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1.1 Introduction

Next generation system on chip (SOC) architectures will include many processors on a single
chip, performing altogether the computation that used to be done by hardware accelerators.

They are referred to as MPS0OC for multi-processor SOC. When multi-processors were not
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on chip as in parallel machines twenty years ago, communication latency, synchronization
and network contention were the most important fences for performance. This was mainly
due to the cost of communication compared to computation. For simple SOC architectures
the communication latency is kept low and the communication scheme is simple: most of the
transactions occur between the processor and the main memory. For multi-processor SOC, a
network on chip (NOC), or at least a hierarchy of buses, is needed and communication has a
major influence on performance and on power consumption of the global system. Predicting
communication performance at design time is essential because it might influence physical

design parameters, such as the location of various 1Ps on the chip.

MPSoC are highly programmable, and target possibly any application. However they are
currently mostly designed for signal processing and multimedia applications with real-time
constraints, which are not as harsh as for avionic. In order to meet these real time constraints,
MPSoOC are composed of many master 1pPs (processors) and few slave 1Ps (memories and

peripherals).

In this chapter we investigate on-chip processor traffic for NOC performance evaluation.
Traffic modeling and generation of dedicated 1Ps (e.g. MPEG-2, FFT, etc.) use predictable
communication schemes, such that it is possible to generate a traffic that looks like the
one these 1Ps would produce. Such a traffic generator is usually designed together with (or
even before) the 1P itself. This is very different for processors. Processor traffic is much more
difficult to model for two main reasons: i) cache behavior is difficult to predict (very program
and data dependent) and i7) operating system interrupts lead to non deterministic behavior
in terms of communication and contention. In order to build an efficient tool for predicting
communication performance for a given application it is therefore essential to have a very

precise modeling of the communications induced by applications running on processors.

Predicting communication performance can be done by a precise (cycle accurate) simula-
tion of the complete application or by using a traffic generator instead of real 1Ps. Simulation
is usually impossible at early stages of the design because 1Ps and programs are not available
yet. Note also that SOC cycle accurate simulations are very time consuming, unless they

are performed on very expensive hardware emulators (based on hundreds of FPGA). Traffic



generators are preferred because they are parameterizable, faster to simulate, and simpler

to use. However they are less precise because they do not execute the real program.

Traffic generators can produce communications in many ways, ranging from the replay
of a previously recorded trace to the generation of sample paths of stochastic processes,
or by writing a very simple code emulating the communications of a dedicated 1P. Note
that random sources can have parameters fitted to the statistical properties of the observed
traffic, or parameters fixed by hand. Which communication parameter is emulated (latency,
throughput, etc.) and which statistical property is emulated are important issues that must
be addressed when designing a NOC traffic modeling environment. This is the main topic

of this chapter.

One of the main difficulties in modeling processor traffic is that processor activity is not
stationary (its behavior is not stable in time). It rather corresponds to a sequence of traffic
phases (corresponding to program phase [10]). In each stationary phases, data can be fitted
to well known stochastic processes with prescribed first (marginal distribution) and second

(covariance) statistical orders.

The chapter is divided in two main parts: Section 1.2 gives background on stochastic
processes as well as on-chip processor traffic. In Section 1.3 we detail the various steps
involved in the design of a traffic generation environment and illustrate it with the MPTG

environment [28]. Conclusion and related works are reported in Section 1.4.

1.2 Statistical Traffic Modeling

In this section, we introduce the specificities of on-chip processor traffic and how it can be
modeled with stochastic processes. We then present some statistical background which is
useful in describing and in simulating NOC traffic. This theoretical background includes
basic statistical modeling methods, decomposition of the traffic into stationary phases and

also an introduction to long range dependence.
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1.2.1 On-chip Processor Traffic

On-chip processor communications are mostly issued by caches (instruction cache, data cache
or both), and not by the processor itself. The presence and the behavior of this component
imply that processor traffic is the aggregation of several types of communication described
hereafter. Note that a processor without cache can be seen as a processor with a cache with
one line of one single word. Transactions initiated by the cache to the NOC can be separated

in three categories:

e Reads. Read transactions have the size of a cache line. The time between two reads
corresponds to a time during which the processor computes only on cached data. Two
flows must be distinguished, the instruction flow (binary from instruction memory) and

the data flow (operands from data memory).

e Writes. Write transactions can have various sizes depending on the cache writing
policy: write through (one word at a time), write back (one line at a time). If a write

buffer is present then the size is variable, as the buffer is periodically emptied.

e Other requests. Requests to non-cached memory parts have a size of one word, as
for atomic reads/writes. If a cache coherency algorithm is implemented then additional

messages are also sent among processors.

