like in ten years? Will there exist software radio code?
What will be the technical challenges and commercial issues behind this code?

Programming is more precise than configuring or tuning, it implies a much
greater level of freedom for the programmer. But it also means much cheaper
implementations in many cases and in particular a re-use of the same hardware
for different protocols (i.e. with different programs). This is, to our point of
view, the main difficulty of software radio programming: reconfiguration and in
particular dynamic reconfiguration. Dynamic (i.e. very fast) reconfiguration is
now mandatory because some protocols, 3GPP-LTE (Third Generation Part-
nership ProgramLong Term Evolution) for instance, propose channel adapting
for each frame, requiring a setting of the channel estimation parameter in a few
milliseconds.

In this chapter we will try to have an overview of the technical difficulties
of designing a programming environment for software defined radio. Then we
will present one particular solution which aims at defining a virtual machine
dedicated to the domain of software defined radio.

22.2 Programming Environment and Tools for SDR

In this section we present existing sdr platforms and give an insight about
how they are programmed or configured. This brief review leads to the concept
of waveform description language developed in subsection 22.2.2 and reveals the
need of a middleware dedicated to sdr programming (subsection 22.2.3). Finally
we introduced the Radio Virtual Machine (rvm) concept, which is one possible
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2 Chapter 22. Radio Virtual Machine

choice for sdr middleware, in subsection 22.2.4. Our proposal for such a radio
virtual machine will be detailed in section 22.3.

22.2.1 Hardware Platforms for sdr

Unlike for desktop computers, software radio hardware is not standardized yet.
The only common point among all sdr hardware platforms is the complexity of
their architecture. They are usually composed of many processing components,
dynamically reconfigurable, and interconnected with fast communication links.

The source of this complexity is, of course, the needed processing power and
the need to implement possibly all protocols. Software radio attempts to imple-
ment in software most of the radio processes that are initially hardwired. In
practice, digital treatment are implemented by algorithms that require many
giga-operations per second (gops) to meet protocols real time constraints. For
instance, a turbo-decoding may require 150 gops which is far from what embed-
ded processors can achieve.

This problem is solved with the use of dedicated processing elements: fft,
turbo decoder, fir filters, digital predistortion and matrix inverse for instance.
These components, also named ip for intellectual property, help to achieve the
required computing power. Another solution to this problem is to use Digital
Signal Processors (dsp), dedicated to stream processing. Note that the complex-
ity of software radio treatment keeps on increasing. For instance, the 3GPP-LTE
protocol provides a data throughput which can reach 300 Mbps. Hence it is very
likely that the inherent difficulty of building a software radio hardware platform
will stay for a while.

As mentioned in [FSC09], most of existing sdr platforms are prototypes built
by public or private research laboratories. Indeed, sdr platform design is a real
challenge for hardware architects as well as for software developers : the good
trade-off among computing power, power consumption and flexibility (i.e. pro-
grammability) is very hard to find.

We present some existing sdr platforms by classifying them in two categories:

1. DSP centric platforms that use only software components (dsp, gpp, etc.),
and hence are highly flexible but must usually be associated to hardware ips
to meet real time performance.

2. Heterogeneous platforms that try to mix dedicated hardware and software
components.

DSP Centric Platforms
Many companies (Sandbridge, picoChip, Fujitsu, Icera, Infineon, NXP, etc.) pro-
pose integrated circuits based on dsps, here are some examples:

r The PicoArray processor [DTP+05] from picoChip. This circuit integrates
hundreds of small processors. PicoArray can be programmed in ansi C with
a dedicated programming environment. Global computing power can reach



Radio Virtual Machine 3

200 gops. Associated to some selected ips (fft, turbo-decoder, . . . ), this
circuit is able to implement a complete w-cdma modem.r X-GOLDTMSDR-20 from Infineon technologies is a signal processing processor
for base band processing for multi-standard mobile phones. Infineon proposes
hardware/software solutions with this platform that support recent protocols
(gsm, w-cdma, lte, . . . ).r EVP (Embedded Vector Processor) [vBHM+05] from NXP : this architecture
is able to support various modes of the lte protocol.r In [LLW+07], Lin et al. present a dsp based system composed of 4 simd (Single
Instruction Multiple Data) vector processors. This architecture can realize two
different processing chains: ieee802.11a and w-cdma.r Tan et al. [TZF+09] present an original approach for baseband treatments
realized on general purpose processors. They implement ieee802.11a/b and
g physical layers using multi-core architectures.

