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Abstract

On most recent systems on chip, the performance bottle-
neck is the on-chip communication medium, bus or network.
Multimedia applications require a large communication
bandwidth between the processor and graphic hardware ac-
celerators, hence an efficient communication scheme using
burst mode is mandatory. In the context of data-flow hard-
ware accelerators, we approach this problem as a classi-
cal resource-constrained problem. We explain how to use
recent optimization techniques so as to define a conflict-
free schedule of input/output for multi-dimensional proces-
sor arrays (e.g.,2D grids). This schedule is static and al-
lows us to perform further optimizations such as grouping
successive data in packets to operate in burst mode. We
also present an effectiveVHDL implementation onFPGA

and compare our approach to a run-time congestion res-
olution showing important gains in hardware area.

1 Introduction

With the widespread development of systems on a chip
(SoC),VLSI designers benefit from a lot of flexibility in the
choice of their architectures. The conjunction of this huge
design space with more and more aggressive time-to-market
constraints is now a convincing argument to include high-
level design tools in SoC design methodologies. When a de-
signer integrates a dedicated hardware accelerator in a SoC,
he/she must implement an input/output protocol, composed
of software and hardware parts. The software part is usually
called thedriver, the hardware part theinterface.

While the high-level synthesis research community has
focused on trying to derive efficient dedicated hardware
accelerators from high-level specifications, the problem of
generating automatically an interface between these accel-
erators and the rest of the SoC has received only little at-
tention. However, as most designers can tell, such an in-
terface is often the most tedious and error-prone part of a

design and it has often a strong influence on the actual per-
formance benefits provided by the hardware acceleration.
This problem is even strengthened for stream processing ap-
plications: huge parallelism is present but can be ruined by
an inefficient handling of data-stream communications.

We are interested in a particular class of hardware ac-
celerators, namelyregular processor arrays. Processor ar-
rays are inherited from systolic arrays and can be automat-
ically derived through a well-understood design methodol-
ogy [11]. Pure systolic architectures happen to be imprac-
tical since they exhibit too much parallelism to meet the
bandwidth and resource constraints. Strategies were pro-
posed to derive processor arrays in the presence of resource
or I/O constraints [20, 15, 12, 5, 4, 6], leading to a deep un-
derstanding of thepartitioning transformation [21, 9, 6, 8].

Partitioning amounts to finding resource-constrained
schedule and allocation for arbitrary large regular computa-
tions. For the design of the Pico tool [19], Darte, Schreiber,
Rau, and Vivien [6] proposed an elegant theory to select a
valid schedule for partitioned processor arrays, associated
with an efficient implementation scheme to control the re-
sulting architecture. Derrien and Rajopadhye [8] proposed
a modeling of the partitioning problem that helps the de-
signer choose the suitable partitioning parameters to obtain
an architecture compliant with user-defined constraints.

So far, none of these works address the following cru-
cial issue: how to efficiently interface the resulting archi-
tectures to a bus. The problem of efficient interface gener-
ation of hardwareIP (intellectual property) was studied in
the case of linear processor arrays [16, 17, 7, 10], leading
to the design of a generic master or slave interface that can
be parameterized to connect to differentIPs provided that
they correspond to processor arrays where data is entering
the array from a single processor element. Our problem has
been tackled in the Paro project [2] and the Pico tool [19].
We will compare these approaches to ours in Section 4.

Many interesting applications lead to multi-dimensional
arrays structures such as image processing, which often
makes use of2-dimensional processors arrays. Interfacing



multi-dimensional arrays is more complicated than1D ar-
rays because possibly many data can enter the array simulta-
neously. At some point, these data have to be sequentialized
in a FIFO-like channel that can be connected to a memory
through a bus or a network on chip with reduced scalability.

By carefully choosing the partitioning parameters, the
designer can adapton averagethe bandwidth required by
the processor array to the bandwidth available on the com-
munication medium [8]. But there is no guarantee that two
processors of the array will not access the bus simultane-
ously. A natural solution is to implement a dynamic reso-
lution of the conflicting accesses with an arbitration mech-
anism, as suggested in [19]. We try to promote an alterna-
tive solution by showing that a static schedule without con-
flict can be found for I/O of partitioned array processors.
Thanks to this property, the hardware area can be reduced
and, moreover, burst mode communication can further be
implemented because the I/O schedule is known in advance.