Cache performance is a very popular research field [3,14]. In the scope of embedded
systems however, low cost solutions (low area, low consumption and low delay costs) are
usually preferred. For instance in DSP architectures, no data cache is needed because the
temporal locality of data accesses is likely to be low (data flow). For the same reason, each
processor has a single communication interface, meaning that the type of communication
mentioned above are interleaved. In other words, the traffic generated by the processor
cannot be split into data and instruction streams, these two streams are merged. Based on
this assumption we can now define more precisely how an on-chip processor communication

can be modeled.



1.2.2 On Chip Traffic Formalism

The traffic produced by a processor is modeled as a sequence of transactions composed of
flits (flow transfer units) corresponding to one bus-word. The k™ transaction is a 5-uple
T(k) = (A(k), C(k), S(k), D(k), I(k)) meaning respectively, target address, command
(read or write), size of transaction, delay and inter-request time. This is illustrated on
Figure 1.1. We also define the latency of the k* transaction L(k) as the number of cycles
between the start of a k' request and the arrival of the associated response. This is basically
the round-trip time in the network and is used to evaluate the contention. We further define
the aggregated throughput W;(i) as the number of transaction sent in consecutive and non-
overlapping time windows of size §. Note that this formalism only holds for communication
protocols for which each request is expecting a response (even for write requests), which is the

case for most IP communication interfaces such as vcr (Virtual Component Interface [21]).

One can distinguish two main communication schemes used by 1Ps: the non-split trans-
actions scheme where the 1P is not able to send a request until the response to the previous
one has been received, and the split transactions scheme in which new requests can be sent
without waiting for the responses. The non-split transaction scheme is widely used by pro-
cessors and caches (although for cache, it might depend on the cache parameters), whereas
the split transaction scheme is used by dedicated 1Ps performing computation on streams of

data which are transmitted via direct memory access (DMA) modules.

1.2.3 Statistical Traffic Modeling

With the formalism introduced in the previous section, the traffic of processors consists in
five time-series composing a 5-dimensional vector sequence (T'(k)), . Our goal is to emulate
real traffic by means of traffic generators which will produce T'(k) for each k. This can be

done in many ways and we present hereafter a non-exhaustive list of possibilities.

1. Replay. One can choose to record the complete transaction sequence T'(k) and to

simply replay it as it is. This provides very accurate simulations, however it is limited
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by the input simulation length. Furthermore, the size of the recorded simulation trace

might be very large, and thus hard to load and to store.

2. Independent random vector. One can also consider the elements of the vector
as sample paths of independent stochastic processes. The statistical behavior of each

element will then be described, but the correlations between them will not be considered.

3. Random vector. In this case, the vector is modeled by doing a statistical analysis of

each element as well as correlations between each pair of elements.

4. Hybrid approach. One can also, from the knowledge of the processor’s behavior,
introduce some constraints on top of the stochastic modeling. For instance, if an in-
struction cache is present, read requests targeted to instruction memory always have

the size of the cache line.

One can also distinguish two ways of modeling the times at which each transaction occurs,

leading to different accuracy levels:

e Delay. Use the delay sequence D(k) representing the time (in cycles) between the
reception of the k* response and the start of the (k + 1) request.

e Aggregated throughput. Use the sequence of aggregated throughput of the processor

Ws(k), and transactions can be placed in various ways within the aggregation window

J.

The statistical modeling in itself relies on signal processing tools and methods that ben-
efit from a huge amount of references [5,13]. Let us recall that a stochastic process X is a
sequence of random variables X [i] (we use brackets to denote random variables). We will con-
sider two statistical characteristics of stochastic processes: the marginal law (or probability
distribution function), which represents how the values taken by the process are distributed,
and the covariance function, which gives an information on the correlations between the
random variables of the process as a function of the time lag between them. For instance,
the sequence of delays D(k) can be generated as the sample path of some stochastic process
{Dli]}ien, with prescribed first and second statistical orders. Typical models for probability

distribution functions (PDF) and covariances are reported in Table 1.1 and 1.2.
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For each probability distribution and covariance, we use state of the art parameter esti-

mation techniques (using mainly maximum likelihood expectation) [5,13].

1.2.4 Statistical stationarity and traffic phases

When we want to model one element of the transaction vector with stochastic processes we
should take stationarity into account. Indeed most stochastic process models are stationary
and non-stationary models are much harder to use in terms of parameter estimation as well

as model selection.