It is important to realize that although a number of important software plat-
forms are mentioned in the literature, many of them have a limited computing
power and a bad power consumption, they also need to be associated to dedicated
hardware ips.

Heterogeneous Platforms
These platforms integrate dedicated ips, usually controlled by a processor. Exper-
imental version may contain fpgas for implementing recent signal processing
algorithms.

r Small Form Factor (sff sdr) Development Platform from Lyrtech: this board
embeds a dsp and an fpga, for baseband processing, connected to a RF board.
A development environment is given for programming this machine.r Universal Software Radio Peripheral (usrp) : is a hardware platform conceived
for the gnu Radio project [TT09]. It connects to a computer with a usb

interface.r Kansas University Agile Radio (kuar) platform [MES+07]: is an experimental
sdr platform that includes a Pentium M processor and a Xilinx Virtex2 fpga.
The board connects to a PC either through a gigabit Ethernet interface or
through a pci-express link.

Even from the small platform list presented here, it seems clear that the work
of developing a new protocol for each of these platform is a huge task. Expressing
this protocol in an existing language like C or Java will not help because of the
granularity of the basic operators used in sdr platforms (e.g: fft operation).
Moreover, there is a real challenge in expressing in a high level language the
dynamic reconfiguration which is hardly realized in hardware but will necessarily
appear soon. We really need a way to describe protocol physical layers (so-called
waveform processing) that can be understand by all the existing sdr platforms.
This gave rise to the concept of waveform description language.
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22.2.2 Waveform Description Language

A waveform description language (wdl) is simply a programming language ded-
icated to the expression of the physical layer of a communication protocol: how
bits are modulated and transmitted on the antenna for emission and the reverse
way for reception. It basically describes the waveform that will be sent in the air
for a given packet to be communicated. The design of a waveform description
language is of course highly connected to the existence of at least one sdr plat-
form able to implement this physical layer. Meanwhile, the long term objective
is to have a common wdl for all existing sdr platform.

Many works have pointed out the difficulties in expressing wave-
forms [GSBR04, KAW+06, Wil01, YJ]. Here is a summary of the properties
that a waveform description language should try to respect:

r Be a formal language. Waveform specifications based on large textual docu-
ments are often error-prone for developers, the waveform specification should
be compiled on each sdr platform;r Implement a clear and extensive Hardware Abstraction Layer (HAL) adapted
to most existing sdr platforms. As for processor, a clear hardware abstraction
layer will ease the adaptation to different sdr hardware architectures. It also
clarifies what is the assumption on the targeted sdr platform and helps in
writing specifications that are independent of any hardware platform.r Use of a component based model which is well adapted to sdr. Many protocols
can be expressed by connecting components : fft, Viterbi decoder, scrambler,
etc. These common operators should be easily identified into the language.r Use an object oriented programming paradigm to ease the mapping between
hardware components and software objects semantic.r Follow the “Write Once, Run anywhere” philosophy, which is a slogan created
by Sun to describe benefits of Java virtual machine. This gave rise to the idea
of Radio Virtual Machine (rvm).

We now briefly present some attempts that have been made to realize wave-
form description language. These works are results of academic research, it is
worth noting that there is also a military project titled Advanced Transmission
Language and Allocation of New Technology for International Communications
and Proliferation of Allied Waveforms (ATLANTIC PAW) whose goal is to pro-
vide a unique standard for expressing waveforms.

Wilink Waveform Description Language
In [Wil01], Wilink presents a Waveform description Languages named wdl,
proposed within the Programmable Digital Radio (PDR) in UK. It is a behav-
ioral system description: a hierarchical block decomposition using state machines
within boxes.

wdl uses a combination of principles defined in various research domains:
graphical interface concepts found in block diagram languages such as Ptolemy,
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Cossap, spw. Hierarchical state machines, used for instance in Argos or SDL
are used together with synchronization mechanisms inherited from synchronous
languages like Esterel. Data types manipulated are defined in object oriented
languages as Java or C++.