In this paper, we explain how to find this static I/O
scheduling using the result presented in [6]. We explain
our solution in the partitioning framework developed in [8].
We briefly show how the result can be generalized ton-
dimensional arrays. We also propose practical issues for
hardware implementing the resulting arrays. We experi-
ment this new methodology by aVHDL implementation of
a partitioned matrix-product array and compare this inter-
face mechanism to a dynamic one, showing significant im-
provement in the area of the resulting hardware. Further
experiments are currently on-going to measure the impact
of grouping communications in burst.

2 Target Architectural model

Interface protocols and communication behavior are
very dependent on architecture characteristics, thus provid-
ing a universal solution for interface is impossible. Here we
state our assumptions concerning the SoC platform and the
hardware accelerator, under which our result can be reused.

Our target SoC is at least composed of a processor, a
memory, a communication medium (bus or NoC) and a
hardware accelerator (Fig. 1). The hardware accelerator is
composed of a processor array that will be described later
and a bus master interface. Being a bus master, the inter-
face can initiate burst-oriented data transfers from or to the
main memory. We believe that, in the context of stream
processing, the use of a slave interface is very unlikely to
provide enough bandwidth to ourIPs. The interface shares
a common clock with the processor array. Asynchronous
communication with explicit handshake protocol can occur
between the interface and the memory if the SoC is glob-
ally asynchronous. The interface may also contain a small
amount of memory to buffer burst communications and/or a
bus arbiter if a dynamic communication scheme is used.

�� �� ��

�� �� ��

�� �� ��

������	
�����������
������
��������

�������

����������
����

�������
��������

����
����

�����

���

Figure 1. The SoC generic interface model.

Communications between the interface and the proces-
sor array are performed with oneFIFO per stream. A stream
is for instance the successive pixels of an image. The term
FIFO is used to model the fact that we allow a bandwidth of
one data per clock cycle for each stream between the inter-
face and the processor array, but these internal communica-
tions can be buffered in aFIFO. The hardwareIP itself is a
partitioned processor array obtained by the systolic design
methodology. It is a2D rectangle array of processors, which
we call physical processors. Our work can be extended to
n-dimensional arrays but there is probably few practical ap-
plications for such cases. These physical processors are ob-
tained byclusteringtogether several processors of an array
of virtual processors. This clustering technique is detailed
in Section 3, we briefly recall here how the virtual processor
array is obtained from a high-level specification.

The code below represents a matrix-matrix product ex-
pressed in the recurrence equation formalism [13]. It is usu-
ally obtained after analysis from nested loops (C or Matlab):

a[i, j, k] =

{
A[i, k] if j = 0
a[i, j − 1, k] if 0 < j < M

b[i, j, k] =

{
B[k, j] if i = 0
b[i− 1, j, k] if 0 < i < N

tmp[i, j, k] = a[i, j, k] ∗ b[i, j, k]

c[i, j, k] =

{
tmp[i, j, k] if k = 0
c[i, j, k − 1] + tmp[i, j, k] if 0 < k < P

Using the systolic design methodology implemented for in-
stance inMMA lpha [11], one can transform this specifica-
tion by successive operations on the dependence graph (de-
picted in Fig. 2 for the parameter valuesN = M = P = 3).
Each node of the graph represents one execution instance
of the body of the loop. The schedule assigns an execution
date to each of them. Due to the possibly large (or even pa-
rameterized) size of the graph, the scheduling is regular, ex-
pressed as a linear function of the index~i = (i, j, k), which
identifies a single operation in the algorithm. The schedule
is represented on Fig. 2 with shaded hyperplanes, here as
i + j + k. Finally avirtual processor arrayof sizeN ×M
can be designed bymappingthe dependence graph to an
architecture, here by a projection along the third axis, i.e.,
(i, j, k) is mapped onto the virtual processor(i, j). In gen-
eral, the loop nest to be implemented in hardware may have
more than3 indices and each loop iteration is referenced by
its index vector~i = (i1, . . . , in), wheren is the loop depth.
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Figure 2. Matrix-matrix product example.

