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Abstract design and it has often a strong influence on the actual per-

formance benefits provided by the hardware acceleration.

On most recent systems on chip, the performance bottle-This problem is even strengthened for stream processing ap-
neck is the on-chip communication medium, bus or network.plications: huge parallelism is present but can be ruined by
Multimedia applications require a large communication an inefficient handling of data-stream communications.
bandwidth between the processor and graphic hardware ac-  We are interested in a particular class of hardware ac-
celerators, hence an efficient communication scheme usingelerators, namelyegular processor arraysProcessor ar-
burst mode is mandatory. In the context of data-flow hard- rays are inherited from systolic arrays and can be automat-
ware accelerators, we approach this problem as a classi- ically derived through a well-understood design methodol-
cal resource-constrained problem. We explain how to useogy [11]. Pure systolic architectures happen to be imprac-
recent optimization techniques so as to define a conflict-tical since they exhibit too much parallelism to meet the
free schedule of input/output for multi-dimensional proces- bandwidth and resource constraints. Strategies were pro-
sor arrays (e.g.2D grids). This schedule is static and al- posed to derive processor arrays in the presence of resource
lows us to perform further optimizations such as grouping or I/O constraints [20, 15, 12, 5, 4, 6], leading to a deep un-
successive data in packets to operate in burst mode. Wederstanding of theartitioning transformation [21, 9, 6, 8].

also present an effectiveHpL implementation orFPGA Partitioning amounts to finding resource-constrained
and. compare our approach 'FO a run-time congestion res- schedule and allocation for arbitrary large regular computa-
olution showing important gains in hardware area. tions. For the design of the Pico tool [19], Darte, Schreiber,

Rau, and Vivien [6] proposed an elegant theory to select a

valid schedule for partitioned processor arrays, associated
1 Introduction with an efficient implementation scheme to control the re-

sulting architecture. Derrien and Rajopadhye [8] proposed

With the widespread development of systems on a chip@ modeling of the partitioning problem that helps the de-
(SoC),vLs!I designers benefit from a lot of flexibility in the ~ signer choose the suitable partitioning parameters to obtain
choice of their architectures. The conjunction of this huge an architecture compliant with user-defined constraints.
design space with more and more aggressive time-to-market So far, none of these works address the following cru-
constraints is now a convincing argument to include high- cial issue: how to efficiently interface the resulting archi-
level design tools in SoC design methodologies. When a de-tectures to a bus. The problem of efficient interface gener-
signer integrates a dedicated hardware accelerator in a SoGtion of hardwarep (intellectual property) was studied in
he/she must implement an input/output protocol, composedthe case of linear processor arrays [16, 17, 7, 10], leading
of software and hardware parts. The software part is usuallyto the design of a generic master or slave interface that can
called thedriver, the hardware part thaterface be parameterized to connect to differeps provided that
While the high-level synthesis research community has they correspond to processor arrays where data is entering

focused on trying to derive efficient dedicated hardware the array from a single processor element. Our problem has
accelerators from high-level specifications, the problem of been tackled in the Paro project [2] and the Pico tool [19].
generating automatically an interface between these accelWe will compare these approaches to ours in Section 4.
erators and the rest of the SoC has received only little at- Many interesting applications lead to multi-dimensional
tention. However, as most designers can tell, such an in-arrays structures such as image processing, which often
terface is often the most tedious and error-prone part of amakes use of-dimensional processors arrays. Interfacing
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multi-dimensional arrays is more complicated thdh ar-
rays because possibly many data can enter the array simult >
neously. At some point, these data have to be sequentializea
in a FIFO-like channel that can be connected to a memory
through a bus or a network on chip with reduced scalability
By carefully choosing the partitioning parameters, the
designer can adamn averagethe bandwidth required by
the processor array to the bandwidth available on the com- ) o
munication medium [8]. But there is no guarantee thattwo ~ Figure 1. The SoC generic interface model.

