
Cognitive Radio Programming:
Existing Solutions and Open

Issues
Mickaël Dardaillon, Kevin Marquet, Tanguy Risset
Université de Lyon, Inria,
INSA-Lyon, CITI-Inria, F-69621, Villeurbanne, France
Jérôme Martin
CEA, LETI, Minatec Campus
F-38054, Grenoble, France
Henri-Pierre Charles
CEA, LIST, Minatec Campus
F-38054, Grenoble, France

ABSTRACT
Based on our analysis, the success of cognitive radio heavily depends on Software Defined Radio (SDR).
The cost, performance and power consumption of SDR hardware platforms will enable (or forbid) smart
radio applications and cognitive radio networks. SDR has evolved rapidly and is now reaching market
maturity, but many issues have yet to be studied. In this chapter, we highlight how hardware architectures
fulfill the constraints imposed by recent radio protocols and we present current architectures and solutions
for programming SDR. We also list the challenges to overcome in order to program future cognitive radio
systems.

1 INTRODUCTION
Until now, radio technologies have been developed in a static paradigm: protocols, radio resources
allocation and access network architectures were defined beforehand, allowing implementation of
effective yet non-adaptable radio systems. Nowadays, the saturation of radio frequency bands calls for a
new era of radio ssytems that will be characterized by self-adaptive mechanisms. These mechanisms will
rely on software radio technologies.
J. Mitola has coined the concept of software radio in his seminal work during the early 90’s (Mitola,
1992). While implementing the whole radio in software is still a utopia, many architectures now hitting
the market include some degree of programmability.
With the emergence of SDR, many questions related to the software layer of a software radio machine
arise. How will this kind of platform be programmed? How can we write radio transceiver programs that
are portable from one terminal to another? To answer these questions, programmers have to know how
the architectural characteristics of SDR systems can be abstracted to provide portable code.
Unfortunately, there is no agreement on the hardware architecture embedded in a cellular phone with
SDR facilities. Various technologies are used: Application Specific Integrated Circuit (ASIC), Field
Programmable Gate Array (FPGA), Digital Signal Processor (DSP), General Purpose Processor (GPP),
etc. These technologies are often mixed together and sometimes the term configurable is more adequate
than programmable for them.
Studying architectures, programming environments and programming models for emerging SDR systems
simultaneously is of crucial importance because of the need to define the hardware abstraction layer of
SDR systems: the radio hardware abstraction layer (R-HAL).

2	

In this chapter, we provide an up-to-date review of existing SDR hardware platforms, classifying them
into five categories. Programming models and programming tools used in these platforms are not yet
mature, most of these platforms being currently programmed using ad-hoc techniques. No common
language, format or API has yet emerged; hence it is impossible to compare precisely the performance of
the different approaches. All performance results presented here are taken from the existing works.
We illustrate, with LTE as an example, the problems of modern digital physical layer protocols: fast
terminal reconfiguration, data-dependent data flow. We also give an insight on what should be used as
programming model for the programming of SDR platforms.
The rest of the chapter is organized as follows: we first provide a brief summary of radio, SDR and
cognitive radio technologies, we also present an example extracted from the LTE protocol that illustrates
the difficulties of SDR programming. Next, we present a survey of hardware SDR platforms, categorize
and provide synthetic performance comparisons between them including power consumption when
available. We then focus on programming environments for SDR and more precisely on the problem of
defining a language for describing waveforms, i.e. the radio’s physical layer. We finally review the
remaining most important open problem: defining a programming model for SDR and a hardware
abstraction layer for SDR.

2 COGNITIVE RADIO
2.1 Software Defined Radio

Figure 1. Radio block diagram, highlighting separation between digital and analog parts, as well as
programmable, configurable and dedicated hardware parts.

The different components of a radio system are illustrated in Figure 1. Clearly, all of the digital
components may not be programmable, but the larger the programmable part (DSP/FPGA part on Figure
1), the more software the radio is. Dedicated circuits are usually needed, for which the term configurable
is more adapted than programmable. In a typical SDR, the analog part is limited to two frequency
translations: from radio frequency to intermediate band, and from intermediate band to baseband. The
baseband is sampled, and all the signal processing is done digitally.
To encourage a common meaning for the term “SDR”, the SDR Forum (recently renamed Wireless
Innovation Forum) proposes to classify it into five tiers. Tier 0 corresponds to hardware radio; Tier 1
corresponds to software controlled radio with control functions implemented in software; Tier 2
corresponds to software defined radio with digital baseband processing implemented in software; Tier 3 is
the ideal software radio with sampling at the antenna to process radio frequency signal in software; Tier 4
corresponds to ultimate software radio and extend these capacities with fast transition (millisecond) from
one protocol to another. Tier 3 is the most popular definition of SDR: the radio includes software control
of modulation, bandwidth, frequency range and frequency bands. Tier 3 and 4 are not realistic today.

3	

Building an SDR implies on choosing a computing platform for the digital part, a sampling frequency and
a radio front-end. In addition to the careful choice of a computing platform, the designer must make a
trade-off between sampling frequency and computing complexity. For instance, sampling a signal at 4.9
GHz (hence with a sample rate greater or equal to 10 GHz) is not available today with reasonable power
consumption. Even after the ADC evolve to low power, a high bandwidth ADC would produce a very
high sample rate; therefore the front-end characteristics (bandwidth, ADC resolution, etc.) constrain the
digital part in terms of computing power. In this chapter, we focus on the digital part represented on the
left side of Figure 1, assuming an adequate front-end is available for the platform.
The hardware platforms we review in the following are considered from a programmer’s point of view.
They target the implementation of wireless communication protocol stacks from application down to
physical layer (including baseband processing and intermediate frequency conversion), for emission (TX)
and/or reception (RX).

2.2 Cognitive Radio
A Cognitive Radio is a wireless communication system that can sense the air medium, and decide to
configure itself in a given mode. Tier 2 SDR platforms are natural candidates for cognitive radio
implementation but cognitive radios do not have to be SDR.
The main feature enabled by spectrum sensing ability is called dynamic spectrum management: the
system is able to configure radio-system parameters in an autonomous manner. These radio-system
parameters include transmission power, frequency band, modulation, channel and source coding, but
might as well include higher level parameters such as waveform (physical layer protocol), MAC protocol,
routing protocol and other networking characteristics. In that case, the term “autonomous” means
“without human decision”, i.e. automatic. However in many cases the decision cannot be taken
independently of neighbouring communicating devices implied in the communication. This leads to the
scientific field of distributed algorithms for radio resource allocation.
Distributed algorithms are used when the decision of choosing a coding scheme or a frequency band has
to be shared by many radio terminals. This perspective opens many new research problems and many new
applications at the same time. For instance, distributed algorithms can be used to optimize interference
cancellation globally, hence optimizing power consumption. Another example is the use of relay, i.e.
transmission of packets from neighbour to neighbour according to routing decisions done at the physical
layer, as opposed to routing decisions taken at a higher level in the protocol stack. Relay can be used for
reducing transmission power or to improve quality of transmission using network coding techniques.
From the research point of view, distributed algorithms open new fields: complexity and optimality of
distributed solution to dynamic spectrum management. In point to point communication, OFDM
techniques are approaching theoretical optimal bound for spectrum efficiency, that is the information rate
that can be transmitted over a given bandwidth. But if cooperation between terminals is allowed,
theoretical bounds are much more difficult to compute and technologically there is place for large
improvements in communication systems that use cognition, cooperation and distributed decision
algorithms. These problems are tackled in a new scientific field named network information theory.

2.3 Connection between SDR and cognitive radio
A cognitive radio is not necessarily based on SDR architecture. As an example, today's mobile phones are
able to switch autonomously between local Wifi connection and 3G to communicate. However this switch
is not instantaneous, it needs to go through the entire software stack up to the operating system level.
Also, today's mobile phone include a dedicated chip for each wireless protocol even if they share the
same frequency band such as Wifi and Bluetooth for instance. SDR technology enables both evolutions: a
dynamic switching between two protocols and a common hardware for all wireless protocol.
One could possibly imagine that cognitive radio will be implemented in pure software in a far future,
providing the highest flexibility. Unfortunately, this is not possible today, and will not be in the near
future because the complexity of the communication protocols increases faster than Moore’s law (UMTS

4	

Forum, 2011). Even if SDR is not necessary for cognitive radio technology, it will become mandatory
because of the rapid appearance of new protocols and because of the constant need to lower the hardware
platform prices. We give here the three main reasons that make cognitive radio highly dependent on SDR
hardware technology.