Let us first recall some background. The covariance function vx of a stochastic process
{Xi]}ien describes how the random variables of a process are correlated with each-other as
a function of the time lag between these random variables. It is defined as follows (E is the
expectation):

vx (i, §) = E(X[i] X[j]) — B(X[)E(X[5])

A process X is wide-sense stationary if its mean is constant (V(i,7) € N? E(X[i]) =

E(X[j]) = E(X)) and its covariance reduces to a one variable function as :

V(i,j) € N*  x(i,5) = vx (0, |i — j]) = vx(|i — j])

So, when modeling a time series, one should carefully check that stationarity is a rea-
sonable assumption. For on-chip processor traffic, algorithms which are executed on the
processor have many different phases resulting in different communication patterns, most of
the time the traffic will not be globaly stationary. If signs of non-stationarity are present,
one should consider building a piecewise stationary model. This implies the estimation of
model parameters on several stationary phases of the data. At simulation time the generator

will change the model parameters when it switches between phases.

A traffic phase is a part of the transaction sequence T'(k),7 < k < j. Since most mul-
timedia algorithms are repetitive it is likely that similar phases appear several times in the

trace. For instance, in the MP3 decoding algorithm each MP3 frame is decoded in a loop
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leading to similar treatments.

Phase decomposition The question is therefore to determine stationary traffic phases
automatically. In general, decomposing a non-stationary process into stationary parts is
very difficult. Calder et al. have developed a technique for the identification of program
phases in SimPoint [32] for advanced processor architecture performance evaluation. This
is a powerful technique that can dramatically accelerate simulations by simulating only one
simulation point per phase and replicating that behavior during all the corresponding phases.
In NoC traffic simulation, we do not pursue the same goal because we target precise traffic
simulation of a given 1P for NOC prototyping. Network contention needs to be precisely
simulated, and as it is the result of the superposition of several communication flows, picking

simulation points becomes a difficult task.

From Calder’s work [32] we have developed a traffic phases discovery algorithm [29]. It
uses the k-means algorithm [18] which is a classical technique to group multi-dimensional
values in similar sets. The worst case complexity of this algorithm is exponential but in

practice it is very fast. The automatic phase determination algorithm is the following:

1. Firstly, we select a list of M elements of the transaction sequence (delay, size, command,

address, etc. see section 1.2.2).

2. The transaction sequence is then split into non-overlapping intervals of L transactions.
Mean and variance are computed on each interval and for each of the M selected

elements. Thus we build a 2M-dimensional representative vector used for the clustering.

3. We perform clustering in k phases using the k-means algorithm with different values of
k (2 to 7 in practice). The algorithm finds k centroids in the space of representative
vectors. Fach interval will finally be assigned the number of its closest center (in the

sense of the quadratic distance) and therefore each interval will get a phase number.

4. To evaluate different clusterings we compute the Bayesian Information Criterion (BIC) [25].

The BIC gives a score of the clustering and a higher BIC means better clustering.

Once the phases are identified, statistical analysis is performed on each extracted phase
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by an automatic fitting procedure that adjusts the first and second statistical orders (see [31]

for details). Examples of phases discovered by this algorithm are illustrated in Figure 1.8.

1.2.5 Long Range Dependence

Long-range dependence (LRD) is an ubiquitous property of Internet traffic [16,24], and it
has also been demonstrated on an on-chip multimedia (MPEG-2) application by Varatkar
and Marculescu [35]. They have indeed found LRD in the communications between different
components of an MPEG-2 hardware decoder at the macro-block level. The main interest
in LRD resides in its strong impact on network performance [23]. In particular, the needed
memorization in the buffers is higher when the input traffic has this property [9]. As a
consequence, for macro-networks as well as for on-chip networks, LRD should be taken into

account if it is found in the traffic that the network will have to handle.

Long-range dependence is a property of a stochastic process that is defined as a slow
decrease of its covariance function [23]. We expect this function to be decreasing, because
correlated data are more likely to be close (in time) to each other. However, if the process

is long-range dependent, then the covariance decays very slowly and is not summable:

> x(k) =0

keN

Therefore, long-range dependence reflects the ability of the process to be highly correlated
with its past, because even at large lags, the covariance function is not negligible. This
property is also linked to self-similarity, which is more general, and it can be shown that

asymptotic second order self-similarity implies long-range dependence [1].

A long-range dependent process is usually modeled with a power-law decay of the covari-
ance function as follows:

~ @ <
vx (k) e ck™, O0<a<l

The exponent « (also called scaling index) provides a parameter to tell how much a
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process is long-range dependent (0 < a < 1). The Hurst exponent, noted H, is the classical
parameter for describing self-similarity [23]. Because of the analogy between LRD and self-
similarity, it can be shown that a simple relation exists between H and a: H = (2—«)/2. As
a consequence, H (1/2 < H < 1) is the commonly used parameter for long-range dependence.
Note that when H = 0.5, then there is no long-range dependence (this is also referred to as

short-range dependence).