Figure 22.1 gives an insight of how is expressed a waveform in wdl. It describes
a part of the FM3TR waveform which is an international test waveform initially
developed by the Air Force Research Labs.
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Figure 22.1 Example taken from [Wil01] a wdl description of the FM3TR physical
layer

Figure 22.1 is a graphical representation of an entity: a transmission module.
This transmission module is itself refined: it is a state machine, each state being
itself a block diagram. At the lowest granularity, computations are expressed in
Java-like syntax.

Each wdl block gets an internal schedule, hand-shake mechanisms are used
to synchronize with input/output data. The refinement occurs up to a granu-
larity level that is suited to the available library provided by the development
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framework associated with wdl. The wdl framework has to be provided for each
target architecture. This language does not permit dynamic reconfiguration of
hardware. To our knowledge there is no real implementation of wdl showing
performance issues.

VANU rdl (Radio Description Language)
rdl is a waveform description language developed by VANU, Inc. Chapin et
al. present its foundation in [CLM01]. A radio application is described by an
oriented graph where nodes are basic signal processing operators provided in the
form of software libraries. A rdl interpreter is an execution environment that
realizes the required processings, it maps the description graph to the targeted
platform by configuring the available hardware. The interpreter can also use
software blocks, i.e. software implementation of signal processing primitives.

rdl defines two basic elements:

r Modules : basic signal processing operators defining the nodes of the graph.r Assembly : i.e. graphs, composed of modules and sub-graphs.

Common types used in signal processing languages such as ports, channels, and
streams are available in rdl.

module RxConvDecoder {

parameter EncoderFormat format;

dataout GsmFrame output;

datain GsmFrame input;

}

assembly RxConvDecoderDef

implements RxConvDecoder {

module ConvDecoder convDecoder;

module DecoderFrameGenerator frameGen;

module DecoderStreamGenerator streamGen;

// data flows

streamGen.mProtectedOutput -> convDecoder.input;

streamGen.mUnprotectedOutput -> frameGen.mUnprotectedInput;

streamGen.mHeaderOutput -> frameGen.mHeaderInput;

convDecoder.output -> frameGen.mProtectedInput;

// link ports

frameGen.mOutput -> output;

input -> streamGen.mInput;

}

Figure 22.2 Example of a rdl graph specification

An example is illustrated in Figure 22.2. This assembly uses three modules,
each of these modules can be itself refined in other assembly or directly imple-
mented by an available library primitive.
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An implementation of the gsm protocol has been realized using rdl [CB02].
The rdl program required 36 modules and 28 assemblies representing approx-
imately 3200 lines of code. Again dynamic reconfiguration cannot be achieved
with this language.

E2R fdl(Functional Description Language)
E2R is the acronym for European research project End to End Reconfigurability
which aims at developing architectures of reconfigurable communicating systems.
Burgess et al. [BM] have studied the possibility of defining a language able to
unify waveform specifications.

The E2R project has defined a software architecture for radio equipment. This
architecture, referred to as “Configuration and Control Architecture”, is shown
in Figure 22.3. It isolates three abstraction levels: i) hardware abstraction, ii)
system abstraction and iii) function abstraction. This work is interesting because
it highlights the difficulty of the waveform description language definition and
implementation.

Function 
Abstraction

System 
Abstraction

Hardware 
Abstraction

Configuration Management

Configuration Control

Configuration Management Module

Configuration Control Module

Logical Device Driver

Execution Environment

Physical Device Driver

Hardware

Configurable Execution Module

Figure 22.3 Configuration and control architecture of E2R radios

The fdl (Functional Description Language) defined in the E2R project is
based on xml and basically proposes a hierarchical composition of components
as does rdl. Again, this structural description is useful for describing different
protocols but cannot implement dynamic reconfiguration.

In [ZDSS07], Zhong et al. have implemented in software an ieee802.11a
emitter using fdl. They show that the fdl program size is not a big problem
but that the execution performance is much worse than with dedicated hardware.
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spex Language
spex is a programming language for sdr developed by the Michigan university
SDR group. This language is dedicated to dsp-centric platforms and more pre-
cisely takes advantage of simd dsp. A spex description is split in three abstrac-
tions: Kernel spex, Stream spex and Synchronous spex.

r Kernel spex is an imperative language supporting native dsp arithmetic oper-
ations. It is used to define kernel signal processing algorithms (e.g. fir, fft,
etc.).r Stream spex describes assembly of kernel programs: connections with chan-
nels and sequential scheduling.r Synchronous spex allows parallel construction and synchronization with real
time constraints.

spex is an interesting language but is clearly oriented to pure software imple-
mentation: code is compiled and mapped on a multi-core architecture. It is not
clear yet whether these architectures will succeed for sdr.