• Fast reconfigurability. When dynamic spectrum sensing is used, in the primary-secondary user
scenario for instance, the terminal should be able to switch very quickly (in a few micro-seconds)
from one protocol to another, otherwise communication packets will be lost, leading to costly
retransmission, impossible in many streaming applications. This fast reconfigurability can only be
achieved if the hardware has been dedicated to that; it is not possible to do it in a pure software
way.

• High performance and power consumption. Even if not all protocols require high performance,
some of them do, mainly those relying on MIMO OFDM protocols. They need several GFlops
operations, which cannot be achieved by pure software except at a power consumption of
hundreds of watts using grid computing. Hence dedicated hardware is needed to have both high
performance and low power consumption for future wireless terminals.

• Unitary cost and adaptability. Having one chip per protocol does not scale, the price increases
with the number of chips needed and new phones need to be compatible with old protocols.
Moreover, cognitive radio terminals need to be adaptable to new arriving protocols. For instance,
in the white space scenario, new protocols might appear very frequently and the mobile will
configure itself to connect to the emerging protocols. This is only possible using SDR
technology.

Given the above reasons, it is clear that SDR technology will be necessary to realize cognitive radio
application. However, the SDR technology is not stable yet, it is still in a very active development phase,
from the hardware point of view as well as from the software point of view. In this chapter, we study how
current SDR technology, hardware and software, enable performance, fast reconfiguration and low power
consumption for wireless mobile devices.

2.4 Example of of high performance and fast reconfiguration needs
In this section we will show why recent radio communication protocols require a specific attention from a
programmer’s perspective. These protocols introduce harder real-time and dynamicity constraints that
make usual computation models inefficient. Historically, structured programming led to imperative
programming followed by fruitful evolutions for general purpose programming: object-oriented
programming, functional languages, threads etc. Simultaneously, domain-specific programming models
have been adopted in many fields, the most well known being reactive programming model for real-time
control, and dataflow programming model for signal processing.
Dataflow programming model has been popularized by the dataflow domain of Ptolemy (Eker, 2003),
implementing Khan’s process networks (Kahn, 1974). Dataflow programming assumes that the flow of
data is statically known and that the executed computation does not depend on data values. This condition
has been verified for fifty years of signal processing but is not satisfied anymore by, for instance, LTE
protocol. A more complete analysis of the existing computation models for SDR is given in the cognitive
radio programming framework survey, below we simply give an example of the practical problems
encountered when programming LTE on an SDR platform.

5	

Figure 2.LTE pipeline flow, CFO correction and PDCCH decoding require specific attention.

LTE is a mobile communication standard, developed by the 3GPP (3rd Generation Partnership Project)
and approved into ITU (International Telecommunications Union). Figure 2 represents the global flow for
decoding a LTE frame (release 8, mode 5), from the mobile equipment point of view. A LTE frame is
composed of 10 sub-frames of 1ms each, each sub-frame being composed of 14 symbols in time and 2048
sub-carriers in frequency for a 20 MHz bandwidth. The transmission uses MIMO technology (Multiple-
Input and Multiple-Output), with up to 4 antennas for transmission on the base station and 2 antennas for
reception on the mobile equipment.
In this flow, we pay attention to the carrier frequency offset (CFO) correction. This correction is
performed by analyzing specific resource elements of the frame called reference signals or pilots. Pilots
are within the sub-frame that is corrected, hence the estimation of the CFO (CFO-estimation on Figure 2)
must be performed very quickly, and, more challenging, the carrier frequency offset correction (CFO-
correction on Figure 2) must be configured using the result of the CFO estimation. Hence this
reconfiguration is dynamic and real-time, it should occur in less than 100µs (10% of the computation time
for a sub-frame). This is the first problem that SDR platform designers (and programmers as well)
encounter: how to design a system that can reconfigure so quickly?

6	

Figure 3. Resource allocation in an LTE PRB (Physical Resource Block).

The second problem occurs after the FFT and MIMO decoding have brought samples in the frequency
domain. The sub-frame is then composed of a matrix of symbols, not all of them being addressed to a
given user, because LTE encodes several users in the same sub-frame. Extracting the symbols for a given
user requires decoding the Physical Downlink Control CHannel (PDCCH). However, PDCCH format is
encoded within the sub-frame itself in the Physical Control Format Indicator CHannel (PCFICH) (see
Figure 3), which must therefore be decoded beforehand. Depending on the PDCCH a certain number of
symbols in the PDSCH (Physical Downlink Shared CHannel) will have to be sent to the rest of the flow
(for demodulation etc.). Moreover, the LTE standard states that the modulation scheme (QPSK or
16QAM for instance) should also be encoded in the PDCCH. Figure 3 illustrates the symbol matrix in the
frame, the successive decoding of PCFICH, PDCCH and PDSCH are illustrated in Figure 2 by the loop
back arrow after de-scrambling.
This is the second problem that we highlight which definitely cannot be expressed in a static dataflow
programming model: the number of data to be transmitted, as well as the computation to perform on each
piece of data, are dependent on the data themselves. This is one of the main motivations of the work
presented here: how to express such a computation in a language that is generic enough to be compiled on
various SDR platforms?

3 SURVEY OF HARDWARE PLATFORMS FOR SDR
In order to classify the SDR platforms, we need to define objective criteria. Trying to define criteria based
on used technology can be tricky, as most platforms are heterogeneous. Moreover, the technology used
may not be a relevant criterion for platform users. The user will mainly be interested in the three
following features: programmability and computing power, which will condition the supported protocols,
and energy consumption which we believe will be the limiting factor for technology adoption. Choosing a
computing platform for a given application is a trade-off between these features.
However, from the programmer point of view, the architecture is of major importance because it will have
a crucial impact on programming models and tools used on the platform. We end up with five categories
of SDR architectures:

1. General-purpose CPU approach
2. Co-processor approach
3. Multi-processor approach
4. Configurable units approach
5. Programmable blocks approach

7	

Each approach is described in its corresponding subsection, and examples of existing implementations are
given.

3.1 General-purpose CPU approach

Figure 4.General-purpose CPU approach with optional co-processor.

The general-purpose CPU approach (depicted in part of Figure 4 not dashed) uses a general purpose
computer processor to provide a computing platform. It offers a flexible and easy way to program the
platform, but with a high energy consumption for a performance objective.
With the CMOS technology continuous evolution, one could imagine that future computers will be able
to compute all protocols in real-time. However, the increase in data throughput is higher than the increase
in computing power. Therefore, this kind of architecture will only be able to support past protocols,
unless it can make use of higher parallelism.
The Universal Software Radio Peripheral (USRP, 2014) is representative of the General-purpose CPU
approach. It is composed of high frequency ADC/DAC that sample the signal in intermediate frequency.
A FPGA converts and stores baseband signal. Most of the signal processing is done by a CPU connected
to the FPGA by a USB link (USRP1) or an Ethernet link (USRP2). The platform is widespread and
supported by third party software. It is aimed to work with GNU radio, but is also compatible with
National Instruments’ LabView and Mathworks’ Matlab.
Recently, Microsoft developed SORA (Tan, 2011). This platform is connected to the computer by a PCIe
bus, which permits low latency and high throughput data transmission. It makes extensive use of modern
CPU features to perform 802.11b/g processing in real-time.

3.2 Co-processor approach
In order to accelerate the signal processing, optimizations of the general-purpose CPU approach have
been explored recently. As depicted in Figure 4, they rely on the addition of a co-processor to perform
heavy processing. It reduces the price to pay in terms of energy while keeping high programmability and
flexibility.
The work presented in (Horrein, 2011) uses a GPU as a co-processor in a GNU radio flow. It permits
gains of a factor 3 to 4 in processing speed.
The Kansas University Agile Radio (KUAR) (Minden, 2007) uses an embedded PC associated to a
FPGA. The choice of the model of computation is left to the programmer, ranging from a full VHDL
implementation to a full processor implementation close to the GNU radio flow.
Other developments use generic DSP as central processor, which provides higher efficiency while
keeping high programmability.
Texas instruments offer a three-core DSP with specialized symbol and chip rate accelerators. This product
provides programming flexibility for WCDMA base cells, with support for up to 64 users and different
protocols (Agarwala, 2007).
The ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) (Bougard, 2008)
developed by Imec is a coarse-grain reconfigurable architecture. It is built around a main CPU and the
ADRES accelerator. The ADRES is seen by the processor as a VLIW co-processor, while being an array
of 16 functional units. Each one is an SIMD processor, which leverages data parallelism. The processor is
programmed using the DRESC compiler (Mei, 2002), in ANSI C. The DRESC compiler generates code
to unroll loops and compute them using the ADRES accelerator. It targets telecommunications with
benchmarks on 802.11n up to 108 Mbps and LTE up to 18 Mbps, and an average consumption of 333mW
(Bougard, 2008).