processors of the array will not access the bus simultane-  communications between the interface and the proces-
ously. A natural solution is to implement a dynamic reso- sor array are performed with oe=0 per stream. A stream
lution of the conflicting accesses with an arbitration mech- js for instance the successive pixels of an image. The term
anism, as suggested in [19]. We try to promote an alterna-g o is used to model the fact that we allow a bandwidth of
tive solution by showing that a static schedule without con- gne data per clock cycle for each stream between the inter-
flict can be found for I/O of partitioned array processors. face and the processor array, but these internal communica-
Thanks to this property, the hardware area can be reducegions can be buffered in @Fo. The hardwarer itself is a
and, moreover, burst mode communication can further bepartitioned processor array obtained by the systolic design
implemented because the I/O schedule is known in advancemethodology. Itis 2D rectangle array of processors, which

In this paper, we explain how to find this static /O e call physical processorsOur work can be extended to
scheduling using the result presented in [6]. We explain ,,_dimensional arrays but there is probably few practical ap-
our solution in the partitioning framework developed in [8]. piications for such cases. These physical processors are ob-
We briefly show how the result can be generalizediio  tajined byclusteringtogether several processors of an array
dimensional arrays. We also propose practical issues forof virtual processors This clustering technique is detailed
hardware implementing the resulting arrays. We experi- jn Section 3, we briefly recall here how the virtual processor
ment this new methodology by\aipL implementation of  array is obtained from a high-level specification.
a partitioned matrix-product array and compare this inter-  The code below represents a matrix-matrix product ex-
face mechanism to a dynamic one, showing significant im- pressed in the recurrence equation formalism [13]. It is usu-

provement in the area of the resulting hardware. Further a|ly obtained after analysis from nested loops (C or Matlab):
experiments are currently on-going to measure the impac,
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of grouping communications in burst. ali, j, k] = { ali,j—1,k] f0<j<M
. b[i j k’] _ { B[k%]} ?fi:o
2 Target Architectural model ' bi—1,5,k] ifo<i<N
tmpli,j, k] = ali,j, k] % b[s, j, k]
Interface protocols and communication behavior are| j; j, k] - { tmpli, j, k] o @I k=0
very dependent on architecture characteristics, thus provid- clig, k — 1] +tmpli, j, k] #0<k <P

ing a universal solution for interface is impossible. Here we Using the systolic design methodology implemented for in-
state our assumptions concerning the SoC platform and thestance inMmmAIpha [11], one can transform this specifica-
hardware accelerator, under which our result can be reusedtion by successive operations on the dependence graph (de-
Our target SoC is at least composed of a processor, gpicted in Fig. 2 for the parameter valuds= M = P = 3).
memory, a communication medium (bus or NoC) and a Each node of the graph represents one execution instance
hardware accelerator (Fig. 1). The hardware accelerator isof the body of the loop. The schedule assigns an execution
composed of a processor array that will be described laterdate to each of them. Due to the possibly large (or even pa-
and a bus master interface. Being a bus master, the interrameterized) size of the graph, the scheduling is regular, ex-
face can initiate burst-oriented data transfers from or to thepressed as a linear function of the index (4,7, k), which
main memory. We believe that, in the context of stream identifies a single operation in the algorithm. The schedule
processing, the use of a slave interface is very unlikely to is represented on Fig. 2 with shaded hyperplanes, here as
provide enough bandwidth to ows. The interface shares i+ j + k. Finally avirtual processor arrayf size N x M
a common clock with the processor array. Asynchronous can be designed bgnappingthe dependence graph to an
communication with explicit handshake protocol can occur architecture, here by a projection along the third axis, i.e.,
between the interface and the memory if the SoC is glob- (4, j, k) is mapped onto the virtual procesgorj). In gen-
ally asynchronous. The interface may also contain a smalleral, the loop nest to be implemented in hardware may have
amount of memory to buffer burst communications and/or a more thar8 indices and each loop iteration is referenced by
bus arbiter if a dynamic communication scheme is used. its index vector = (i1,...,1n), wheren is the loop depth.



p1 = 3. On the right of this figure, i.e., in the correspond-
ing physical array, we show the mechanism that we target
for bringing the data from the bus to each physical proces-
sor. We associate with each stream ered (connected to

the bus) and onshift register Each shift register has a cer-
tain numberr of registers between successive processors.
For instance, here, the shift register corresponding tas

r = 4, the shift register used for the output of the matrix
hasr = 2 registers between successive physical processors.
This is the model of our interface. We will show that, given

a schedule of the computations that has been fixed by the
clustering, we can always find values for thesuch that
there are no conflict at thetFo level, i.e., two data of the
same stream enter their shift register at different dates.