It will then give rise to a(n− 1)-dimensional virtual array.
For further reading on the systolic methodology, see [18].

Partitioning (a.k.a.co-partitioning) includes two parts:
tiling (or LPGS partitioning) andclustering(or LSGP parti-
tioning). Tiling cuts the virtual processor space into tiles
that are processed, one after the other, by the hardware ac-
celerator. If the on-chip memory is not large enough to store
the complete set of data flowing in the array, intermediate
results are stored in an off-chip memory. We do not address
tiling in this paper as most of the communication work dur-
ing the execution of tiles is done by the software driver. We
will rather concentrate on the clustering part.

Clustering an array is the action of assigning the work of
a hyper-rectangle (orcluster) of virtual processors to a sin-
gle physical processor. This cluster is of sizeσ1 × . . . σn−1

as we have(n − 1) dimensions in the virtual processor ar-
ray. After clustering, we obtain aphysical array, usually
of dimension2. Fig. 3 represents (on the left) a virtual
array for the matrix-matrix product, for parameter values
N = M = 4, and a physical array obtained by clustering
with a cluster of sizeσ1×σ2 = 2× 1 (on the right). Theσi

parameters are chosen to adapt the bandwidth of the physi-
cal array to the bandwidth available on the SoC. For a clus-
tering to be valid, the dates at which virtual processors are
active must be distinct so that they can be sequentialized on
the physical processor. In [6], this physical processor is said
to jugglewith the virtual computations. It is also explained
how to compute such valid schedules given the respective
sizes of the virtual and physical arrays envisaged. Once this
schedule is computed, it is fixed, one cannot modify the in-
ternal behavior in order to change input/output dates.

So far, we did not talk about input/output of the array. We
suppose that the I/O of the virtual array occur on the bound-
ary processors of the array. As shown on the left of Fig. 3,
one stream (the matrixB) enters from the left in the pro-
cessors withp1 = 0, one stream (the matrixA) enters from
the bottom in the processors withp2 = 0, and one stream
(the matrixC) is output on the right in the processors with

p1 = 3. On the right of this figure, i.e., in the correspond-
ing physical array, we show the mechanism that we target
for bringing the data from the bus to each physical proces-
sor. We associate with each stream oneFIFO (connected to
the bus) and oneshift register. Each shift register has a cer-
tain numberr of registers between successive processors.
For instance, here, the shift register corresponding toA has
r = 4, the shift register used for the output of the matrixC
hasr = 2 registers between successive physical processors.
This is the model of our interface. We will show that, given
a schedule of the computations that has been fixed by the
clustering, we can always find values for ther such that
there are no conflict at theFIFO level, i.e., two data of the
same stream enter their shift register at different dates.
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Figure 3. Virtual and physical processor ar-
rays, with σ1 × σ2 = 2 × 1. The I/O feeding of
the physical array is shown on the right.

3 Juggling with I/O

3.1 LSGP partitioning scheme

An architecture derived with the LSGP (locally sequen-
tial globally parallel) partitioning methodology is fully de-
fined by a schedule, an allocation, and a cluster shape:

Schedule: the operation identified by the vector~i, of
dimensionn, is computed at time~τ .~i (dot product), i.e., the
schedule is defined by a1D linear function of~i.

Allocation: the operation~i is mapped onto the virtual
processor identified by the vector~q = Π~i, of dimension
(n − 1), whereΠ is the matrix formed by the(n − 1) first
rows of a unimodular matrixQ of sizen× n.

Clustering: each virtual processor~q is mapped to the
physical processor~q φ such thatqφ

k = b qk

σk
c whereσk is the

k-th cluster size. We let~q c such thatqc
k = qk mod σk.

The schedule is constrained by flow dependences and by
the fact that no two virtual processors in a hyper-rectangular
“box” of size σ1 × · · · × σn−1 are simultaneously active:
in this case, a physical processor can indeed emulate all
of them in a sequential manner (schedule with no conflict).
When, in addition to this juggling constraint, each physical
processor is active at each clock cycle in the steady state,
the schedule is said to betight [6].