8	

3.3 Multi-processor approach

Figure 5. Multi-processor approach with optional central control processor.

Previous architectures offer only limited task parallelism. The next categories fill this gap using tailored
architectures with heterogeneous types of processors. One approach to get efficient and specialized
platforms is to use dedicated processors. In this approach, dedicated processors are used to compute
signal processing. Both central and distributed controls are considered in this section.
The multi-processor approach has a high programmability, but the flexibility of the platform is reduced by
its specific architecture. The architecture concept is depicted on Figure 5.
The NXP EVP16 (Berkel, 2005), presented in 2005, is composed of several computing units. An ARM
processor provides control and LINK/MAC layers. A conventional DSP, a vector processor and several
hardware accelerators are used for signal processing. The vector processor is built as a vectorized pipeline
and addressed as a VLIW. It performs UMTS for a 640 kbps throughput at 35 MHz, with a maximum of
300 MHz (Berkel, 2005).
Infineon built the MuSIC (Ramacher, 2007) as a multi-DSP solution for SDR. The control is done by an
ARM processor. Signal computation is processed by 4 SIMD DSP and dedicated processors for filtering
and channel encoding. Power consumption in WCDMA mode is 382 mW for the worst case and 280 mW
for a typical case. This chip is provided as a commercial solution under the name X-GOLD SDR 20 by
Infineon (Ramacher, 2011). It is programmed using a mix of C code and assembly code for critical
processing.
The Sandblaster architecture (Schulte, 2004) is built around 3 entities: the fetch and branch unit, the
integer and load/store unit, and the SIMD vector unit. Task parallelism is managed by a Token Triggered
Threading component, which provides hardware support for multithreading. On the SB3011 (Glossner,
2007), 4 sandblaster cores are integrated and controlled by an ARM processor. It is programmed in ANSI
C with a dedicated compiler. Maximum consumption is 171 mW for WCDMA at 384 kbps (Glossner,
2007).
The University of Michigan at Ann Arbor developed the SODA (Woh, 2006) SDR platform, and its
prototype version ARDBEG (Woh, 2008). SODA was developed as a complete software SDR solution. It
consists of an ARM for control and 4 SIMD DSPs for signal processing. ARDBEG builds on that
platform by adding a hardware turbo decoder and optimizing DSPs for signal processing. All
programming is made using C code. Consumption results on ARDBEG for WCDMA and 802.11a are
under 500 mW (Woh, 2008).
The University of Dresden, Germany, developed the Tomahawk SDR chip (Limberg, 2008), aiming at
LTE and WiMAX. It uses two Tensilica RISC processors for control, six vector DSPs and two scalar
DSPs for signal processing, as well as ASIC accelerators for filtering and decoding. The scheduling is
done by dedicated hardware and C code is used for programming. No protocol has been implemented yet
on this platform. From the authors’ estimation, the platform consumption is about 1.5 W (Limber, 2008).
Picochip (Pulley, 2003) approaches signal processing using many small cores. These cores are mapped on
a deterministic matrix. The company provides a C-based development tool flow. No benchmark is
provided for this chip. However, the company is announcing OFDM and 4G base stations as reference
applications on its website.
The University of California at Davis developed the Asynchronous Array of Simple Processors (Truong,
2009). This project aims at providing signal processing computation using small processors. All
processors can communicate with their nearest neighbours, in a grid-like array. Version 2 adds hardware

9	

accelerators for FFT, Viterbi and video motion estimation, while increasing the total number of cores to
167. Complete 802.11a/g is processed at 54 Mbps using 198 mW (Truong, 2009).

3.4 Configurable units approach
In order to offer lower energy consumption, some platforms substitute DSP for configurable units. The
difference between specialized DSPs and configurable units is very thin: a DSP is able to process any
computation, whereas a configurable unit is too specialized to do so. This implies a big difference in term
of programmability: to gain more performance, the DSP flexibility is abandoned in favor of configurable
units. This leads to platforms which are much more difficult to program.
Fujitsu developed the SDR LSI (Saito, 2006) in 2005. The platform makes extensive use of hardware
accelerators, associated to reconfigurable processors. All these components are connected to a crossbar
data network, and controlled by a central ARM processor. The chip was able to run 802.11a/b with a
maximum throughput of 43 Mbps (Saito, 2006).
The BEAR SDR platform (Derudder, 2009) is the evolution of the ADRES from Imec. It is constituted of
an ARM processor for control and three ASIPs for coarse time synchronization on different front-ends.
Two ADRES coarse-grain configurable architectures are used for baseband processing with a Viterbi
accelerator. The platform can be programmed with C or Matlab code, using the Imec development chain.
In terms of energy consumption, BEAR achieves 2×2 MIMO OFDM at 108 Mbps for 231 mW
(Derudder, 2009). Imec is licensing the BEAR platform as an IP block.
The Magali SDR chip (Clermidy, 2009) is developed by the CEA-Leti as a telecommunication
demonstration platform. It is built on a Network-on-Chip, each peripheral having an access to the
network, with an ARM processor controlling configurations. Computation is done by coarse-grain
reconfigurable cores called Mephisto and reconfigurable IPs for OFDM, decoding and deinterleaving.
Smart memory engines (Martin, 2009) are distributed on the Network-on-Chip and act like DMAs, while
also providing data rearrangement capabilities. The chip performs 4×2 MIMO LTE reception in the most
demanding scenario with a consumption of 236 mW (Jallier, 2010).
CEA-Leti Genepy (Jallier, 2010) is using a larger granularity for its distributed approach. It is based on
Magali (Clermidy, 2009) technology, using the Network-on-Chip and the coarse-grain configurable cores.
The control carried out by the ARM processor is undertaken by distributed small RISC processors. Each
cell on the network is composed of two Mephisto cores, one Smart Memory Engine and a RISC
controller. The platform is purely homogeneous, with no hardware accelerators. In terms of computing
power, 4×2 MIMO LTE reception is processed with a total consumption of 192 mW (Jallier, 2010).
The ExpressMIMO is developed as a configurable units approach on a FPGA by EURECOM (Nussbaum,
2009). All the configurable units share a common network interface, DMA engine and microcontroller,
and each has a specific configurable IP for data processing. The board targets OFDM MIMO
implementations and uses the OpenAirInterface open-source framework (Open Air Interface, 2014). A
more recent implementation should be available soon (Schmidt-Knorreck, 2012).
University of Twente, Netherlands, developed the Annabelle SDR chip. It is also built on a Network-on-
Chip, using coarse-grain reconfigurable cores. An ARM processor is used for control, and accelerator
modules (Viterbi, etc.) are connected to the ARM through an AMBA bus. Only OFDM specific
benchmarks have been published at the time of submission (Zhang, 2009).

3.5 Programmable blocks approach
The last approach uses programmables blocks and is mainly constituted of FPGAs. It doesn’t provide
programmability as it is, but great flexibility to create tailored architectures. Programmable blocks offer
high computing power for moderate energy consumption.
The XiSystem (Lodi, 2006) is a VLIW architecture featuring 3 concurrent datapaths, including a PiCoGA
(Pipelined Configurable Gate Array). The PiCoGA is an oriented datapath FPGA which executes specific
instructions for the processor at run-time. The development is made with C to provide code for both the

10	

VLIW and the PiCoGA. It is aimed at embedded signal processing in general, with a benchmark on
MPEG2 encoding and an average consumption of 300 mW (Lodi, 2006).
The Rice University has developed WARP (WARP, 2014), an open SDR platform. A Xilinx Virtex
FPGA does the computation. Programming uses VHDL language. An open source community is led by
the Rice University to offer open source implementations on the platform. For instance, it contains a
MIMO OFDM Reference Design that can be extended based on Xilinx XPS tool.
WINC2R is an original platform for SDR developed by the Rutgers University. The platform is built on a
FPGA, with softcore processors and accelerators. Softcore processors can be programmed with GNU
radio. Computation flow can be balanced on processors or accelerators, depending on the constraints.
Moreover, by using an FPGA, accelerators can be chosen and tuned during development. 802.11a has
been implemented on the platform (Satarkar, 2009).
The Nutaq company (Nutaq, 2014) offers development tools and platforms for SDR based on FPGA.
Development is done using Simulink model-based approach or in VHDL. The platform is presented as
supporting MIMO WiMAX. Many other companies offer similar products based on FPGA (Pentek, 2014;
Sundance, 2014).