Estimation of the Hurst parameter A standard wavelet-based methodology can be
used for the estimation of the Hurst parameter [1]. Let ¢, x(t) = 279/2¢y(277t — k) denote
an orthonormal wavelet basis, derived from the mother wavelet 1)y. The j index represent

the scale: the larger j is, the more the wavelet is dilated. The k index is a shift in time.

For any (j, k), dx(j,k) = (¢;x, X) are called the wavelet coefficients of the stochastic
process X ((.,.) is the inner product in the L? functional space). These wavelets coefficients
enable a study of the process X at various times (values of k) and various scales (values of
j). In particular, when X is a long-range dependent process with parameter H, the following
limit behavior for the expectation of wavelet coefficients can be shown [1]:

Vj, E(dx(j,k)?) ~ c2/@H (1.1)

Jj—+oo

Moreover, it can also be shown that the time averages S; for each scale j (n; is the number

of wavelet coefficient available at scale j):

S, = (1) S ldx (. B)P (1.2

can be used as relevant, efficient and robust estimators for E(dx(j, k¥)?) [1]. From Eq. (1.1)
and (1.2), the estimation of H is as follows: 4) plot log, S; versus log, 2/ = j and i) perform
a weighted linear regression of Log,S; in the coarsest scales (see for instance Figure 1.2).
These plots are commonly referred to as log-scale diagrams (LD). In such diagrams, LRD is
evidenced by a straight line behavior in the limit of large scales. In particular, if the line is

horizontal, then H = 0.5 and there is no long-range dependence.
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To illustrate how we use this tool to evaluate the Hurst parameter, we provide in Figure 1.2
a typical log-scale diagram extracted from an Internet trace. Along the x axis are the
different values of the scale j at which the process is observed. For each scale, log, S; is
plotted together with its confidence interval (vertical bars). The Hurst parameter can be

estimated if the different points plotted are aligned on a straight line for large scales.

Synthesis of long-range dependent processes The synthesis (generation of sample
paths) of long-range dependent processes is easy if the marginal law is Gaussian [4]. The so-
called Fractional Gaussian Noise (FGN) is commonly used for that. However, if one wants to
generate a long-range dependent process whose marginal law is non-Gaussian, the problem
is more complex. The inverse method [35] only guarantees an asymptotic behavior of the
covariance function. We have developed, for several common laws (exponential, gamma,
X2, etc.), an exact method of synthesis described in [31]. We can thus produce synthetic
long-range dependent sample paths that can be used in traffic generation. It is important
to note that most elements of the transaction sequence of on-chip processor communications
have non-Gaussian distributions. For instance, delay sequences rather exhibit an exponential
distribution as we expect many small delays and few big ones. With our synthesis method, we
can produce a synthetic exponential process with long-range dependence. Such non-gaussian

and LRD models have been used for Internet traffic modelling [31] as well.

We have introduced the major theoretical notions useful for a precise modeling of the
on-chip traffic. We will now adopt a more practical vision and explain how these statistical

modeling notions can be used in a SOC simulation environment.

1.3 Traffic Modeling in Practice

This section provides our practical experience of on-chip processor traffic analysis and gen-
eration. We first provide some generic guidelines that can be useful for any project leader
in charge of designing an MPSOC architecture. Then we present a particular experimental

framework called MPTG for Multi-Phase Traffic Generator.
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1.3.1 Guidelines for designing a Traffic Modeling Environment

Even though our experimental framework is closely related to the SystemC environment,
it is possible to postulate several practical issues that any NOC prototyping environment
will have to be confronted with. These issues should be taken into account before designing
the environment itself because their absence will, at some point, break the efficiency of the

traffic simulation process.

Simulation precision A first and important point concerns the precision of the simula-
tion. Depending on the goal of the simulation several precision levels can be targeted. There
is a great emphasis today on transaction level modeling (TLM) (sometimes called program-
mers view) which basically consists in a functional simulation of the MPS0OC without any
time information. This level is primarily used by application developers who seek mainly a
very fast simulation. It should definitively be useless in a NOC prototyping environment:
no precise network performance evaluation can be made at this level. Another possibility is
to maintain a notion of global time in the simulation by stamping messages as proposed by
Chandry and Misra for instance [6]. This level is sometimes referred to as TLM-T. Even if
this level permits some performance indication, the NOC protocol is usually not precisely

simulated, hence contention behavior cannot be detected.

If the simulation environment is intended to detect contention in the network, it should be
cycle accurate at 1P boundaries. In other words, a bit accurate and cycle accurate simulation
of the computation itself is not necessary, but the low level protocol of the 1P input/output
must be emulated very precisely to model burst and cache behavior. The designer must be
aware that this level of simulation implies a very slow simulation, mainly because each NOC

transaction should be precisely simulated.