From now on, we work with~p = Q~i (change of ba-
sis): the operation identified by~p is then computed at time
~τ .(Q−1~p) – still a linear 1D function – and mapped onto the
virtual processorΠQ−1~p which is simply(p1, . . . , pn−1).
We assume the physical array is a hyper-rectangle array of
sizeP1 × · · · × Pn−1 and that values are propagated inside
the array, thanks to arouting technique [14], so that I/O take
place on a face of the virtual array, i.e., correspond to all vir-
tual processors withpk = 0 (or the opposite face), for some
1 ≤ k ≤ n−1. The problem is now to find a way to route all
I/O from the FIFO, connected to the bus master interface, to
the physical processors that need them, with the constraint
that the FIFO can deliver at most one data per cycle.

Before addressing this routing problem, let us see how
an LSGP-partitioned architecture is obtained following the
methodology of Derrien and Rajopadhye [8]. Starting from
the architecture described by virtual processors, the sched-
ule and allocation are changed by a sequence of elementary
transformations,skew, slow down, andserialization, whose
effect can be directly interpreted in the architecture repre-
sentation. We illustrate this process on the facep2 = 0
(see Fig. 4) of the virtual array of Fig. 2, here with schedule
t = i+j+k = p1+p2+p3 and allocation(p1, p2) = (i, j).
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Ctrl
C2,0

×

0

Figure 4. Activity for p2 = 0.

A skewby λ in directioni addsλ registers (or deletes|λ|
if λ < 0) on each data flow path parallel to directioni. A
skew by−1 in direction1 for the architecture of Fig. 4 is
given in Fig. 5 together with its consequences on the inter-
nal processor architecture. A skew changes the schedule,
it “adds” λpi clock cycles. In Fig. 5, the schedule is now
p2 +p3 andAi,k (represented by~p = (i, 0, k)) enters the ar-
ray in virtual processor(p1, p2) = (i, 0) at time0+p3 = k.

A slow downby c replicatesc times each register, lead-
ing to an architecture that behavesc times slower. Fig. 6
shows a slow down by3 after the previous skew. The new
schedule is3(p2 + p3) andAi,k enters the virtual array at
step3(p2 + p3) = 3k in processor(p1, p2) = (i, 0).

A serializationbyσ in directioni mapsσ successive vir-
tual processors in directioni on1 physical processor. For a
serialization to be valid, theσ virtual processors must have

+
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t

×

0

Figure 5. Skew by −1 in direction 1 on Fig. 4.

different activation dates. Fig. 7 shows a skew by1, fol-
lowed by a serialization by3, in direction1, for the archi-
tecture of Fig. 6. A processor emulates3 virtual processors
(identified with different patterns). The resulting hardware
is modified in a systematic way: multiplexers are added for
the connections that are “crushed” and are controlled with
a 1-bit rotating register. Serialization does not affect the
schedule but affects the allocation. Withpc

i = pi mod σ,
pφ

i = bpi

σ c, the new allocation function is(pφ
1 , p2).

In [6], it is proved that a linear scheduleτ is tight for a
cluster shapeσ1×. . .×σn−1 if and only if it has the follow-
ing form, up to a permutation of the processor dimensions:

τ(p1, . . . , pn−1, pn) = λ1p1 + σ1(λ2p2 + σ2(. . .
+σn−2(λn−1pn−1 ± σn−1pn) . . .)) (1)

whereλi andσi are relatively prime. This is a sequence of
slow down byσi and skew byλi (for serialization ofσi)
in dimensioni, starting from the schedule equal topn or,
more generally, any schedule such that any virtual processor
is active at each cycle. We will use this result to define a
schedule for the FIFO that “juggles” with the I/O.

+

0
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p1

t

Figure 6. Slowdown by c = 3 on Fig. 5.

3.2 Valid I/O schedules

We now focus on the I/O schedule at the processor array
boundaries. Obviously, this schedule directly derives from
the partitioned array schedule. If we look back at the periph-
eral interface template, Fig. 3, we see that data associated
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Figure 7. Skew by 1 and serialization by 3.

to a given stream are read/written from/to a FIFO linked ei-
ther to CPU or memory. All boundary processors access the
same FIFO, possibly at the same time, hence causing con-
flicts. Finding a valid routing is not obvious even when, on
average, the amount of data requested is low enough. A run-
time arbitration technique can be used but would certainly
degrade performance (wait states) and increase the resource
usage (arbitration logic). Our goal is to find an efficient
mechanism to route the input data from the FIFO output to
the processor input ports (the converse for output data), and
to generate the associated control circuitry. We want to do
it at compile time, through astaticrouting schedule.