3.6 Analysis

Platforms Availability Application Prog. Cons.
(USRP, 2014) commercial N/A C++ ~PC
TI C64+ (Agarwala, 2007) commercial base station C/ASM 6000 mW
X-GOLD SDR (Ramacher, 2011) commercial WCDMA C/ASM ≤ 382 mW
Sandblaster (Glossner, 2007) IP licence WCDMA C 171 mW
ARDBEG (Woh, 2008) prototype WCDMA C ≤ 500 mW
BEAR (Derudder, 2009) OP licence MIMO OFDM matlab/C 231 mW
Magali (Clermidy, 2009) prototype MIMO OFDM C/ASM 236 mW
ExpressMIMO (Nussbaum, 2009) prototype MIMO OFDM C N/A
(WARP, 2014) commercial MIMO OFDM VHDL N/A
(Nutaq, 2014) commercial N/A matlab/VHDL N/A
ASAP (Truong, 2009) prototype 802.11 a/g N/A 198 mW
Genepy (Jalier, 2010) prototype MIMO OFDM C/ASM 192 mW
Table 1. Comparison of key SDR platforms based on the published performance results.

In order to better understand each category, we summarize the main characteristics for key platforms that
use different approaches in Table 1. Energy consumption is not defined for FPGA-based platforms
because it is heavily dependent on the configuration. Based on these key platforms, we draw trends on the
application fields of each category.
If you don’t want to study energy consumption nor architecture algorithm adequacy, the general-purpose
CPU approach is the easiest way to go. However, if you intend to study energy consumption or
computing power impact, this approach is not recommended. Indeed, dedicated hardware platforms have
very different behaviours compared to generic processors. This makes it difficult to establish a
relationship between computing power and energy consumption for the generic approach and others. As
an example, for a given protocol, computing requirements in terms of number of operations per second
may vary with a factor of 100 in the literature, depending on the architecture granularity.
In order to study computing power and to have the lowest energy consumption, a heterogeneous
approach, which exploits hardware acceleration, is a better starting point. In this family, using DSPs as in
Imec’s solution (Derudder, 2009) or configurable blocks as in Magali (Clermidy, 2009) seems a
pragmatic and efficient approach, these platforms being dedicated, and hence optimized, for SDR.

11	

Unfortunately, using such a solution makes you heavily dependent on the platform architecture, and
porting a waveform to a different architecture can be tricky. Providing a common HAL is a real
challenging but promising way to develop practical multi-platform SDR.
Alternatively, the programmable blocks approach provides a flexible and efficient platform for
prototyping thanks to the large adoption of FPGA technology. It can be versatile in the architecture
choice, see the radically different approaches from (WARP, 2014) and (Satarkar, 2009) for example.
The most obvious conclusion from this SDR architecture survey is that no common architecture model
could be extracted to provide, as it is the case for the general purpose processor, a hardware abstraction
layer that could be used to help programming cognitive radio applications. We are now going to study the
efforts that have been made to provide a programming environment adapted to cognitive radio.

4 COGNITIVE RADIO PROGRAMMING FRAMEWORK SURVEY
As we have seen before, there have been a lot of efforts to set up dedicated SDR hardware. From these
works, we can conclude that i) hardware support is necessary to match performances and low-power
requirements of modern radio protocols and ii) it is not feasible to write traditional C/ASM code and map
it manually anymore.
Programming and executing waveforms is clearly an application scope of the general problem of
programming parallel machines, and this has to be taken into account when programming an SDR
hardware. We now review research efforts that have been made to program SDR platforms efficiently.
We first give an insight of some programming environments used to program more than one SDR
architecture. Then we focus on one central aspect of radio programming: waveform programming.
Expressing a waveform, i.e. the physical part of the radio communication protocol, in a high-level
language is a challenge. We classify the radio programming environments according to the programming
model they use to express waveforms in the following sections.

4.1 Cognitive Radio programming environment
There are two distinct important issues to address in the programming environment. The first one is the
programming model used to specify the waveform (described in the following section), and the second is
the global programming framework that will enable this programming model to be efficiently
implemented on most of the platforms mentioned in previous section. Choosing the right programming
framework is not a simple matter of comparing objectively pros and cons, it highly depends on strategic
choices in companies and cultural acceptance by programmers.
The Software Communication Architecture (SCA) applicative framework was launched by the US
department of defense within the Joint Tactical Radio System project (JTRS). It is an example of top-
down designed framework. SCA re-uses major technologies coming from distributed software
programming such as CORBA (Common Object Request Broker Architecture) for instance. The SCA has
been implemented in OSSIE (González, 2009) and in military devices too. The OSSIE set of tools of the
SCA framework is an initiative from the American department of defense intending to provide a graphical
environment for rapid prototyping of waveforms. It allows connection of components and generation of
the corresponding code. However, the SCA framework is probably doomed to failure as the department of
defense cancelled the project after it failed the Army’s Network Integrated Environment testing.
Relying on the success of open-source software development, the GNUradio project (GNU radio)
proposes to implement software defined radio systems using a library of signal processing blocks written
in C++ for performance-critical parts, with Python programming language to interface these blocks.
Initially dedicated to the Universal Software Radio Peripheral (USRP, 2014) SDR hardware from Ettus
Research, it recently received attention from many other hardware providers. However, this approach is
currently implemented in general purpose CPU platforms and will encounter timing problems when
complex MIMO OFDM protocols will have to be implemented. Some implementations, as for instance
the OpenAir Interface (Open air interface, 2014), use real-time OS such as RT-Linux to improve the
quality of real-time signal processing handling.

12	

Many dedicated environments are based on a graphical interface coupled with dedicated IPs, as for
instance Simulink coupled with Mathworks tools to program FPGAs or LabView. Recent trends based on
OpenMP or OpenCL are emerging (Wang, 2007), but have not gain enough attention yet.

4.2 Imperative concurrent waveform programming
For an embedded software programmer, the easiest way to program an SDR platform is to use an
imperative language (generally C language) associated with threads to express parallelism. It has been
used to program waveforms for both heterogeneous and homogeneous parallel platforms. For instance,
the different units of the BEAR SDR platform (Derudder, 2009) are programmed using C and Matlab
code.
The efficient programming and execution of waveforms is tightly coupled with advances in the
programming techniques for heterogeneous platforms. Although not yet evaluated for waveform
programming, the ExoCHI (Wang, 2007) programming environment and the Merge (Linderman, 2007)
framework (based on ExoCHI) are proposals aiming at easing the programming of heterogeneous
platforms while achieving good performances. The proposed solution is to extend OpenMP with intrinsic
functions and dynamically map the software on available resources.
Cohen et al. (Cohen, 2010) propose a similar approach in which programs are compiled into a specific
bytecode and then compiled dynamically to the different accelerators available on the platform. This
approach has not been evaluated on SDR platforms yet.
Many isolated works concentrate on the use of hardware accelerators. The Dresc (Mei, 2002) compiler
allows unrolling loops in order to execute parallelized code on a specific accelerator made of 64
functional units.
The integration of the GPU in a SDR programming model has also been studied. Horrein et al. compare
(Horrein, 2011) different system architectures for using the GPU for SDR programming. Their work is
based on OpenCL and GNU radio (GNU radio).

4.3 Dataflow waveform programming
Numerous research works present arguments in favor of a paradigm shift and propose to program
waveforms using dataflow languages. These languages rely on a Model of Computation (MoC) where a
program is represented as a directed graph G = (V, E). An actor v ∈ V represents a computational module
or a hierarchically nested subgraph. A directed edge e ∈ E represents a FIFO buffer from its source actor
S to its destination actor D. Dataflow graphs follow a data-driven execution: an actor v can be executed
(fired) only when enough data samples are available on its input edges. When firing, v consumes a certain
amount of samples from its input edges and produces a certain number of samples on its output edges.