Note also that the behavior of caches must be simulated very precisely as small details of

the cache protocol might have an important influence on the global on-chip traffic.
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Trace analysis Another important issue is the power of the trace generation and trace
analysis tool. All the results will be obtained via simulation traces. These traces can be huge,
therefore an efficient and parameterizable trace generation tool is needed. Traces must be
compressed dynamically. Parsing and analysis is also a critical treatment. If parser generator
tools are used, the grammar expressing the trace syntax must be carefully written so as to

generate an efficient parser [8].

As a trace can be generated with many different parameters (size of FIFOs, latency of
communication, address of communication, etc), it should be easy to instrument the simu-
lation platform to record any requested information. Using an existing trace format such as

veD (Value Change Dump) should be preferred.

Platform generation Describing the hardware of a MPS0OC platform usually consists in
connecting wires between existing 1Ps and deciding the memory mapping. It becomes very
quickly intractable to do these connections by hand, wire by wires, whereas the platform
designer thinks at a coarser grain: how many processors are connected to which router. The
top system simulated must be generated by some in-house script adapted to the simulation
environment. Scripting should be used to generate families of platforms in order to proto-
type different system architectures or different numbers of processors. Some kind of source
language should be designed for high level platform description. Enabling the connection

with the Spirit [7] 1P description format should be realized somewhere in the environment.

Traffic analysis and synthesis flow Obviously, the heart of the prototyping environment
are the traffic analysis and synthesis tools which are discussed in section 1.2. These tools
should be as generic as possible. They are basically signal processing tools that should be

independent of the NOC simulation environment.

The global NOC prototyping flow should be clearly stated as soon as possible. Experi-
ments should also be carefully classified according to a clear experimental protocol so as to be
able to recover a previous result that could possibly be incoherent with a future experiment.

Finally, as in any experimental framework, reproducibility is mandatory.
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1.3.2 Multi Phase Traffic Generation Environment

In this section we describe our multi-phase on-chip traffic generation environment called

MPTG, its integration in the SocLib simulation environment and its key features.

Most recent traffic generation methods use stochastic models coupled with static traces
or deterministic replay functionalities. Statistical analysis and synthesis of on-chip processor
traffic is difficult because this traffic usually presents complex statistical behaviors that are

difficult to reproduce.

Using traffic generators in a simulation platform involves several steps among which real-
istic traffic and integration are key points. We have developed our environment in the SocLib
simulation environment [22]. SocLib is a library of open-source SystemC simulation models
of 1ps that can be interconnected through the vcr (Virtual Component Interface [21]) inter-
face standard [2]. vCIis a point to point communication protocol depicted in Figure 1.4. The
simulation models available in SocLib are described at cycle-accurate level or at transaction
level. All our experiments have been done at cycle accurate level as precise information were
needed for NOC contention prediction. To each simulation model corresponds a synthesiz-
able model (not necessarily open source) that can be used for designing a chip. Examples
of simulation models available in SocLib are: a mips R3000 processor (with its associated
data and instruction cache), standard on-chip memories, DMA controller and several kinds

of networks on chip.

Within the SocLib framework all components are connected via VCI ports to a NoC
interconnection. A simple SocLib platform is represented in Figure 1.6. We used the DSPIN
network on chip (an evolution of SPIN [20]) which uses wormhole and credits based contention
control mechanisms. DSPIN uses a set of 4-port routers that can be interconnected in a mesh
topology in order to provide the desired packet switched network architecture. The software
running on the processors used in SocLib is compiled with the GNU GccC tool suite. A
tiny open source operating system called mutek [27] is used when several processors run in

parallel. This OS can handle multi-threading on each processor.

The global MpTG flow is depicted in Figure 1.3. It is composed of three main parts,
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described hereafter.

e Reference trace collection. This is the entry point of our MPTG flow. Since we
follow a trace-based approach, we perform a simulation and we get a reference trace.
As it will be explained afterwards our traffic analysis is independent of network latency,
therefore the initial simulation can take place very rapidly on a platform with an ideal
interconnect (fixed latency). It is important to understand that the same reference trace
can be used for many platform simulations (various interconnections, 1P placement,
memory mapping, etc.) because with such an ideal interconnect we gather the intrinsic
communication patterns of 1Ps. We therefore make the assumption that the behavior
of 1Ps is not influenced by the latency of the network. For instance, the delay between
transactions corresponds, up to a constant, to computation time in the 1P which is not
influenced by communication latency. We have carefully checked the validity of this
assumption in our simulations as explained in section 1.3.3. In the last phase (design
space exploration) the real latency of the network will be precisely simulated taking

into account contention and 1P placement in the SOC.