We first formulate the I/O schedule for boundary pro-
cessors in a partitioned array, focusing on one particular
stream. Each operation identified by~p = (p1, . . . , pn) is
scheduled at timeτ(~p) and mapped to the virtual proces-
sor α(~p) = (p1, . . . , pn−1). After clustering, the alloca-
tion is αφ(~p) = (pφ

1 , . . . , pφ
n−1) with pk = pφ

kσk + pc
k,

0 ≤ pc
k < σk. It is no longer linear, except if we describe it

(and the schedule) in a space of dimension(2n−1) indexed
by (pφ

1 , . . . , pφ
n−1, p

c
1, . . . , p

c
n−1, pn). Thus, when parame-

tersσk are known, we can perform further transformations
on the physical architecture, still within a linear framework.

To access an array boundary in dimensionk (i.e.,

whenpφ
k is constant), the FIFO is connected to a sequence

of (n − 2) shift registers along dimensionj 6= k, each
of sizerj between two successive physical processors. In
Fig. 3, when accessing the facepφ

2 = 0 (here a line, for
propagatingA), there arer1 = 4 registers between succes-
sive processors on the boundary. We denote byτk

I /O the func-
tion that gives the time at which the data used in a physical
processor is present at the FIFO output port, when routing
for dimensionk. The I/O scheduleτk

I /O can be deduced from
the scheduleτ and from the number of registersrj , j 6= k:

τk
I /O(pφ

1 , . . . , pφ
n−1, p

c
1, . . . , p

c
n−1, pn) = τ(pφ

1 , . . . ,

pφ
n−1, p

c
1, . . . , p

c
n−1, pn)−∑n−1

j=1, j 6=k rjp
φ
j

(2)

If the rj are such thatτk
I /O(~p) 6= τk

I /O(~q) for all ~p 6= ~q that
correspond to I/O operations, withpk = qk = 0, thenτk

I /O is
a valid I/O schedule for routing on the facepk = 0.

Example Consider in Fig. 8, the array with3 physical
processors (grey boxes) on thepφ

1 = 0 boundary, obtained
thanks to a clustering3×2, and scheduled with the schedule
τ(pφ

1 , pφ
2 , pc

1, p
c
2, p3) = 2pc

1 + pc
2 + pφ

2 + 6p3. This schedule
is tight: each physical processor emulates the same virtual
processor after6 cycles (because of6p3) and no two virtual
processors are active at the same time (for a fixed(pφ

1 , pφ
2 ),

the schedule is of the form given by Equ. 1). It meets the
bandwidth requirement because6 data are sent during6 cy-
cles (each processor needs2 data every6 cycles). But if we
assume that data are broadcast from the FIFO to each pro-
cessor, the resulting I/O scheduleτ1

I /O is not valid (see Fig. 8,
the large circles mean that more than one data need to be
sent). Now, if we assume another communication mecha-
nism for bringing data from FIFO to processor, as in Fig. 9,
i.e., withr2 = −1, the I/O scheduleτ1

I /O is now valid. ¤
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Figure 8. Conflicting I/O schedule: at time t =
1, 2, 7, 8, several processors access the FIFO
(conflicts shown as large black circles).

3.3 How to get valid I/O schedules

Let γ be the coefficient ofpn in the scheduleτ : each
virtual processor is active every|γ| cycles (|γ| ≥ ∏

j σj ,
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Figure 9. The I/O schedule is dense (FIFO ac-
cessed every cycle) and conflict free (at most
one access to the FIFO at a given cycle).

with equality when the schedule is tight). The number
of physical processors on the face along dimensionk is∏

j 6=k Pj . Each processor emulates
∏

j σj virtual proces-
sors, and

∏
j 6=k σj of them correspond to I/O. Thus, on av-

erage, the number of I/O on the face along dimensionk is
(
∏

j 6=k Pjσj)/γ, which should be less than1. Thus, the
physical array must be such that

∏
j 6=k Pj ≤ γ∏

j 6=k σj
. This

means
∏

j 6=k Pj ≤ σk whenτ is tight, otherwise this last
condition is stronger. We call it thestrong condition.