Figure 6. Representation of the balance between provability and expressivity in dataflow computation
models.

Many dataflow-compliant programming models have been proposed for specific applications; they are
illustrated in Figure 6. Synchronous DataFlow (SDF) (Lee, 1987) means that the number of tokens
necessary for an actor to fire is known at compile-time. In this case, static scheduling of actors can be
performed and the size of the buffers between actors can be bounded. In Dynamic DataFlow (Buck,
1994), data samples consumed and produced by an actor at each firing can vary dynamically at runtime,
and can even be 0 in order to provide more flexibility for programming. As a drawback, theoretical
analysis capabilities are reduced. Between synchronous and dynamic dataflow formalisms, a wide amount
of models have been proposed, e.g. Cyclo- Static Dataflow (CSDF) (Bilsen, 1996), Scenario-Aware

13	

DataFlow (SADF) (Stuijk, 2011), Schedulable Parametric DataFlow (SPDF) (Fradet, 2012). The goal
was to look for a trade-off between the ability to statically analyze programs and the expressivity of the
languages. For instance, using SDF to model a LTE waveform will lead to over-estimate the necessary
resources at runtime because dynamic behaviour will not be captured.
StreamIt (Thies, 2009) is a programming language that allows to describe programs in an SDF manner,
through the use of filters and split-join operators. It comes with tools able to perform static analyses and
optimization’s of the dataflow graph. The compiler can generate C code for threads, that the programmer
has to map manually on the available hardware resources. The underlying CSDF MoC is restricted to a
single flow, which makes StreamIt not usable for complex and dynamic waveforms such as LTE.
ΣC (Goubier, 2009) is a proposal to program waveforms using an extension of C. The corresponding
MoC is more expressive than SDF thanks to non-deterministic extensions but still allows some static
analyses to be performed such as bounding memory usage. However it does not allow dynamic behavior
of actors, which is a limiting approach when attempting to describe waveforms such as LTE. The
experimental platform used for ΣC is a many-core processor.
Past works have demonstrated the interest of programming using a general purpose language augmented
with some primitives that allow to build the dataflow graph. Following the Stream Virtual Machine
(Labonte, 2004) approach, StreamWare (Gummaraju, 2008) proposes to write dataflow graphs in a
dedicated C API and schedule them at runtime on top of a general purpose processor. The same approach
was applied to LTE (Ben Abdallah, 2010) using a virtual machine (LUA). The waveform program
contains dedicated reconfiguration primitives written in LUA language and interpreted directly on a
controller. Those works do not restrict to a particular dataflow MoC.
In a similar approach, the Nucleus tool flow (Castrillon, 2011) comprises a set of tools able to compile
and map waveforms. It uses the MAPS (Castrillon, 2013) framework in order to describe actors (so-called
nuclei) in the CPN language. Different implementations can be provided for each actor, and a user-
guided mapping computes a scheduling.
The non-open tool SystemVue (Agilent SystemVue, 2014) allows to model waveforms in SDF or TSDF
(Timed SDF) form. It was used as a basis for a recent work (Hsu, 2010) attempting to address the
dynamic behavior of LTE by introducing vectorizers and serializers in the dataflow graph.
The DiplodocusDF approach (Gonzalez-Pina, 2012) extends UML profiles to model dataflow
applications. Thanks to a formal semantic, the resulting dedicated UML language can be simulated. Code
for the underlying hardware can also be generated, but the mapping has to be done manually.

4.4 Mixing programming paradigms
The SPEX approach (Lin, 2006) proposes to program waveforms using three paradigms. Kernel SPEX
allows a sequential, C-style imperative programming that can be useful for SIMD or VLIW compilation.
Stream SPEX can be used to program using the dataflow paradigm, following the KPN MoC.
Synchronous SPEX relies on the paradigm used in synchronous languages such as Esterel or Signal. The
distribution of the paradigms is left to the programmer but all parts are included in a C++ program in
which 1) the choice of the paradigm is indicated by a keyword, 2) no dynamic object creation is allowed.
The compilation of this program involves one compiler for each paradigm.
In a similar manner, IRIS (Sutton, 2010) proposes to write sPHY and fPHY engines. sPHY implements
SDF components while fPHY implements KPN components. The mapping of the engines is left to the
programmer. The framework provides support for reconfiguration: components may trigger a signal
which will lead to the reconfiguration of the kernels.
Lime (Auerbach, 2010) is a Java-based language with extensions to express more parallelism. In Lime,
the same method body can be used as a standard function or as an actor in order to program in a dataflow
style. In this case, Lime also provides a match operator allowing actors to execute at different rates to
communicate, thus extending SDF while keeping analysis capabilities. It is associated with a
compilation/execution that generates Java bytecode, C, or Verilog, in order to be able to choose between
different implementations for each actor.

14	

Finally, It is worth mentioning that many research teams have been working on designing complete
system from high level specification in the so-called hardware-software co-design domain. These works
brought advances in specific aspects such as platform based design or high level synthesis tools such as
CatapultC for instance. Although these works did not led to a dedicated SDR environment but might, in
the near future, lead to refinement-based SDR programming environment.

4.5 Discussion
The survey of SDR programming environments provided above shows that, as it was the case for
hardware architectures, there is no agreement on what should be a programming environment for
cognitive radio. However, there is a clear trend toward a paradigm shift in order to handle protocols such
as LTE. These new protocols are very different from previous signal processing applications, that can be
programmed with static traditional parallelization techniques (SDF and/or traditional compilation
techniques).
The arguments in favor of dataflow programming models for SDR are:
• Radio waveforms are inherently dataflow because they operate on large data sequences. Although not

infinite — they are grouped into frames — radio waveforms still require static (software or hardware)
filters that are easily expressed through dataflow actors.

• Software defined radio applications require huge computation performances and hence need to
efficiently use parallelism available in hardware. Dataflow formalisms allow for better parallel
implementation because it naturally exposes parallelism in many ways: task parallelism, data
parallelism and pipeline structure of the program.

• Dataflow programs have a restricted expressivity that allows them to be analyzed in order to verify
some properties such as the absence of deadlock, or to improve timing analyses. Such analyses are
important since waveforms are becoming more and more complex. New analysis tools will be needed
to ensure properties on these programs.

Although they introduce a paradigm shift, dataflow approaches seem necessary. We believe that, at least
mixed approaches between this paradigm and imperative concurrent languages will succeed in providing
a compromise between programmability, performance and provability. Next section reports on open
issues we have identified concerning the programming of SDR platforms, and reviews different basic
research tracks to address them.

5 OPEN ISSUES
In previous section we have seen that, in order to address the challenges of new communication protocols
such as LTE, many works are based on dataflow computation models and dataflow programming
languages. However, there is a gap between these works and experimental prototypes. We now report on
issues to be addressed in order to fill this gap. We have identified two main directions in which
technology should be improved: mapping flows and hardware abstractions.

5.1 Mapping flows
One open problem with existing programming frameworks is that they all require a manual mapping of
the application onto the SDR architecture. The mapping is the phase where the initial specification is split
into blocks that are assigned to the different IPs of the architecture. We review below some recent works
that attempt to take into account waveform characteristics in SDR programming languages and provide
tools to improve the mapping flow.

Handling dynamicity
Recent works propose new dataflow MoCs that take into account dynamic adaptations required by new
communication protocols. One problem with such solutions is to provide languages and compilers for
such MoCs. Although there have been many advances in this field, providing such tools requires an

15	

important research and development effort. An example of a new dataflow MoC is Schedulable
Parametric DataFlow (Fradet, 2012), language in which it is possible to change actors’ parameters while
still allowing static analyses.
New compilers such as ORCC (Gorin, 2010) provide support for dataflow programming and dynamic
dataflow using just-in-time (JIT) compilation to modify dataflow at runtime, targeting CPUs. Other work
(Delahaye, 2007) considers dynamical reconfiguration on heterogeneous platforms based on FPGAs.