II
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Figure 2. Matrix-matrix product example.

It will then give rise to an — 1)-dimensional virtual array.
For further reading on the systolic methodology, see [18].

Partitioning (a.k.a.co-partitioning includes two parts:
tiling (or LPGS partitioning) andclustering(or LSGP parti-
tioning). Tiling cuts the virtual processor space into tiles
that are processed, one after the other, by the hardware ac
celerator. If the on-chip memory is not large enough to store’|
the complete set of data flowing in the array, intermediate
results are stored in an off-chip memory. We do not address
tiling in this paper as most of the communication work dur-
ing the execution of tiles is done by the software driver. We
will rather concentrate on the clustering part.

Clustering an array is the action of assigning the work of
a hyper-rectangle (asluste) of virtual processors to asin- 3 Juggling with I/O
gle physical processor. This cluster is of sizex ...o,_1
as we haven — 1) dimensions in the virtual processor ar- 3.1 | SGP partitioning scheme
ray. After clustering, we obtain physical array usually
of dimension2. Fig. 3 represents (on the left) a virtual ~ An architecture derived with the LSGP (locally sequen-
array for the matrix-matrix product, for parameter values tial globally parallel) partitioning methodology is fully de-
N = M = 4, and a physical array obtained by clustering fined by a schedule, an allocation, and a cluster shape:
with a cluster of sizer; x o2 = 2 x 1 (on the right). Ther; Schedule: the operation identified by the vectér of

parameters are chosen to adapt the bandwidth of the physidimensionn, is computed at timé.i (dot product), i.e., the
cal array to the bandwidth available on the SoC. For a clus-schedule is defined byD linear function ofi.

tering to be valid, the dates at which virtual processors are  Allocation: the operationi is mapped onto the virtual

active must be distinct so that they can be sequentialized orprocessor identified by the vectgr = II7, of dimension

the physical processor. In [6], this physical processor is said(;, — 1), wherell is the matrix formed by thén — 1) first

to jugglewith the virtual computations. It is also explained rows of a unimodular matri) of sizen x n.

how to compute such valid schedules given the respective  Clustering: each virtual processaf is mapped to the

sizes of the virtual and physical arrays envisaged. Once thisphysical processar?® such tha’q,‘f = | 2| whereoy, is the

schedule is computed, it is fixed, one cannot modify the in- k-th cluster size. We lef© such that§ - qr mod op.

ternal behavior in order to change input/output dates. The schedule is constrained by flow dependences and by
So far, we did not talk about input/output of the array. We the fact that no two virtual processors in a hyper-rectangular

suppose that the 1/0O of the virtual array occur on the bound-“box” of size oy x --- x 0,1 are simultaneously active:

ary processors of the array. As shown on the left of Fig. 3, in this case, a physical processor can indeed emulate all

one stream (the matri®) enters from the left in the pro-  of them in a sequential manner (schedule with no conflict).

cessors witlp; = 0, one stream (the matri®) enters from  When, in addition to this juggling constraint, each physical

the bottom in the processors with = 0, and one stream  processor is active at each clock cycle in the steady state,

(the matrixC) is output on the right in the processors with the schedule is said to tight [6].

Figure 3. Virtual and physical processor ar-
rays, with o; x 0o = 2 x 1. The I/O feeding of
the physical array is shown on the right.