The register numbersrj must be chosen such that, in the
box 0 ≤ pφ

j < Pj , 0 ≤ pc
j < σj , j 6= k, pφ

k = pc
k = 0 (i.e.,

pk = 0), at most one element is active at a given cycle, ac-
cording to the scheduleτk

I /O, i.e., the FIFO juggles with I/O.
Therefore, the problem is formulated again as a clustering
problem, here in dimension2(n − 2) and we can reuse the
techniques developed in [6], in particular the characteriza-
tion of tight schedules (Equ. 1). We now show that, when∏

j 6=k Pj ≤ σk, suitable values for therj can be automati-
cally derived without restriction on the dimensionn − 1 of
the virtual processor array. When routing for the face along
dimensionk = 1 (w.l.o.g), the trick is to exploit the fact that
eachphysical processor juggles with its virtual processors
indexed by(pc

1, . . . , p
c
n−1) in the box of sizeσ1×. . .×σn−1,

so as to define a scheduleτ1
I /O such that the FIFO juggles

with all virtual processors(pφ
2 , . . . , pφ

n−1, p
c
2, . . . , p

c
n−1) in

the box of size(P2 × . . .× Pn−1)× (σ2 × . . .× σn−1).
We first consider the simplest case of a2D processor ar-

ray, obtained by clustering a virtual processor array of di-
mensionn − 1 ≥ 2. Suppose, w.l.o.g., thatPj = 1 for all
j ≥ 3, and that the I/O routing needs to be done for the face
pφ
1 = 0, along dimension2, i.e., only the valuer2 needs

to be defined. Since, for the I/O, we are interested in the
computations such thatp1 = 0, the I/O schedule isτ1

I /O =
γpn +τ2p

c
2 + . . .+τn−1p

c
n−1 +(α2−r2)p

φ
2 +α3p

φ
3 + . . .+

αn−1p
φ
n−1 (see Equ. 2 withp1 = 0). Forj ≥ 3, Pj = 1 thus

α3p
φ
3+. . .+αn−1p

φ
n−1 is constant and, w.l.o.g, we can work

with τ1
I /O = γpn +τ2p

c
2 + . . .+τn−1p

c
n−1 +(α2−r2)p

φ
2 . In

each cluster, the scheduleτ = γpn+τ1p
c
1+ . . .+τn−1p

c
n−1

juggles. IfP2 ≤ σ1 (strong condition), we can chooser2

such thatα2−r2 ≡ τ1 mod γ and we get a valid I/O sched-
ule: indeed, the fact that each physical processor juggles
in the box(pc

1, . . . , p
c
n−1) of sizeσ1 × . . . × σn−1 implies

that the FIFO juggles with all I/O corresponding to the box
(pφ

2 , pc
2, . . . , p

c
n−1) of size(P2×σ2×. . .×σn−1). When the

schedule is tight in each physical processor, i.e.,γ =
∏

σj ,
a more accurate analysis reveals that we have more freedom
to chooser2. The coefficientτ1 in the scheduleτ has the
form λ1ρ whereλ1 andσ1 are relatively prime (see Equ. 1
again, hereρ is the product of someσj , j 6= 1). If we choose
r2 such thatα2 − r2 = λ′ρ, whereλ′ andσ1 are relatively
prime, we get a scheduleτ1

I /O of the same form asτ , but
with pφ

2 instead ofpc
1, thus valid for our FIFO constraints.