22.2.3 Middleware for SDR Programming

The usage of middleware in networked application is now widely accepted. Mid-
dleware requires the definition of standardized interfaces enabling heterogeneous
distributed software components to communicate. Middleware is the software
that implements an intermediate abstraction between applications and differ-
ent execution platforms, they usually provide a higher level api than the one
provided by the hal level. Software radio, considered as a particular field of
software programming, needs a specific middleware for radio applications. We
present here two attempts that have been made to define an sdr middleware.

Software Communication Architecture (sca)
The sca architecture [JTR06, BK07] has initially been conceived in the American
military program jtrs (Joint Tactical Radio Systems) for the development of
sdr. It is now considered as a middleware dedicated to hardware sdr platforms.

The sca environment is composed of three main elements: the Core Frame-
work, a Corba Object Request Broker and a real time operating system. This
environment is represented in Figure 22.4.

The sca framework is the most popular software radio software architecture.
Many companies developing middleware for sdr provide implementation of sca

on different hardware platforms, such as for instance Prismtech, Zeligsoft and
OIS. However, it is obvious that the use of the Corba specification has an impor-
tant impact on performances and makes this system not well adapted to actual
commercial communication protocols.
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Figure 22.4 Software architecture of sca

UPC Radio Software Framework
Gelonch et al. from Polytechnical University of Catalonia (UPC) propose
in [GRMF05] the p-hal framework: Platform and Hardware Abstraction Layer.
The p-hal framework abstracts hardware radio platforms by functional services,
these services can be categorized in three classes:

r Real time control of radio processes.r Exchange of data between different processing elements.r Parameter setting and supervision of functional modules.

By providing a time division in slots, the p-hal environment tries to bring
a simpler real time radio programming environment. In [GMSG08], Gomez et
al. present a comparison between p-hal and sca on a dsp platform and claim
much better performance for p-hal .

22.2.4 Radio Virtual Machine Concept

From what we have seen above, we would like to see a software defined radio
system as a software layer offering application programming interfaces (api)
enabling the definition of waveform, and their implementation on a hardware
platform. In 2000, Gudaitis and Mitola proposed in [GI00] to apply the vir-
tual machine concept to software defined radio, proposing the term radio virtual
machine (rvm).

Java virtual machines have allowed the wide spreading of Java applications.
Performance weaknesses of bytecode execution has lead to the proposal of just-
in-time compiler (JIT) that bridged the performance gap. According to Gudaitis
and Mitola a radio virtual machine is a particular virtual machine (vm) with its
own programming language, which we call source code, that can be compiled into
bytecode for the vm. This vm will, as it is the case for Java, provide a common
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hardware abstraction for software and firmware/hardware developers. This would
split the radio application development cycle in two (possibly parallel) phases:

r Software development of the radio application in vm bytecode, common to all
platforms.r Platform specific development to optimize execution of the vm on each par-
ticular targeted platform.

Gudaitis and Mitola enumerate a list of important goals that a rvm should
achieve:

r Provide a programming language that permits an easy expression of physical
layers of most protocols and that can be compiled into an executable form
(bytecode).r Provide an abstraction based on the component model paradigm.r Avoid Java virtual machine pitfall: provide mechanism to handle real-time
constraints and easy access to hardware.r Include an arbitrary bit-width arithmetic.

Some patents have yet been granted [Fer02], [MKB07], [Bur04] but the field
is still wide open for innovation.

22.3 An Existing Radio Virtual Machine Implementation

This section presents a particular prototype rvm implementation that has been
realized during R. Ben Abdallah Phd Thesis [Abd10], within a collaboration
between three French institutes: CEA, Inria and Insa-Lyon. The goal of this work
was to explore the technical viability of using a virtual machine for radio appli-
cation on a real sdr hardware platform, namely the Magali [CBL+10, CLT+09]
chip developed at the cea Leti laboratory.