From now on, we work withy = Qi (change ofba- | [ [ | | | | | |
sis): the operation identified hyis then computed at time —
7.(Q~1p) —still alinear 1D function — and mapped onto the § — 1
virtual processoiIQ ' which is simply (p1, ..., pn_1). } '
We assume the physical array is a hyper-rectangle array pf }
sizeP; x --- x P,_1 and that values are propagated insid § i l
the array, thanks tomutingtechnique [14], so that I/O take § F?
place on a face of the virtual array, i.e., correspond to all vir ‘ —
tual processors witp, = 0 (or the opposite face), for some
1 < k < n—1. The problem is now to find a way to route all
/0 from the FIFO, connected to the bus master interface, to ~ Figure 5. Skew by —1 in direction 1 on Fig. 4.
the physical processors that need them, with the constrainiifferent activation dates. Fig. 7 shows a skewIbpyfol-
that the FIFO can deliver at most one data per cycle. lowed by a serialization bg, in direction1, for the archi-

Before addressing this routing problem, let us see howtecture of Fig. 6. A processor emulatesirtual processors
an LSGP-partitioned architecture is obtained following the (identified with different patterns). The resulting hardware
methodology of Derrien and Rajopadhye [8]. Starting from s modified in a systematic way: multiplexers are added for
the architecture described by virtual processors, the schedthe connections that are “crushed” and are controlled with
ule and allocation are changed by a sequence of elementarg 1-bit rotating register. Serialization does not affect the
transformationsskew slow down andserialization whose schedule but affects the allocation. Wijth = p; mod o,
effect can be directly interpreted in the architecture repre- ;¢ — |2 ], the new allocation function i@?, p2).

p1

sentation. We illustrate this process on the fage= 0 In [6], it is proved that a linear scheduteis tight for a

(see Fig. 4) of the virtual array of Fig. 2, here with schedule cjuster shape, x .. . x o, if and only if it has the follow-

t =i+j+k = p1+p2+p3 and allocatior(p:, p2) = (i, j). ing form, up to a permutation of the processor dimensions:
T(p1,y -+ Pa—1,Pn) = A1p1 + o1(A2p2 + oa(. .. 1)

+0—n72(/\n71pn71 + Unflpn) .. ))

where); ando; are relatively prime. This is a sequence of
slow down byo; and skew by\; (for serialization ofs;)

in dimensioni, starting from the schedule equal g or,
more generally, any schedule such that any virtual processor
is active at each cycle. We will use this result to define a
schedule for the FIFO that “juggles” with the 1/0.

Figure 4. Activity for p, = 0.

A skewby ) in direction: adds) registers (or deletds)| — OO0
if A < 0) on each data flow path parallel to directionA
skew by—1 in direction1 for the architecture of Fig. 4 is
given in Fig. 5 together with its consequences on the inter-* —O—0O-0-0-0O—<
nal processor architecture. A skew changes the schedule,
it “adds” Ap; clock cycles. In Fig. 5, the schedule is now § :
p2+ps andA; ;. (represented by = (i, 0, k)) enters the ar- QOO0 T
ray in virtual processofp, p2) = (i,0) attime0 + p; = k. P1

A slow downby c replicates: times each register, lead- Figure 6. Slowdown by ¢ = 3 on Fig. 5.
ing to an architecture that behavesimes slower. Fig. 6
shows a slow down b$ after the previous skew. The new 3.2 Valid I/O schedules
schedule is3(p2 + p3) and 4, ;, enters the virtual array at
step3(p2 + ps) = 3k in processofpy, p2) = (4,0). We now focus on the I/O schedule at the processor array

A serialization by o in directioni mapso successive vir-  boundaries. Obviously, this schedule directly derives from
tual processors in directianon 1 physical processor. For a the partitioned array schedule. If we look back at the periph-
serialization to be valid, the virtual processors must have eral interface template, Fig. 3, we see that data associated




Figure 7. Skew by 1 and serialization by 3.