Example (Cont’d) Consider again the example in Fig. 8,
with the tight schedule2pc

1 +pc
2 +pφ

2 +6p3. For a fixedpφ
2 ,

the scheduleτ = pc
2+2pc

1+6p3 juggles for the box(pc
1, p

c
2)

of size3 × 2, with τ2 = 1 andτ1 = λρ = 1 × σ2 = 2.
If we chooser2 = −1 (as in Fig. 9),α2 − r2 = 2 = λ′ρ
with λ′ andσ1 relatively prime, and we get the I/O schedule
τ1

I /O = pc
2 + 2pφ

2 + 6p3, of same form asτ , thus valid if
P2 ≤ σ1 = 3. We could also chooser2 = 3 sinceα2 − r2

is then1− 3 = −2, also of the required form. ¤
For a 3D processor array (thus with routing in 2D)

things are more complicated, but still manageable. Sup-
pose we route for the facepφ

1 = 0 along dimensions2
and 3. The difficulty is that, now, we need to play with
a correspondence between a 1D space (thepc

1 dimension,
0 ≤ pc

1 < σ1) and a 2D space where the routing takes
place (the dimensions(pφ

2 , pφ
3 ) and not onlypφ

2 as before).
If P2P3 ≤ σ1, we can apply a similar trick. We first “lin-
earize” conceptually the indices that describe the 2D box
of size P2 × P3 into an index in a 1D box of sizeP2P3

(smaller thanσ1 with the strong condition), for example
(pφ

2 , pφ
3 ) → pφ

2 +P2p
φ
3 . Then, we apply the same techniques

as before. The first one leads tor2 andr3 such that, for all
pφ
2 , pφ

3 , (α2−r2)p
φ
2 +(α3−r3)p

φ
3 ≡ τ1(p

φ
2 +P2p

φ
3 ) mod γ,

i.e.,α2 − r2 ≡ τ1 mod γ andα3 − r3 = τ1P2 mod γ. The
second technique leads tor2 andr3 such that(α2−r2)p

φ
2 +

(α3− r3)p
φ
3 ≡ λ′ρ(β2p

φ
2 +β3p

φ
3 ) whereλ′ andρ are as be-

fore, andβ2p
φ
2 + β3p

φ
3 mod σ1 juggles in the boxP1 ×P2.

The situation is the same in higher dimensions. The re-
sulting shift registers are more likely to be larger than the
number of live values they contain, thus alternative hard-
ware support such as shift queues [1] could be useful.

4 Efficient hardware synthesis

To illustrate the benefits of our approach, we compare
our interface implementation to an alternative one based on
a run-time management of the I/O conflicts. In this case,



whenever two or more processors have to perform an I/O
for the same stream at the same time, a hardware arbiter is
used to select which access will be scheduled first.

In this alternative approach, processors have a direct ac-
cess to the I/O bus, and they must be able to compute the
addresses from (resp. to) which they need to read (resp.
write). For that, each processor must integrate a local con-
troller to compute the current iteration coordinates, deter-
mine whether this iteration requires an I/O, and further re-
trieve the I/O address from the iteration coordinates. Our
local controller implementation follows the approach of [6].
A simple hardware arbiter sequentializes simultaneous I/O
requests (run-time conflicts) with a simple fixed-priority en-
coder. To get a reasonable clock-period, we put a register
between the arbiter and each physical processor, for each
stream. This run-time arbitration design is very likely to in-
duce an area overhead: the local control within processors is
more complex than in our approach (in which both I/O and
local control are handled through simple shift-register hard-
ware structures). Besides, thisrun-timemanagement does
not scale well, as the arbiter complexity and the number of
multiplexers grow linearly with the number of processors,
and directly impacts the interface critical path.

We prototyped (inVHDL ) the two approaches for the
matrix-matrix product (note that the choice of this basic ex-
ample does not affect the validity of the results, as any 2D
processor array will use a similar interface1). This VHDL

description is designed to offer a maximum of flexibility:
several parameters of the architecture can be configured
(physical array size, partitioning parameters, etc.). The
code was written by hand, following the theory explained
in previous sections; we are working on the automation of
this process inMMA lpha. For both approaches, we synthe-
sized a set of architecture instances that only differ by some
parameters for which we gathered experimental results in
terms of estimated resource usage (estimated maximum op-
erating frequency are similar in both cases and thus not
given). The synthesis was done using Synplify. A summary
of the results is given in Table 1; to make a fair compari-
son, one should compare the sum of LUT and SRL16 (for
the static interface) to the number of LUT in the run-time
approach, and the DFF for both approaches. Experiments
show that our approach based on a static I/O schedule leads
to significant area savings: while the number of flip-flops
(DFF) required to implement the interface is roughly the
same in both approaches, the number of LUT resources is
much lower in our approach especially for larger processor
arrays. The selected values for therj parameters depend
on the scheduling functions, which are not detailed here.
We point out that the values of therj barely affect the area
cost of the interface. This is due to the use of the Xilinx
shift-register primitives, which can pack shift-registers, up

1Things are slightly more complicated for 3D arrays, see Section 3.3.