As we have frequently noticed above, the main difficulty of sdr programming
relies in the dynamic reconfiguration: such a system should be able to configure
some of its components within a few hundred microseconds (e.g. within the
same frame for lte advanced protocol). The reconfiguration process is generally
triggered with depending on system status and external events such as radio
channel impairments. This issue has to be taken into account in the design of an
sdr programming model.

22.3.1 Waveform Programming Model

The approach that we have proposed is the following: we introduced a two steps
programming model called reconfigurable khan process network that formalizes
the reconfiguration phase and separates it from the computation phase. Then
we propose a computation model which should support most of the existing
heterogeneous platform, the main restriction of this computation model is that
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it is not well adapted to massively parallel systems where scheduling is done
within each of its processing element: our model requires a centralized scheduler.

Computation Model
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Figure 22.5 Example of a rkpn, during reconfiguration (left) and during computation
(right)

Khan process networks (kpn) have been introduced in the seventies by Gilles
Kahn [Kah74]. kpn is a distributed computation model with a precise semantic.
In kpn, an application is a set of sequential processes communicating through
channels which are blocking fifos. It is now widely used for modeling signal
processing systems. In a kpn, a process cannot test whether a channel is empty
or not, it cannot choose which channel to read from. This is not an important
restriction for modern signal processing programs except during reconfiguration
where the channels between processes are changing. The reconfigurable khan
process network (rkpn) computation model is composed of sequential processes
connected by blocking fifo (i.e. as for a kpn), its behavior alternates between
computation phases (i.e. standard kpn computation) and configuration phases
during which channels between processes are allowed to change. Figure 22.5
shows the configuration phase and the following computation phase of a rkpn.

We have added the following constraints to this model in order to match with
the sdr application and hardware platforms:

r There is a particular node that we call controller that controls the configu-
ration of the kpn. This node cannot be source or sink of an fifo but can
receive interruptions from other nodes. This node can also, during reconfigu-
ration phases, access to other nodes memory and of course reconfigure other
nodes and connections between them.r During each computation phase, each node knows in advance the number of
data unit that it should process. We call that a static control program, it helps
in optimizing implementation and is usually not an important restriction for
telecommunication protocols (as opposed to multi-media algorithms), as soon
as reconfiguration is available.
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r For convenience, one usually adds two particular nodes called source and sink
to materialize the world outside the sdr (e.g. RF front end on one side and
higher osi level protocols on the other side).

Note that this computation model does not mention the use of a virtual
machine, it is adapted to other sdr middleware solutions. It takes into account
the reconfiguration requirements of sdr applications. Another novelty is that
the data of the signal processing stream can have an impact on the configura-
tion and control of the system. Indeed, the controller can access data stored in
nodes (Figure 22.5, left), possibly do some computations with them, and finally
configure the network. This is useful for instance when implementing advanced
channel adapting algorithms.

FFT

Configuration Event notif ication

 Radio Vir tual
Machine

Control

Figure 22.6 Example of radio component: fft

Execution Model
The Execution model is an abstraction of the hardware platform on which will
be executed the sdr program. It is important to emphasize the fact of having a
component based model for all ips of the platform. We impose that an ip should
be a radio component and have the following interfaces (a radio component model
is shown in Figure 22.6):

r Configuration interface: for tuning functional parameters of the ip.r Communication interface: for the main input/output data stream.r Control interface: for being started, stopped, checked, etc. by the controller.r Notification interface: for notifying the controller of particular events (corre-
sponds to an interrupt mechanism).

Note that such a radio component can be a programmable device (dsp or gpp)
or a dedicated ip (fft, matrix inversion, etc.).

The proposed execution model is simply a set of radio component, such as
defined above, interconnected by an efficient communication mechanism and
associated to a particular ip that is the controller (gpp or dedicated ip). The
execution platform will of course contain some memory elements (ram). We
choose the shared memory to communicate data between ips and the controller
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but other communication mechanism could be envisaged. Experience shows that
Direct Memory Access modules (dma) are necessary to achieve acceptable com-
munication performance. An example of target execution platform architecture
is shown in Figure 22.7.
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Figure 22.7 Execution model adapted to rkpn

22.3.2 Physical Layer Description Language

The Physical Layer Description Language (pldl) is the programming language
that is proposed in [Abd10] to describe physical layer protocols. Its main compo-
nent is what we call the rvm api, which is a set of primitives and data structures
dedicated to the rvm concept.