whenpf is constant), the FIFO is connected to a sequence
of (n — 2) shift registers along dimension # k, each

of sizer; between two successive physical processors. In
Fig. 3, when accessing the fapé = 0 (here a line, for
propagatingA), there are-; = 4 registers between succes-
sive processors on the boundary. We denote/gyhe func-

tion that gives the time at which the data used in a physical
processor is present at the FIFO output port, when routing
for dimensiork. The I/0 schedule/;, can be deduced from
the schedule and from the number of registers, j # k:

k (] (o] g d _ (3
TI/O(pl LA 7pn—1’pi’ ce 7p$1717pn) - T(pl [ (2)
(o c c ) _ 2 :n—l .
pn—17p17"'7pn717pn j:l,j;ék r]pj

If the r; are such that}},(p) # 7},(q) for all i # ¢ that
correspond to I/O operations, with = ¢, = 0, thenrf is
a valid I/0 schedule for routing on the fagg = 0.

Example Consider in Fig. 8, the array with physical
processors (grey boxes) on th% = 0 boundary, obtained
thanks to a clusteringx 2, and scheduled with the schedule
T(p?, p3, 0%, 05, ps) = 205 + p§ + pS + 6ps. This schedule

is tight: each physical processor emulates the same virtual
processor afte cycles (because @ps) and no two virtual
processors are active at the same time (for a fiy&dp?),

the schedule is of the form given by Equ. 1). It meets the
bandwidth requirement becausdata are sent duringcy-

cles (each processor neetldata even cycles). But if we
assume that data are broadcast from the FIFO to each pro-
cessor, the resulting I/O scheduig, is not valid (see Fig. 8,

to a given stream are read/written from/to a FIFO linked ei- the large circles mean that more than one data need to be
ther to CPU or memory. All boundary processors access thesent). Now, if we assume another communication mecha-
same FIFO, possibly at the same time, hence causing connism for bringing data from FIFO to processor, as in Fig. 9,

flicts. Finding a valid routing is not obvious even when, on i.e., withr, = —1, the I/O schedule;}, is now valid. O
average, the amount of data requested is low enough. A run-
time arbitration technique can be used but would certainly
degrade performance (wait states) and increase the resource
usage (arbitration logic). Our goal is to find an efficient
mechanism to route the input data from the FIFO output to
the processor input ports (the converse for output data), and
to generate the associated control circuitry. We want to do

it at compile time, through ataticrouting schedule.

time

We first formulate the 1/0 schedule for boundary pro- ® ° #@ I
cessors in a partitioned array, focusing on one particular L fog] L“
stream. Each operation identified py= (p1,...,pn) is X X XEEEX X X &W
scheduled at time (p) and mapped to the virtual proces- FIFO output !
sora(p) = (p1,...,pn—1). After clustering, the alloca-

S 3 A ) " . Figure 8. Conflicting I/0 schedule: attime t =
tion is a®(p) = (pY, ... py—1) With p. = prox +pj, 1,2,7,8, several processors access the FIFO

0 < p§, < 0. Itis no longer linear, except if we describe it (conflicts shown as large black circles).

(and the schedule) in a space of dimengiam— 1) indexed

by (b7, ... 05 1,05, 05 _1,pn). Thus, when parame- 33 How to get valid 1/O schedules
terso, are known, we can perform further transformations

on the physical architecture, still within a linear framework. Let v be the coefficient of,, in the schedule: each
To access an array boundary in dimensibn(i.e., virtual processor is active evety| cycles (y| > []; o;,



time

each cluster, the schedule= yp,, +71p{ +. ..+ Tn-1pP;, 1
juggles. If P, < o4 (strong condition), we can choose

o
H such thatvy —ry = 71 mod ~ and we get a valid I/O sched-
—— ule: indeed, the fact that each physical processor juggles
= R} in the box(p§,...,p5_,) of sizeoy x ... x o,,—1 implies
L ., that the FIFO juggles with all I/O corresponding to the box
— — (3,15, ..., p%_,) of size(Pyx oy %. .. x0,_1). When the
« schedule is tight in each physical processor, es [] o5,
| . a more accurate analysis reveals that we have more freedom
1 T1=3

to choosery. The coefficientr; in the schedule has the
form A1 p where); ando; are relatively prime (see Equ. 1
_ _ again, here is the product of some;, j # 1). If we choose
Figure 9. The 1/O schedule is dense (FIFO ac- 7o such thatvs — r» = N p, where)’ ando, are relatively
cessed every cycle) and conflict free (at most prime, we get a schedute), of the same form as, but

one access to the FIFO at a given cycle). with p$ instead ofy¢, thus valid for our FIFO constraints.