Matrix N ×N ×N and Area
physical array shape static run-time

N shape LUT /DFF/SRL16 LUT /DFF

32 2× 2 116 96 128 285 266
32 4× 4 116 96 256 539 508
32 8× 4 116 96 320 698 640
64 4× 4 132 102 256 603 532
64 8× 4 132 102 320 784 672
64 4× 8 132 102 448 1048 888
64 8× 8 132 102 512 1217 1064
128 8× 8 156 108 512 1454 1160
128 8× 4 156 108 320 970 768
128 16× 4 156 108 448 1343 1096
128 16× 8 156 108 640 1811 1472

Table 1. Experimental results for interface
area: number of logic cells (LUT), of registers
(DFF), and of Xilinx shift registers primitives
(SRL16) (not used in the run-time approach).

to 16-bit deep, into a single logic cell.
Besides, these area improvements are not the only ben-

efits: we don’t suffer from the performance penalty due
to the arbitration wait states during an I/O conflict, and
we know statically the order in which I/O are performed.
This latter property is very important in practice. Indeed,
we mentioned in Section 2 that our interface should be
packet-oriented: to obtain reasonable I/O performance from
the bus protocol, our interface should be able to perform
grouped I/O, i.e., accesses to several contiguous memory
words, in burst mode. But, for a given stream, the sequence
of I/O on the FIFO very seldom accesses contiguous mem-
ory words (actually, this is more like an exception), it is
thus not possible to directly benefit from grouped I/O (note
that this problem is similar in the case of the run-time arbi-
tration interface). However, unlike the run-time approach,
since our interface is based on a static schedule of I/O op-
erations, we know in advance the order in which memory
words should be accessed. We can thus use a reordering
memory, which acts as a buffer between the routing shift-
registers and the bus interface (thisline bufferis sketched in
Fig. 1). This allows the bus master controller to write (resp.
fetch) packets of contiguous words to (resp. from) memory,
while on the processor array side, our routing mechanism
will access this memory using its own address sequence.

We believe that this reordering memory is likely to play
an important part in the effective performance of our inter-
face; our ongoing work focuses on finding a suitable control
and synchronization mechanism to handle this buffer, and
how to determine a minimum upper bound for its size.

As mentioned in the introduction, a similar problem was
studied in [2, 19]. The work of [19] is more advanced since
it gave rise to the commercial tool Pico, but their arbitra-
tion mechanism is only sketched. The comparison with our
strategy given in this section shows that a static schedule can



provide improvements. The problem addressed by Bednara
and Teich is similar to ours, but their target processor array
and interface protocol are different: they target a slaveIP

and their handling of resource constraints is not based on
juggling. As far as we could understand their papers [2, 3],
they allow software pipelining in the processors (we do not),
but they don’t take into account idle cycles in boundary pro-
cessors (as in our case, Fig. 8). This results in a repetitive
schedule which acts as if an I/O needs to be done in each
initiation interval. Thanks to our juggling modeling, we can
take into account cycles where no communication occurs
and only schedule real communications. Another advan-
tage is that we can reuse the control mechanisms (address
generation and activity control) used in the Pico tool, which
is well documented, while the controllers of [2] are not de-
tailed. We also have experimental results concerning the
resultingVHDL , which will be interesting to compare with
Bednara and Teich results if some are provided in the future.

5. Conclusion

We have extended the LSGP partitioning theory to take
into account I/O constraints and automatically generate an
efficient hardware/software interface for hardware acceler-
ators in a SoC. Rather that proposing a new formulation, we
use the resource-constrained “juggling” technique devel-
oped in [6] to schedule the I/O of a processor array so that
no collisions occur on the on-chip communication medium.

Our firstVHDL hardware implementation shows that the
complexity of the resulting mechanism is better than with
previous approaches. We hope to show further improve-
ments in the latency of the communication using the burst
mode. We are currently studying the possibility of imple-
menting the method inMMA lpha.
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