High-level data structures
Another issue in the portability of SDR applications is the ability to directly handle high-level data
structures. Indeed, in the second section, we saw that the LTE protocol operates on vectors and matrices.
However, current dataflow MoCs and languages only allow manipulation of token flows without making
high-level data structures apparent. This prevents compilers and execution layers from: i) optimizing the
placement of data, and ii) taking into account the specifics of communication features (DMA, Network-
on-Chip, interrupts etc.). The same issue has been reported in non telecom application fields (Thies,
2009).
MVDF (Hsu, 2010) makes one step in this direction by proposing to write dynamic vectorization actors
able to produce vectors from a dynamic number of tokens. ArrayOL (Boulet, 2007) and Slice (de Oliveira
Castro, 2010) propose to specify static transformations on multi-dimensional arrays. The Sequoia
(Fatahalian, 2006) programming language allows programmers to explicitly divide programs into data
movement and computation steps in order to optimize data placement at runtime. These works propose
static solutions that do not take into account the dynamic variation of data type and/or size. Manipulating
dynamic high-level dataflow structures remains an unsolved problem today.

5.2 HAL for SDR
The problem of a common hardware abstraction layer (HAL) for SDR is definitely not solved. An idea
that is emerging slowly is that an Application Programming Interface (API) should be standardized for
SDR hardware platforms. This API should include for example an FFT function with various parameters,
and probably high-level telecom-specific functions such as Viterbi or Turbo encoding and decoding.
However the precise specification of this API has not been done yet and it is not clear on which set of
platforms a given API can execute.
Related to this issue, some works attempt to abstract specific hardware in order to lower the need for
manual adaptation of the mapping flow. As described in the previous section, one common approach is to
consider the use of a dataflow virtual machine (Labonte, 2004; Gummaraju, 2008; Ben Abdallah, 2010).
These approaches do not address the problem of mapping waveforms onto the hardware. On the contrary,
the Nucleus approach (Castrillon, 2011) and ExoCHI (Wang, 2007) are able to map computation units at
runtime, but their mapping procedure cannot be easily extended to many hardware platforms.
Recently, The HDCRAM environment was prototyped (Lazrak, 2012) by Moy et al. This environment
will target dynamic reconfiguration of radio protocols on various platforms (DSP, FPGA). It has been
used with GNUradio and still has to be tested in other environments.

5.3 Resource sharing
Another open problem when programming SDR and specifying waveforms, is to take into account, at the
specification level, the concurrent execution of multiple waveforms on the same platform. Many
hardware platforms (Clermidy, 2009 ; Schmidt Knorreck, 2012) include hardware mechanisms to ease
this radio context switch but very few programming environments address this issue.
Siyoum et al. (Siyoum, 2011) show the interest of building different scenarios for a given waveform and
express the relationship between each one at the MoC level. This allows static verification of timing
properties and optimization of resource usage at runtime. This approach is limited to scenarios written in
SDF form.

16	

5.4 Discussion
An illustrative example of the difficulty of providing a programming environment portable to different
hardware platforms, as are today’s retargetable compilers, is given by the Magali chip (Clermidy, 2009).
This chip, dedicated to 4G Telecommunication applications contains an OFDM IP which performs FFT
as well as deframing (suppression of the band guard). Hence, a mapping tool should be able to gather the
software block for FFT and deframing and to map them onto the OFDM IP: there is not necessarily a one-
to-one correspondence between actors and hardware IPs (Dardaillon, 2014).
A way to reach portability is to agree on a single API for programming SDR applications. Current
solutions are far from this goal: each hardware platform comes with its own specific abstraction.
New MoCs have improved analysis capabilities but are currently not considered in actual design flows.
Hence we lack information concerning the performances of these new models once compiled and
executed.
One way to bridge the gap between defining new, high-level, analyzable models and providing enhanced
execution layers is to statically compute some information and properties on the programs, and use them
at runtime to take accurate decisions. Such an approach is currently used by MAPS (Castrillon, 2013), but
in a very limited manner since it only uses traces and hand-written information.
Another approach that seems promising to improve portability and performances is the dynamic
compilation. The goal is to use a JIT compiler as in (Cohen, 2010) or (Auerbach, 2012) in order to
compile dynamically code embedded in a high-level form such as a bytecode. The benefit from this
approach is to take advantage of runtime information to compile and map more efficiently.

6 CONCLUSION
In this chapter we reviewed the cognitive radio technologies from hardware and software points of view.
We started by illustrating new constraints introduced by protocols such as LTE and their impact on
current programming models. We provided a review of the different categories of SDR platforms and
their possible application fields, and we discussed the programming models used to program these
platforms, with a current shift to a new dynamic dataflow programming paradigm. After these
observations, we described open issues to bridge the gap between hardware and software, highlighting i)
the need for new mapping flows to program SDR platforms efficiently and ii) the need for SDR HAL
allowing software reuse from one SDR generation to another.

AKNOWLEDGEMENT
This work is partially supported by Région Rhône Alpes ADR 11 01302401.

REFERENCES
Agarwala, S., Rajagopal, A., Hill, A., Joshi, M., Mullinnix, S., Anderson, T., … others. (2007). A 65nm
C64x+ multi-core DSP platform for communications infrastructure. In Solid-State Circuits Conference,
ISSCC. Digest of Technical Papers. IEEE International (pp. 262–601).

Agilent SystemVue. (2014). Retrieved from http://www.agilent.com/find/eesof-systemvue

Auerbach, J., Bacon, D. F., Cheng, P., & Rabbah, R. (2010). Lime: a Java-Compatible and Synthesizable
Language for Heterogeneous Architectures. In Proceedings of the ACM international conference on
Object oriented programming systems languages and applications - OOPSLA ’10 (p. 89). Reno, NV.

Auerbach, J., Bacon, D. F., Burcea, I., Cheng, P., Fink, S. J., Rabbah, R., & Shukla, S. (2012). A compiler
and runtime for heterogeneous computing. In Proceedings of the 49th Annual Design Automation
Conference on - DAC ’12 (p. 271). San Francisco, CA.

17	

Ben Abdallah, R., Risset, T., Fraboulet, A., & Martin, J. (2010). Virtual Machine for Software Defined
Radio: Evaluating the Software VM Approach. In 2010 10th IEEE International Conference on
Computer and Information Technology (pp. 1970–1977). Bradford, UK.

Berkel, K. Van, Heinle, F., Meuwissen, P. P. E., Moerman, K., & Weiss, M. (2005). Vector Processing as
an Enabler for Software-Defined Radio in Handheld Devices. EURASIP Journal on Advances in Signal
Processing, (16), 2613–2625.

Bilsen, G., Engels, M., Lauwereins, R., & Peperstraete, J. (1996). Cyclo-Static Dataflow. IEEE
Transactions on Signal Processing, 44(2), 397–408.

Bougard, B., De Sutter, B., Verkest, D., Van der Perre, L., & Lauwereins, R. (2008). A Coarse-Grained
Array Accelerator for Software-Defined Radio Baseband Processing. IEEE Micro, 28(4), 41–50.

Boulet, P. (2007). Array-OL revisited, multidimensional intensive signal processing specification. INRIA
research report num 6113.

Buck, J. T. (1994). A dynamic dataflow model suitable for efficient mixed hardware and software
implementations of DSP applications. In Third International Workshop on Hardware/Software Codesign
(pp. 165–172). Grenoble, France.

Castrillon, J. et. al. (2011). Component-based waveform development: the Nucleus tool flow for efficient
and portable software defined radio. Analog Integrated Circuits and Signal Processing, 69(2-3), 173–190.

Castrillon, J., Leupers, R., & Ascheid, G. (2013). MAPS: Mapping Concurrent Dataflow Applications to
Heterogeneous MPSoCs. IEEE Transactions on Industrial Informatics, 9(1), 527–545.

Clermidy, F., Lemaire, R., Popon, X., Ktenas, D., & Thonnart, Y. (2009). An Open and Reconfigurable
Platform for 4G Telecommunication: Concepts and Application. In Euromicro Conference on Digital
System Design, Architectures, Methods and Tools (pp. 449–456). Patras, Greece.

Cohen, A., & Rohou, E. (2010). Processor virtualization and split compilation for heterogeneous
multicore embedded systems. In Proceedings of the 47th Design Automation Conference (pp. 102 - 107).
Anaheim, California.