[o 0o 0000000000 ‘[Pz
p
FIFO output

with equality when the schedule is tight). The number Example (Cont'd) Consider again the example in Fig. 8,
of physical processors on the face along dimendiois with the tight schedulep$ +p§+p§’+6p3. Forafixedp§,
H#k P;. Each processor emulatﬁj o; virtual proces- the schedule = p§+2p§ + 6ps juggles for the boxps, p)
sors, anq_[#k o; of them correspond to I/O. Thus, on av- of size3 x 2, with 7o = landr = Ap = 1 X 09 = 2.
erage, the number of 1/O on the face along dimengias If we chooser, = —1 (as in Fig. 9,a0 — 79 = 2 = Np
(IL;2x Pjo;)/~, which should be less than Thus, the  with \’ ando relatively prime, and we get the I/0 schedule
physical array must be such thdt,_, P; < H7;k., 5~ This 71 = ps + 2p§ + 6ps, of same form as,, thus valid if
means[[, ., P; < ox whenr is tight, otherwise this last P> < o1 = 3. We could also choose, = 3 sincea; — 7

condition Is stronger. We call it thetrong condition is thenl — 3 = —2, also of the required form. O
The register numbers; must be chosen such that, in the For a 3D processor array (thus with routing in 2D)
box0 < p? < P, 0<pS<oj,j#k pcﬁ —pi=0(e things are more complicated, but still manageable. Sup-
— Fj 1 = [} [} .C.,

px = 0), at most one element is active at a given cycle, ac- POSe We route for the face{ = 0 along dimensiong
cording to the schedutel,, i.e., the FIFO juggles with /0.~ @nd3. The difficulty is that, now, we need to play with
Therefore, the problem is formulated again as a clustering@ correspondence between a 1D space fthdimension,
problem, here in dimensio?(n — 2) and we can reuse the 0 < pi < o01) and a 2D space where the routing takes
techniques developed in [6], in particular the characteriza- Place (the dimension&?$,p%) and not onlyp$ as before).
tion of tight schedules (Equ. 1). We now show that, when If P2P3 < o1, we can apply a similar trick. We first “lin-
[1, 1 P; < o, suitable values for the; can be automati- eari_ze" conceptually the indices that describe the 2D box
cally derived without restriction on the dimensian- 1 of of size , x P; into an index in a 1D box of sizé» P

the virtual processor array. When routing for the face along (smaller thano; with the strong condition), for example
dimensionk = 1 (w..0.g), the trick is to exploit the factthat  (p5.p%) — p§ +Pop§. Then, we apply the same techniques
eachphysical processor juggles with its virtual processors as before. The first one leadsitpandr; such that, for all

indexed by(p, . .., p¢_,) inthe box of sizer; x. . .xop_1,  P>P%: (a2—72)p§+(as—r3)p§ = 71(p§+Pop§) mod 7,

so as to define a scheduig, such that the FIFO juggles i.€.,a2 —r2 = 71 mod v andas — r3 = 71 mod ~. The

with all virtual processor$p§, . ,pﬁ_up% L pS_ ) in second technique leadsitpandrs such that as *Tg)pfﬁ“

the box Of SIZEPs X ... X Py_1) X (09 X ... X 0p_1). (a3 —73)p§ = N p(Bap + B3p5) where)' andp are as be-
We first consider the simplest case dfla processor ar-  fore, andﬂng + ﬂ3p§ mod o juggles in the boxP; x P».

ray, obtained by clustering a virtual processor array of di-  The situation is the same in higher dimensions. The re-

mensionn — 1 > 2. Suppose, w.l.0.g., thdt; = 1 for all sulting shift registers are more likely to be larger than the