The pldl is adapted to the rkpn programming model, it is executed by the
controller which: i) allocates and frees radio resources, ii) configures radio com-
ponents, iii) controls the execution of components and iv) accesses data stored
in components. The pldl program is platform independent, it can be executed
on most sdr platform as well as on a desktop PC. One simply has to provide
an implementation of the rvm api on each targeted platforms. We use an object
oriented syntax for describing the rvm api, in the following rvm basically rep-
resents the controller and we describe its possible actions as methods of the rvm
class.

Here is a brief description of the primitives of the rvm api:

Radio Resources Allocation / Releaser comp desc rvm.allocate ( comp type ) : Allocates a hardware component or
creates an instance of a software component. This method returns a descriptor
of the allocated component: comp desc.r rvm.free ( comp desc ) : Releases the hardware component or frees the
software component designed by the descriptor comp desc.
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Radio Component Configurationr core config desc rvm.build core config ( comp desc, core param list ) :
Builds a native configuration for the component comp desc using specified
functional parameters. Returns a configuration descriptor.r com config desc rvm.build com config ( comp desc, com param list ) :
Builds a communication configuration for the concerned component (for
instance: IP input/output controller configuration). Returns a configuration
descriptor.r rvm.free config ( com config desc ‖ core config desc ) : Releases the mem-
ory used for the specified configuration.r rvm.configure ( comp desc, core config desc, com config desc, event type ) :
Configures the component specified by comp desc using configurations
stored in rvm memory: core config desc and com config desc. The parame-
ter event type specifies if the component must send a notification to the rvm

for a particular event.r rvm.connect ( comp desc src, port num src, comp desc dest, port num dest,
data type ): Interconnects source component output port with destination
component input port (i.e. configure a fifo). The parameter data type may
be useful to configure communication channels.

Radio Component Execution Controlr rvm.start ( comp desc ) : Activates the behavior of a component previously
configured. Note that some hardware components are implicitly triggered by
data arrival, but this is not the case for the rvm software components.r rvm.stop ( comp desc ) : Stops the behavior of the specified component.r rvm.wait ( event type, [comp desc event source] ) : Blocks the execution of
the rvm until an event notified by a component arrives (i.e. an interruption
arrives). Optionally the source of the expected event could be specified.

The pldl also includes methods for manipulating data of the data flow. In
this case, it is up to the rvm programmer to check for memory consistency
using the synchronization method rvm.wait. This also implies some technical
choices such as a global memory addressing scheme.

Data Flow Access Methodsr coarse data struct rvm.read ( mem ptr, size ) : Copy a data bock of size size
stored at address mem ptr into the rvm local memory. Returns a pointer to
the raw data.r rvm data table rvm.convert2rvm ( coarse data struct, data type ) : Con-
verts raw data from data flow to a data type understandable by the rvm

language ( data type).
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[.....]

print("\n----------\nDATA FIELD DEMODULATION\n----------\n")

-- (0) Initialization --
Ndbps, Ncbps, Nbpsc, coding_rate, modulation = initparam802_11a(rate)

-- (1) Create required instances --
scra1 = scrambler.allocate()

-- (2) Connect the modules --
rvm.connect( vite1, 1, scra1, 1, binary_type )
rvm.connect( scra1, 1, dma2, 1, binary_type )

-- (3) Configure the modules --
param0 = ext_symbol_size
param1 = 16
param2 = symbol_size
param3 = nsym
dma_engine.configure(dma1, "RECEIVE ext_symbol_size; DESTROY 16",

NO_IT, param0, param1, param2, param3 )

phase_drift = phase_drift + 64*phase_amount

rotor.configure(roto1, phase_drift, phase_amount,
nsym*symbol_size, NO_IT)

fft.configure(fft1, mode_fft, fft_size, nsym*symbol_size, NO_IT)
equalizer.configure(equa1, coef, nsym*symbol_size, NO_IT)
constellation.configure(cons1, Ncbps, Nbpsc, nsym*symbol_size, NO_IT)
deinterleaver.configure(dein1, Ncbps, Nbpsc, nsym*Ncbps, NO_IT)
depuncturer.configure(depu1, coding_rate, nsym*Ncbps, NO_IT)
viterbi.configure(vite1, nsym*Ndbps, NO_IT)

[.....]