e MPTG configuration. The trace is then analyzed with a semi-automatic configu-
ration flow which starts by parsing the trace file in order to extract the transaction
sequence. Then we run our phase segmentation algorithm described in section 1.2.4 on
each identified phase. According to the designer’s choice for the models, each phase is
then described and all parameters are estimated. At the end we obtain a MPTG config-
uration file such as the one reported in Figure 1.5. Note that if the designer fails to find
an adequate stochastic model for the traffic, they can choose to replay the reference

trace. In this case the trace can be compressed to save disk space.

e Design space exploration. The traffic generator component with the configuration
file can now be used in place of real processors in order to evaluate the performance
of various interconnect, 1P placement, memory mapping, etc. This can be done faster
because the simulation of the traffic generator requires much less resources than the
simulation of a processor. One important point here is that designers can also evaluate
the stability of a given architecture by investigating if small changes in the configuration

files imply small or large changes in the performance.
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A generic traffic generator has been written once for all for the SocLib environment.
This traffic generator is used as a standard 1P during simulations and provides a master VCI
interface. Transactions are generated by MPTG according to a phase description file and a
sequencer is in charge of switching between phases. Each phase consists either in a replay of
a recorded trace, or in a stochastic model with parameters adjusted by the fitting procedure.
These traffic patterns can be described in sequence. These sequences will be used during
next runs of the simulation. Figure 1.5 shows an illustration of such configuration. The
entry point of a configuration is the sequencer part that will schedule the different phases of
the traffic sequences. Each phase is then described in the file using its traffic shape and the

associated packet size and address (destination among the 1Ps on the NoC).

Designer’s choices made at this stage for the MPTG configuration can be categorized using

the following points, also illustrated in the configuration file presented in Figure 1.5.

1. Timing modeling. We distinguish two types of placement of transactions in time as
already mentioned in section 1.2.3. On one hand the designer can choose to model
the delay D(k) and on the other hand they can model the aggregated throughput time
series Wy(7). This choice depends on the context and purpose of the traffic generation.
Using the aggregated throughput, one loses specific information concerning the time
lag between transactions but the traffic load (on a scale of time exceeding the size of
the window ) is respected. If we choose accuracy over aggregated throughput then
two sub-groups will be considered independent: addresses, orders and size (A(k), C'(k),
S(k)) on one hand and aggregated throughput (Ws(i)) on the other.

2. Content modeling. Once the time modeling for transactions has been decided, the
designer must model the content of transactions (address, command and size). We have

defined different types of modeling to handle different situations:

e Random. In this mode each element (address, control, time and size) is random,
hence independent of the others. This can be used for generating customizable

random load on the network.

e Cache. In this mode the size of the read requests is constant (equal to the size of

a line cache). There is a mode for instruction cache mixed with data cache and a
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mode for data cache only.

e Instruction cache. This method is specific to an instruction cache. It contains
instruction specificities, meaning that accesses are only read requests of the size of

a cache line.

3. Phase duration modeling. A phase may appear several times in a trace, therefore it

is necessary to characterize the size and number of transactions for each phase.

4. Order of phases appearance. This stage involves the configuration of the sequencer
to choose the sequence of phases. It can basically play a given sequence of phases, or

randomly shuffle them.

On top of the traffic content the MPTG must also define modes for memory access. Let
us recall that one of the objectives of our traffic generation environment is to be able, from
a reference trace collected with a simple interconnection, to generate traffic for a platform
exhibiting an arbitrary interconnect. To do so, we have to prove that the communication
scheme is not affected by the communication latency. From the point of view of the com-
ponent it means that communications will be the same regardless of the latency of the
interconnect. In the general case of a CPU with a cache, we cannot guarantee that, because
the content of transactions (A(k), C'(k) and S(k) series) may be affected by the latency of
the network. This is especially due to the presence of the write buffer. The behavior of such
buffer may, in some cases, cause modifications in the size of transactions sent in the network,
depending on the latency, especially in the case of large sequences of consecutive writes (zero

initialization of a portion of the memory for instance).

This is why we use the time D(k), which relates to the receipt of the request (so that it is
independent of the network latency), instead of the time between two successive transactions.
However, the problem of the recovery of calculations and communications remains. We must
be able to determine if the delay D(k) is a time during which the component is awaiting a
reply (the component is blocked waiting for the response), or if it is a time during which
the component keeps running, and thus may produce new communications. This led us to

define different operating modes for the traffic generator, described hereafter.
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e Blocking requests. In this mode, regardless of the order, the traffic generator emits
a burst of type C'(k) to address A(k), and of size S(k) bus-words. Once the response is
received, then the traffic generator waits D(k) cycles before issuing the next transaction
(T'(k+ 1)) on the network. This characterizes a component which is blocked (pending)

when making a request.