4 > 3, and that the I/O routing needs to be done for the face number of live values they contain, thus alternative hard-
p‘f = 0, along dimensiorg, i.e., only the value, needs  ware support such as shift queues [1] could be useful.
to be defined. Since, for the I/O, we are interested in the
computations such that = 0, the I/O schedule is;j, =

Yon +T2p5+ - o+ Th—105_ 1 + (a2 —rg)pg—i—agpg—i—. .+
¢ pe , o _ .
an-1p, (See Equ. 2wity, = 0). Forj > 3, P; = 1thus To illustrate the benefits of our approach, we compare

aspl+. . .+an_1p;,_, is constantand, w.l.0.g, we canwork  our interface implementation to an alternative one based on
With 71 = Ypp 4+ 79p5 + . - .+ T 1061 + (a2 — 72)ph. In a run-time management of the 1/O conflicts. In this case,

4 Efficient hardware synthesis



whenever two or more processors have to perform an 1/0 M%tgzsfgalxafr\r’a; é\r: ;png — Area S
for the same stref_;lm at the same time, a hardware arbiter is — I Shape TIDFE/SAITE CUTIDFE
used to select which access will be scheduled first. D) 55 1161 96 | 128 | 265 | 266
In this alternative approach, processors have a direct ac- [ 33 Ix4 116 | 96 | 256 | 539 | 508
cess to the I/O bus, and they must be able to compute the | 32 8 x4 116 | 96 | 320 | 698 | 640
addresses from (resp. to) which they need to read (resp. gj gxi gg igg ggg 6733431 23;
; ; X
write). For that, each processor mu_st mtegrat_e a local con- 6l T8 132 T 102 248 1048 | 538
troller to compute the current iteration coordinates, deter- 61 TX ] 132 [ 102 | 512 | 1217 | 1064
mine whether this iteration requires an 1/O, and further re- 128 % 8 156 | 108 | 512 | 1454 | 1160
trieve the 1/0 address from the iteration coordinates. Our | 128 8 x 4 156 | 108 | 320 | 970 | 768
local controller implementation follows the approach of [6]. 128 16 x 4 156 | 108 | 448 | 1343 | 1096
128 16 x 8 156 | 108 | 640 | 1811 | 1472

A simple hardware arbiter sequentializes simultaneous /O
requests (run-time conflicts) with a simple fixed-priority en-
coder. To get a reasonable clock-period, we put a register Taple 1. Experimental results for interface
between the arbiter and each physical processor, for each area: number of logic cells (LUT), of registers
stream. This run-time arbitration design is very likely to in- (DFF), and of Xilinx shift registers primitives
duce an area overhead: the local control within processorsis  (SRL16) (not used in the run-time approach).
more complex than in our approach (in which both 1/O and
local control are handled through simple shift-register hard-
ware structures). Besides, thisn-time management does
not scale well, as the arbiter complexity and the number of
multiplexers grow linearly with the number of processors
and directly impacts the interface critical path.

We prototyped (invHDL) the two approaches for the
matrix-matrix product (note that the choice of this basic ex-
ample does not affect the validity of the results, as any 2D

processor array W'” use a similar mter'féyze Th'SVH.DL.. _ the bus protocol, our interface should be able to perform
description is designed to offer a maximum of flexibility: rouped 1/0, i.e., accesses to several contiguous memory

several parameters of the architecture can be conﬂgure«ﬂ/ords, in burst mode. But, for a given stream, the sequence

(pr:jysmal arr?/ s%e, hparém?r}lmg. part?]m(i;]ers, etc.)l. . Tr:je of I/0 on the FIFO very seldom accesses contiguous mem-
code was written by hand, Toflowing he theory expiaine ory words (actually, this is more like an exception), it is

Ll;“pre:/lous Sﬁnjt’\'Ao:IS;hwe I‘;"rf t\)N (:rr]klng :)n tme au\f\?mat;ﬁﬂ of thus not possible to directly benefit from grouped 1/O (note
S process pha. =or both approacnes, we Synthe- i g problem is similar in the case of the run-time arbi-

sized a set of architecture instances that only differ by Some, - iion interface). However, unlike the run-time approach,

parameters.for which we gathered expenmental rgsults Nsince our interface is based on a static schedule of /0 op-
terms of estimated resource usage (estimated maximum op-