-- (4) Launch modules --
rvm.start( dma1 )
rvm.start( roto1 )
rvm.start( fft1 )
rvm.start( equa1 )

[.....]

-- (5) Wait for result --
rvm.wait( SIGTER )
print("\nProcess terminated. RVM wakes up.\n")

[.....]

Figure 22.8 Example of a waveform description using pldl formalism corresponding to
(part of) the data field demodulation phase of the ieee802.11a protocol.

r coarse data struct rvm.convert2raw ( rvm data table, data type ) : Con-
verts data from an understandable data type by the rvm language to a raw
format specified by data type (inverse of rvm.convert2rvm).r rvm.write ( coarse data struct, mem ptr ) : Copy the data from the
local rvm memory to the system memory at address mem ptr (inverse of
rvm.read).

Figure 22.8 gives an insight of what might be a waveform description using
pldl. For a detailed description of the language, refer to [Abd10].
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22.3.3 RVM Implementation Issues

There exist a lot of virtual machines, including light versions of Java vm (e.g.
Squawk[SCC+06], JVM[LY99]). Java might be a good choice provided the tar-
geted platform implement the Jazelle processor [Por05] otherwise Java vms are
too complex. Table 22.1 summarizes pro and cons of the vm we have isolated as
potential candidate for being integrated into an embedded system such as a soft-
ware defined radio system. We have chosen the Lua virtual machine [IDFF96]
because it has been conceived to be light, embedded and easily extensible to
define domain specific languages.
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small memory footprint x x x x x x x x
performance x x x x x x x
extensibility x x x
memory size x x x x x x x x
documentation x x x x x

Table 22.1. Comparison of virtual machine candidate to implement a rvm

We have first implemented as a proof of concept, the rvm api on a standard
PC, on which a software implementation of the ieee802.11a protocol was avail-
able [ARFD09]. In this case, allocating a component would create a thread and
call a function corresponding to the computation done by the component. The
resulting software architecture is shown on figure 22.9 (left).

Magali SoC Hardware

Faust2 api
eCos RTOS

RVM api

Virtual Machine

Linux OS on a PC

802.11a 
functions

RVM api

Virtual Machine

Figure 22.9 Software architecture of the Radio Virtual Machine, on a personal
computer (left) and on the Magali Chip (Right)

An implementation of the rvm was then realized on the Magali Chip. Magali
is a system on chip (SoC) developed at the cea Leti, also called Faust2 as being
second generation of the Faust SoC [DBL05]. Magali is dedicated to physical and
MAC layers of 4th generation telecommunication protocols such as 3GPP-LTE
or ieee802.16e (WiMax). It is composed of an asynchronous network on chip
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with a 2D-mesh topology, each router of the network being connected to the
components of the system.

Figure 22.10 presents the different components available on the chip. These
components are dedicated ips necessary to realize ofdma processing: fft, ldpc,
turbo-decoder, etc. In addition to that, Magali contains the following specific
components:

r The smart memory engine (sme) is a programmable dma extensively used
to move data between components. All the memory available on the chip is
accessed through these smes.r The Mephisto processor is a vliw dsp used to realize efficiently digital signal
processing algorithms: channel estimation, mimo decoding, digital predistor-
tion, etc.r The arm1176 is a general purpose processor used for the global control of
the Magali platform as well as for mac layer processing. In our case this
processor will be used as the rvm global controller described previously, i.e.
the Lua virtual machine will be executed on this processor. This processor
can also access directly to the memory without going through an sme.r Associated to each router is a dedicated component called ccc for Commu-
nication and Configuration Controller that is used to regulate data exchange
between components and their configurations.
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Figure 22.10 The Magali system on chip

As the reader can see the Magali platform is quite complex and it is very diffi-
cult to precisely present all the implementation work that occurred for having a
radio application running on our radio virtual machine. We simply enumerate the
different stages of the implementation and then we will compare this implemen-
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tation with a native (i.e. handcrafted) implementation of the same application
on Magali.

The reader must be aware that an important choice was made: we decided
to implement a soft virtual machine. The Lua vm has been ported on the arm

processor (with eCos OS). Another possibility would have to use a hard virtual
machine, i.e. a dedicated processor for bytecode interpretation. But this would
mean to build another chip.