Dardaillon, M., Marquet, K., Risset, T., Martin, J., & Charles, H. (2014). Compilation for heterogeneous
SoCs  : bridging the gap between software and target-specific mechanisms . In workshop on High
Performance Energy Efficient Embedded Systems - HIPEAC. Vienna, Austria.

de Oliveira Castro, P., Louise, S., & Barthou, D. (2010). A Multidimensional Array Slicing DSL for
Stream Programming. In International Conference on Complex, Intelligent and Software Intensive
Systems (pp. 913–918). Krakow, Poland.

Delahaye, J., Palicot, J., Moy, C., & Leray, P. (2007). Partial Reconfiguration of FPGAs for Dynamical
Reconfiguration of a Software Radio Platform. In 16th IST Mobile and Wireless Communications Summit
(pp. 1–5). Budapest, Hungary.

Derudder, V. et. al. (2009). A 200Mbps+ 2.14 nJ/b digital baseband multi processor system-on-chip for
SDRs. In Symposium on VLSI Circuits (pp. 292–293). Kyoto, Japan.

18	

Eker, J. et. al. (2003). Taming heterogeneity - the Ptolemy approach. Proceedings of the IEEE, 91(1),
127–144.

Fatahalian, K. et. al. (2006). Sequoia: Programming the Memory Hierarchy. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing (p. 83). Tampa, FL.

Fradet, P., Girault, A., & Poplavko, P. (2012). SPDF: A schedulable parametric data-flow MoC. In 2012
Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 769–774). Dresden,
Germany.

Glossner, J., Iancu, D., Moudgill, M., Nacer, G., Jinturkar, S., Stanley, S., & Schulte, M. (2007). The
Sandbridge SB3011 Platform. EURASIP Journal on Embedded Systems, 2007(1), 1–16.

GNU radio framework. (n.d.). Retrieved from http://gnuradio.org

Gonzalez, C. R. A. et. al. (2009). Open-source SCA-based core framework and rapid development tools
enable software-defined radio education and research. IEEE Communications Magazine, 47(10), 48–55.

Gonzalez-Pina, J., Ameur-Boulifa, R., & Pacalet, R. (2012). DiplodocusDF, a Domain-Specific
Modelling Language for Software Defined Radio Applications. In 38th Euromicro Conference on
Software Engineering and Advanced Applications (pp. 1–8). Cesme, Izmir.

Gorin, J., Wipliez, M., Preteux, F., & Raulet, M. (2010). A portable Video Tool Library for MPEG
Reconfigurable Video Coding using LLVM representation. In Conference on Design and Architectures
for Signal and Image Processing (DASIP) (pp. 183–190). Edinburgh, Scotland.

Goubier, T., Sirdey, R., Louise, S., & David, V. (2011). ∑C A Programming Model and Language for
Embedded Manycores. In Algorithms and Architectures for Parallel Processing - 11th International
Conference, ICA3PP (pp. 385–394). Melbourne, Australia.

Gummaraju, J., Coburn, J., Turner, Y., & Rosenblum, M. (2008). Streamware: Programming General-
Purpose Multicore Processors Using Streams. In Proceedings of the 13th international conference on
Architectural support for programming languages and operating systems - ASPLOS XIII (p. 297). Seattle,
WA.

Horrein, P.-H., Hennebert, C., & Pétrot, F. (2011). Integration of GPU Computing in a Software Radio
Environment. Journal of Signal Processing Systems, 69(1), 55–65.

Hsu, C.-J., Pino, J. L., & Hu, F.-J. (2010). A mixed-mode vector-based dataflow approach for modeling
and simulating LTE physical layer. In Design Automation Conference (DAC) (pp. 18–23). Anaheim,
California.

Jääskeläinen, P. O., de La Lama, C. S., Huerta, P., & Takala, J. H. (2010). OpenCL-based design
methodology for application-specific processors. In International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (pp. 223–230). Samos, Greece.

Jalier, C., Lattard, D., Jerraya, A., Sassatelli, G., Benoit, P., & Torres, L. (2010). Heterogeneous vs
homogeneous MPSoC approaches for a mobile LTE modem. In Conference on Design, Automation and
Test in Europe (pp. 184–189). Dresden, Germany.

19	

Kahn, G. (1974). The semantics of a simple language for parallel programming. In Information
Processing  : Proceedings of the IFIP Congress (pp. 471 – 475). Stockholm, Sweden.

Labonte, F., Mattson, P., Thies, W., Buck, I., Kozyrakis, C., & Horowitz, M. (2004). The stream virtual
machine. In 13th International Conference on Parallel Architecture and Compilation Techniques
(PACT). (pp. 267–277). Standford, California.

Lazrak, O., Leray, P., & Moy, C. (2012). HDCRAM Proof-of-Concept for Opportunistic Spectrum
Access. In 15th Euromicro Conference on Digital System Design (pp. 453–458). Izmir, Turkey.

Lee, E. A., & Messerschmitt, D. G. (1987). Synchronous Data Flow. Proceedings of the IEEE, 75(9),
1235 – 1245.

Limberg, T. et. al. (2008). A fully programmable 40 GOPS SDR single chip baseband for LTE/WiMAX
terminals. In Solid-State Circuits Conference, ESSCIRC. 34th European (pp. 466–469). Edinburgh,
Scotland.

Linderman, M. D., Collins, J. D., Wang, H., & Meng, T. H. Y. (2008). Merge  : A Programming Model for
Heterogeneous Multi-core Systems. In Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems (pp. 287–296). Seattle, WA.

Lin, Y. et. al. (2006). SPEX: A programming language for software defined radio. In SDR Forum
Technical Conference (pp. 13 – 17). Orlando, Florida.

Lodi, A., Cappelli, A., Bocchi, M., Mucci, C., Innocenti, M., DeBartolomeis, C., … Guerrieri, R. (2006).
XiSystem: A XiRisc-Based SoC With Reconfigurable IO Module. IEEE Journal of Solid-State Circuits,
41(1), 85–96.

Martin, J., Bernard, C., Clermidy, F., & Durand, Y. (2009). A Microprogrammable Memory Controller
for high-performance dataflow applications. In Proceedings of ESSCIRC (pp. 348–351). Athens, Greece.

Mei, B., Vernalde, S., Verkest, D., De Man, H., & Lauwereins, R. (2002). DRESC: A retargetable
compiler for coarse-grained reconfigurable architectures. In IEEE International Conference on Field-
Programmable Technology (FPT) (pp. 166–173). Hong Kong.

Minden, G. J. et. al. (2007). KUAR: A Flexible Software-Defined Radio Development Platform. In 2nd
IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 428–439).
Dublin, Ireland.

Mitola, J. (1992). Software radios-survey, critical evaluation and future directions. In National
Telesystems Conference (pp. 13/15–13/23). Washington, DC , USA.

Nussbaum, D. et. al. (2009). Open Platform for Prototyping of Advanced Software Defined Radio and
Cognitive Radio Techniques. In 12th Euromicro Conference on Digital System Design, Architectures,
Methods and Tools (pp. 435–440). Patras, Greece.

Nutaq. (2014). Retrieved from http://www.nutaq.com

Open Air Interface. (2014). Retrieved from http://www.openairinterface.org

20	

Pentek. (2014). Retrieved from http://www.pentek.com

Pulley, D., & Baines, R. (2003). Software defined baseband processing for 3G base stations. In Fourth
International Conference on 3G Mobile Communication Technologies (Vol. 2003, pp. 123–127). London,
UK.

Ramacher, U. (2007). Software-Defined Radio Prospects for Multistandard Mobile Phones. Computer,
40(10), 62–69.

Ramacher, U. et. al. (2011). Architecture and implementation of a Software-Defined Radio baseband
processor. In International Symposium on Circuits and Systems (ISCAS) (pp. 2193–2196). Rio de Janeiro,
Brazil.

Saito, V. S. N. V. M., & Sugiyama, V. I. (2006). Single-Chip Baseband Signal Processor for Software-
Defined Radio. FUJITSU Sci. Tech. J, 42(2), 240–247.

Satarkar, S. (2009). Performance analysis of the WiNC2R platform. PhD Thesis, Rutgers, The State
University of New Jersey.

Schmidt-Knorreck, C. et. al. (2012). Flexible front-end processing for software defined radio applications
using application specific instruction-set processors. In Conference on Design and Architectures for
Signal and Image Processing (DASIP), (pp. 1 – 8). Karlsruhe, Germany.