. L T erations, we know in advance the order in which memory
erating frequency are similar in both cases and thus not

. Th thesi d ina Svnplifv. A words should be accessed. We can thus use a reordering
given). The Syntnesis was done u.smg ynpliy. Asummary memory, which acts as a buffer between the routing shift-
of the results is given in Table 1; to make a fair compari-

son, one should compare the sum of LUT and SRL16 (for registers and the bus interface (thige bufferis sketched in

o . : Fig. 1). This allows the bus master controller to write (resp.
the Stat'(;] mteg?ﬁe)[g?:;hfe ngr‘r:ﬁer of LU-L'” thé run-_t|met fetch) packets of contiguous words to (resp. from) memory,
approach, and the or both approaches. EXpenments, . uo o, the processor array side, our routing mechanism

ShO\.N th"."t our approach based ona static /0 schedyle Ieadaml access this memory using its own address sequence.
to significant area savings: while the number of flip-flops

(DFF) required to implement the interface is roughly the We believe that. this reorde_nng memory is likely to _play
. . an important part in the effective performance of our inter-
same in both approaches, the number of LUT resources i

much lower in our aporoach especially for larger rocessorsface; our ongoing work focuses on finding a suitable control
PP P y gerp and synchronization mechanism to handle this buffer, and

arrays. The selected values for theparameters depend ; o o
: . . X how to determine a minimum upper bound for its size.
on the scheduling functions, which are not detailed here. . . . X .
As mentioned in the introduction, a similar problem was

We point out that th I f the barely affect th
@ point out that the values of th barely affect the area studied in [2, 19]. The work of [19] is more advanced since

cost of the interface. This is due to the use of the Xilinx " ise 10 th ial tool Pi but their arbit
shift-register primitives, which can pack shift-registers, up 't gave rise 1o the commercial tool Fico, but their aroitra-
tion mechanism is only sketched. The comparison with our

1Things are slightly more complicated for 3D arrays, see Section 3.3.  Strategy given in this section shows that a static schedule can

to 16-bit deep, into a single logic cell.
Besides, these area improvements are not the only ben-

efits: we don't suffer from the performance penalty due
' to the arbitration wait states during an I/O conflict, and
we know statically the order in which 1/O are performed.
This latter property is very important in practice. Indeed,
we mentioned in Section 2 that our interface should be
packet-orientedto obtain reasonable 1/O performance from




provide improvements. The problem addressed by Bednara [6] A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. Construct-

and Teich is similar to ours, but their target processor array

and interface protocol are different: they target a slave

and their handling of resource constraints is not based on

juggling. As far as we could understand their papers [2, 3],
they allow software pipelining in the processors (we do not),
but they don't take into account idle cycles in boundary pro-

cessors (as in our case, Fig. 8). This results in a repetitive
schedule which acts as if an I/O needs to be done in each [g]

initiation interval. Thanks to our juggling modeling, we can

take into account cycles where no communication occurs
and only schedule real communications. Another advan- 9]

[7]

tage is that we can reuse the control mechanisms (address
generation and activity control) used in the Pico tool, which
is well documented, while the controllers of [2] are not de-

tailed. We also have experimental results concerning the

resultingvHDL, which will be interesting to compare with

Bednara and Teich results if some are provided in the future.

5. Conclusion

We have extended the LSGP partitioning theory to take [12]
into account I/O constraints and automatically generate an
efficient hardware/software interface for hardware acceler-
ators in a SoC. Rather that proposing a new formulation, we [13]
use the resource-constrained “juggling” technique devel-
oped in [6] to schedule the 1/O of a processor array so that

no collisions occur on the on-chip communication medium.
Our firstvHDL hardware implementation shows that the
complexity of the resulting mechanism is better than with

previous approaches. We hope to show further improve-
ments in the latency of the communication using the burst [15]

mode. We are currently studying the possibility of imple-
menting the method immA Ipha.
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