The first part of the work was to adapt the rvm api presented in section 22.3.2
to the Magali platform. The Magali programming environment provides an api

called F2 api, the rvm api encapsulates this native api. Then, we ported the Lua
virtual Machine to the arm processor so that programs such as the one presented
in Figure 22.8 can be executed on the Magali platform. Finally we wrote the pldl

program for a 3GPP-LTE receiver configured according to a particular operating
mode in order to validate and experiment our rvm prototype.

22.3.4 Performance Results for a CFO IEEE802.11a

The Carrier Frequency Offset (cfo) represents the phase shift between emitter
and receiver clocks due to hardware imperfections. First, we have implemented
the cfo error correction algorithm present in the ieee802.11a protocol. Then,
we have measured the memory footprint and the execution time required by
the cfo application for each of the three configurations of implementation on
the Magali chip: i) native implementation (hand-coded, as it was done without
rvm), ii) with rvm api or iii) with the virtual machine. Figure 22.11 illustrates
these three configurations in the case an fft operator.

Figure 22.11 Different possibilities for executing a fft on the Magali platform once
the rvm was realized.

The performance evaluation results have been obtained on the cycle accurate
vhdl simulator of Magali chip. These results are depicted as following:

The sizes of the executable programs corresponding to the three configurations
(native, rvm api and rvm) are presented in table 22.2.
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Configuration type Memory footprint (KB)
Native 96
rvm api 100
Complete rvm 212

Table 22.2. Size of the programs for the three configurations of the CFO of ieee802.11a

The execution time is presented in Figure 22.12. It is clear that the overhead of
the rvm api is not very important. This proves that our pldl fits well with the
Magali platform which is a real sdr platform, whereas adding a virtual machine
to enable portability has an important cost: the memory footprint is doubled and
the execution time is almost multiplied by ten. For a more precise presentation
of the performance results, see [ARFM10]

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

NATIVE PRG-MODEL FULL-RVM

S
im

ul
at

ed
 to

ta
l e

xe
cu

tio
n 

tim
e 

(m
s)

Implementation modes

Simulated total execution time for different implementations

INIT
CFO-computation

CPU-CTRL

Figure 22.12 Execution time for the three configuration of the CFO of ieee802.11a

However, this vm implementation is a prototype and can be optimized much
more. Analysis of the execution time shows that most of the time overhead is
spent in native function calls, which imply access to a hash function, and data
type transformation between Lua types and native types. These performance
problems can be reduced with the use of well known techniques such as runtime
compilation or binary translation techniques [Ayc03, CM96]. Another possibility
would be to use hardware accelerators for the chosen virtual machine such as
Hard-Int [RJ00], Jazelle [Por05] or picoJava[PS07].
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Reference [Abd10] presents a complete 3GPP-LTE receiver implemented on
top of the rvm. Real time constraints were not met in this functional demonstra-
tor of the rvm, but as mentioned above, virtual machine optimization techniques
can be applied. In any case it is very important to realize that optimization mech-
anisms present on existing sdr platforms should be taken into account when
implementing a waveform description language for a given platform, in order to
meet real time and power consumption constraints.

22.4 Conclusion

In this chapter we have briefly presented the technical problems that occur when
trying to program a software defined radio system. The complexity and variety
of today’s hardware sdr prototypes highlights the need of an abstraction layer
dedicated to software define radio systems. We have mentioned some attempts
to give a common format for software radio programs, then we have investigated
more precisely the concept of virtual machine for software radio which seems to
be very promising.

Radio virtual machine is attracting because its goal fulfills the requirements
mentioned above: write one software radio program which executes on every
software radio platform. In the second part of this chapter, we have presented
a radio virtual machine prototype developed on the Magali sdr platform at the
Leti laboratory. This experiment shows that a radio virtual machine powerful
enough to reach real time performances required by modern telecommunication
protocols must be optimized from the very beginning of its realization. We have
proposed to use just-in-time compilation and binary translation techniques dur-
ing rvm design and implementation. More generally, memory management and
data representation issues should be carefully studied during rvm design.

It is very likely that, as it has been the case for computers or parallel machines,
the software tool-chain available on sdr system will have a huge technical and
economical impact on the future of communicating objects. Depending on the
available computing power, the software models and techniques presented here
will not only apply to baseband but also to digital processing part in front-
end such as digital pre-distortion, digital up-conversion and down-conversion for
instance.
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