Schulte, M. J., Glossner, J., Mamidi, S., Moudgill, M., & Vassiliadis, S. (2004). A low-power
multithreaded processor for baseband communication systems. Computer Systems: Architectures,
Modeling, and Simulation, (LNCS 3133), 333–346.

Siyoum, F., Geilen, M., Moreira, O., Nas, R., & Corporaal, H. (2011). Analyzing synchronous dataflow
scenarios for dynamic software-defined radio applications. In 2011 International Symposium on System
on Chip (SoC) (pp. 14–21). Eindhoven, Netherlands.

Stuijk, S., Geilen, M., Theelen, B., & Basten, T. (2011). Scenario-aware dataflow: Modeling, analysis and
implementation of dynamic applications. In International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (pp. 404–411). Samos, Greece.

Sundance. (2014). Retrieved from http://www.sundance.com

Sutton, P. D. et. al. (2010). Iris: an architecture for cognitive radio networking testbeds. IEEE
Communications Magazine, 48(9), 114–122.

Tan, K., Liu, H., Zhang, J., Zhang, Y., Fang, J., & Voelker, G. M. (2011). Sora: high-performance
software radio using general-purpose multi-core processors. Communications of the ACM, 54(1), 99–107.

Thies, W. (2009). Language and Compiler Support for Stream Programs. PhD Thesis, Massachusetts
Institute of Technology.

Truong, D. N. et. al. (2009). A 167-processor computational platform in 65 nm CMOS. Solid-State
Circuits, IEEE Journal of, 44(4), 123–127.

21	

UMTS Forum Report 44, Mobile traffic forecasts 2010-2020, report January 2011.

Universal software radio peripheral (USRP). (2014). Retrieved from http://www.ettus.com

Wang, P. H. et. al. (2007). EXOCHI: Architecture and Programming Environment for A Heterogeneous
Multi-core Multithreaded System. In Proceedings of the ACM SIGPLAN conference on Programming
language design and implementation (pp. 156 – 166). San Diego, CA.

WARP. (2014). Retrieved from http://warp.rice.edu

Woh, M., Harel, Y., Mahlke, S., Mudge, T., Chakrabarti, C., & Flautner, K. (2006). SODA: A Low-
power Architecture For Software Radio. In 33rd International Symposium on Computer Architecture,
ISCA (pp. 89–101). Boston, MA.

Woh, M. et. al. (2008). From SODA to scotch: The evolution of a wireless baseband processor. In 41st
IEEE/ACM International Symposium on Microarchitecture (pp. 152–163). Como, Italy.

Zhang, Q., Kokkeler, a. B. J., Smit, G. J. M., & Walters, K. H. G. (2009). Cognitive Radio baseband
processing on a reconfigurable platform. Physical Communication, 2(1-2), 33–46.

ADDITIONAL READING SECTION
Anjum, O., Ahonen, T., Garzia, F., Nurmi, J., Brunelli, C., & Berg, H. (2011). State of the art baseband
DSP platforms for Software Defined Radio: A survey. EURASIP Journal on Wireless Communications
and Networking, 2011(1), 5.

Arnold, M., Fink, S. J., Grove, D., Hind, M., & Sweeney, P. F. (2005). A Survey of Adaptive
Optimization in Virtual Machines. Proceedings of the IEEE, 93(2), 449–466.

Bebelis, V., Fradet, P., Girault, A., & Lavigueur, B. (2013). BPDF: A statically analyzable dataflow
model with integer and boolean parameters. In 2013 Proceedings of the International Conference on
Embedded Software (EMSOFT) (pp. 1–10). Montreal, QC.

Berg, H., Brunelli, C., & Lucking, U. (2008). Analyzing models of computation for software defined
radio applications. In International Symposium on System-on-Chip (pp. 1–4). Tampere, Finland.

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., & Menon, R. (2001). Parallel
Programming in OpenMP. Morgan Kaufmann.

Dardaillon, M., Marquet, K., Risset, T., & Scherrer, A. (2012). Software Defined Radio Architecture
Survey for Cognitive Testbeds. In Wireless Communications and Mobile Computing Conference
(IWCMC), 2012 8th International. Limassol, Cyprus.

De Sutter, B., Raghavan, P., & Lambrechts, A. (2013). Coarse-grained reconfigurable array architectures.
In Handbook of signal processing systems (pp. 553-592).

Dutta, P., Kuo, Y.-S., Ledeczi, A., Schmid, T., & Volgyesi, P. (2010). Putting the software radio on a
low-calorie diet. In Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks -
Hotnets (pp. 1–6). New Delhi, India.

22	

Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., & Burger, D. (2011). Dark silicon and the
end of multicore scaling. In Proceeding of the 38th annual international symposium on Computer
architecture - ISCA (p. 365). San Jose, CA.

Gonzalez, J., & Pacalet, R. (2014). Model-Driven Design of Software Defined Radio Applications Based
on UML. In Embedded Systems Development (pp. 69 – 83). Springer New York.

Grayver, E. (2013). Implementing software defined radio. Springer.

Gustafsson, O. et. al. (2010). Architectures for Cognitive Radio Testbeds and Demonstrators – An
Overview. In Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless
Networks & Communications (CROWNCOM) (pp. 1 – 6). Cannes, FR.

Jantsch, A., & Sander, I. (2005). Models of computation and languages for embedded system design. IEE
Proceedings - Computers and Digital Techniques, 152(2), 114.

Johnston, W. M., Hanna, J. R. P., & Millar, R. J. (2004). Advances in dataflow programming languages.
ACM Computing Surveys, 36(1), 1–34.

Jouini, W., Moy, C., & Palicot, J. (2012). Decision making for cognitive radio equipment: analysis of the
first 10 years of exploration. EURASIP Journal on Wireless Communications and Networking, 2012(1),
26.

Lee, E. A., & Neuendorffer, S. (2005). Concurrent models of computation for embedded software. IEE
Proceedings - Computers and Digital Techniques, 152(2), 239.

Lee, H., Lin, Y., Harel, Y., Woh, M., Mahlke, S., Mudge, T., & Flautner, K. (2005). Software defined
radio–a high performance embedded challenge. High Performance Embedded Architectures and
Compilers, (LNCS 3793), 6–26.

Moreira, O. (2012). Temporal analysis and scheduling of hard real-time radios running on a multi-
processor. PhD thesis, TU Eindhoven.

Munk, H. et. al. (2011). Acotes project: Advanced compiler technologies for embedded streaming.
International Journal of Parallel Programming, 39(3), 397-450.

Palkovic, M., Raghavan, P., Li, M., Dejonghe, A., Van der Perre, L., & Catthoor, F. (2010). Future
Software-Defined Radio Platforms and Mapping Flows. Signal Processing Magazine, IEEE, 27(2), 22–
33.

Pop, A., & Cohen, A. (2013). OpenStream: Expressiveness and Data-Flow Compilation of OpenMP
Streaming Programs. ACM Transactions on Architecture and Code Optimization, 9(4), 1–25.

Sajjad, K. (2011). Porting Different Compilation Phases to Runtime. PhD thesis, Versailles Saint-
Quentin-en-Yvelines.

Ulversoy, T. (2010). Software defined radio: Challenges and opportunities. Communications Surveys &
Tutorials, IEEE, 12(4), 531–550.

23	

Woh, M. et. al. (2007). The next generation challenge for software defined radio. In Embedded Computer
Systems: Architectures, Modeling, and Simulation (pp. 343–354). Samos, Greece.

Zyren, J., & McCoy, W. (2007). Overview of the 3GPP long term evolution physical layer. Freescale
Semiconductor, Inc., White Paper.

KEY TERMS AND DEFINITIONS

Cognitive radio: wireless communication system that can sense the air and decide to configure itself in a
given mode.
Dataflow: Model of computation in which a program is represented as a graph, nodes represent operations
and edges data communications.
Digital Signal Processor (DSP): Specialized microprocessor with an architecture optimized for the
operational needs of digital signal processing.
Field Programmable Gate Array (FPGA): Integrated circuit designed to be configured after
manufacturing, using a hardware description language.
Hardware Abstraction Layer: Software routines that abstract platform-specific details, giving programs
direct access to hardware resources.
Programming model: Fundamental style of computer programming, a way of building the structure and
elements of computer programs.
Software Defined Radio (SDR): Radio system where parts of the signal processing are done in software.