e Non-blocking requests. In this mode, regardless of the order, the traffic generator
emits a burst of type C'(k) to address A(k) with a size of S(k) words. Once the S(k)
words have been sent, the traffic generator restarts after D(k). Upon receipt of the
answer, if D(k) is in the past, then the next request is sent immediately, otherwise
we wait until D(k) is reached. This allows to model a data-flow component (hardware
accelerators, for example) that is not blocked by communications. It is likely to be used

for processor traffic. We included it for sake of generality.

e Blocking / non-blocking read and write. We can also specify more precisely if
read transactions and/or write transactions are blocking or not. For example, a write-
through cache is not blocked by writes (the processor keep on running). However, a
processor reading blocks must wait before continuing its execution. The mode “non-
blocking writes, blocking reads” acts as a good approximation of the behavior of a

cache.

e Full data-flow mode. In order to emulate the traffic of data flow components we have
finally established a communication mode in which only the requests are considered
(the arrival of the answer is not taken into account). In this mode, the traffic generator
issues a request, waits D(k) cycles, and makes the following request, without concern

for the arrival of the answer.

The definition of these operating modes allows us, without loss of generality, to be able

to deal with different types of SOC platforms.

Key features of the MPTG environment As a summary, we recall the key features of

the MPTG environment hereafter.
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e MPTG is a fully integrated, fast and flexible NOC performance evaluation environment.

e It includes many traffic generation capacities, from trace replay to the use of advanced

stochastic processes models.

e From an initial trace obtained with the simplest interconnection, a configuration file
can be used extensively in order to evaluate the performance of any interconnection

under realistic traffic patterns.

1.3.3 Experimental analysis of NoC traffic

In this section, we present some experimental results on processor traffic analysis and gen-
eration. We study simulation speedup, phase decomposition and the presence of long-range

dependence.

Speed up In order to evaluate the speed up of using a traffic generator instead of real 1Ps,
we built several platforms with different number of processors and different network sizes.
The results are reported in Table 1.3. We also compare our speed-up factor with a traffic

generation environment [19] that performs smart replay of a recorded trace.

The reference simulation time used for speedup (“S” columns) computation is the “Mips
without veD” (processor simulation without recording the vcD trace file) configuration. The
speedup factor for “Mips with vCcD” is less than one because recording the trace takes a fair
amount of time. The simulation speedup is never greater than 2.27, which is obtained with no
interconnection (“0x0” mesh). However, the speedup increases with the number of processors
meaning, as expected, that large platforms will benefit more from traffic generators speedup
than small ones. One can further note that the vCD recording impact decreases for large
platforms and even becomes negligible for a “4x4” mesh. Generation of stochastic processes
(“sto.” and “Ird” lines) does not have a big impact on simulation speedup, meaning that
reading values from a file and generating random numbers (even LRD processes) is almost
equally costly in terms of computation time. The impact of the number of phases is also

very small.

19



Speedup factors obtained are of the same order of magnitude as the ones obtained by
Mahadevan in [19], and are quite small. The fact is that most of the simulation time is spent
in the core simulation engine and in the simulation of the interconnection system, which
cannot be reduced. Note that our conclusion is opposite to [19] which claims a noteworthy
speedup factor. On the contrary, we found the speedup is too small to be useful for designers
and we believe that the real interest of a traffic generation environment relies in its flexibility
(various generation modes, easy to configure, etc.). This will be illustrated in the following

paragraphs.

Simulation set-up For the initial trace collection, we use a simple platform (see Fig-
ure 1.6) in order to truly characterize the traffic of the triplet (implementation / processor /
cache). If we study communications on a more complex platform, the traffic of the proces-
sor is influenced by other 1Ps and network-on-chip configuration (topology, routing protocol,
etc.) as already discussed in section 1.3. This simple platform includes a mips r3000 pro-
cessor (associated with instruction and data cache), directly connected to a memory holding

all necessary data. Applications with input stimuli are reported in Table 1.5.

Next, in order to validate our environment, we run simulations on a more realistic platform
shown on Figure 1.7. This platform includes five memories, a terminal type (TTY) as output
peripheral, a MIPS processor executing the application and a background traffic generator
(BACK TG) used to introduce contention in the network. During design space exploration,
the MIPS processor is replaced by a traffic generator producing traffic fitted to the reference
trace. The simulation of the platform of Figure 1.7 (with the MIPS processor) is only used

to check that the MPTG traffic corresponds precisely to the MiPs traffic.

Multi-phase We have processed each traffic trace with the segmentation algorithm de-
scribed in section 1.2.4, using delay as the representative element and for different number
of phases (k). The size of intervals is set to L = 5000 transactions. The choice of k is
a trade-off between statistical accuracy (we need a large interval for statistical estimators
to converge) and phase grain (we need many intervals in order to properly identify traffic

phases). Figures 1.8b, 1.8¢ and 1.8d show the results for various numbers of phases. One can
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see that the algorithm finds the analogy between the two frame processings, and identifies
phases inside each one of them. The segmentation appears to be valid and pertinent. The
segmentation is done with mean and variance as representative vectors, so we expect that

each identified phase is stationary, likely to be processed by a stochastic analysis.

Long range dependence We illustrate here how the presence of LRD in embedded soft-
ware can be evidenced. To this end, we compute aggregated throughput time series as the
number of flits sent in consecutive time-windows of size 100 cycles. This time scale allows for
a fine grain analysis of the traffic. For each application, we comment hereafter the log-scale

diagrams presented in Figures 1.9, 1.10 and 1.11.

e mpeg-2 (see Figure 1.9). The shape of the LD does not exhibit evidence for LRD.
Indeed the estimated value for the Hurst parameter, 0.56 indicates LRD is not present
in the trace (H = 0.5 means no LRD). In this case, an 11D (Independent Identically
Distributed) process would be a good approximation of the traffic. One can note a peak
around scale 2°, meaning that a recurrent operation with this periodicity is present in
the algorithm which might have an impact on network contention. Such behavior could
be captured by an ARMA process for instance [5]. It is interesting to note that this
software implementation of MPEG-2 does not exhibit long range dependence whereas

the hardware implementation does [35].

e mp3 (see Figure 1.10). Similar to the MPEG-2 implementation, no trace of LRD can be
found in this case: the estimated Hurst parameter is close to 0.5. The other parts of

the communication trace, do not manifest any long-range dependence either.

e jpeg2000 (see Figure 1.11). For this application, the traffic trace exhibits a strong
non-stationarity, so that the trace must be split in rather short parts for the analysis.
In some of these parts, corresponding specifically to the Tier-1 entropic decoder of the
JPEG2000 algorithm, LRD is present with an estimated Hurst parameter value between
0.85 and 0.92 (depending on the parts). In the other parts of the algorithm, no long-

range dependence could be evidenced.
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We can conclude from these experiments that long-range dependence is not an ubiquitous
property of the traffic produced by a processor associated with a cache executing a multi-
media application. In some parts of JPEG2000 LRD is present, however it is combined with
periodicity effects which may have an equivalent impact on the network-on-chip performance.
In this case, short-range dependent models such as ARMA [5] could be used instead of LRD

ones.

1.3.4 Traffic modeling accuracy

In this section we investigate ways of evaluating the accuracy of a traffic generator. It
essentially consists in defining indicators of the difference between the traffic trace obtained
from the simulation with processors and the traffic trace obtained with traffic generators. It
is clear that one should not look at global metrics such as the average delay or the average
throughput. This would not highlight the interest of the multi-phase approach. As such, we
define an accuracy measure by computing the mean evolution of each transaction’s element
(delay, size, command and throughput). The mean evolution is defined as the average value

of the series, computed in consecutive time windows of size L.

To summarize those results we define the error as the mean of absolute values of relative
differences between two mean evolutions. Let M,.¢(i) be the mean evolution of some element
for the reference simulation. Further, let M (i) be the evolution of the same element for
another simulation, and finally let n be the number of points of both functions. The error
(in percent) is: Err = £ 37 |Mer(i) — M(i)|/Myes(i) * 100. Note that this is a classical
signal processing technique to evaluate the distance between two signals. Furthermore, we

define the cycle error as the relative difference between numbers of simulated cycles.

In order to illustrate those metrics, Table 1.4 shows accuracy results on the NOC platform

and the execution of the MP3 application.

As expected, the higher the phase number is, the more accurate the simulations are. In
particular, the error on latency becomes very low when the number of phase is greater than

one. This is of major importance since the latency of communications reflects the network
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state. It means that the traffic generation from a network performance point of view is
satisfactory with multi-phase traffic generation. Multi-phase traffic generation provides an

interesting trade-off between deterministic replay and random traffic.

1.4 Related work and conclusion

SOC design companies usually have in-house NOC prototyping environments but it is very
difficult to have information about this tools. Concerning academic research, there are sev-
eral works on NOC performance analysis and design that use deterministic traffic generated
(trace replay) [11,17,19]. For instance, the TG proposed in [19] uses a trace compiler that
can generate a program for a reduced instruction set processor that will replay the recorded
transactions in a cycle-accurate simulation without having to simulate the complete proces-
sor. This TG is sensitive to the network latency: changing network latency will produce a
similar effect on the TG as on the original 1P. This is a very important point which is also

taken into account in our environment.

An alternative solution for NOC performance analysis is to use stochastic traffic gen-
erators, this technique is used in many environments [15,26, 34, 36]. None of these works
proposes a fitting procedure to determine the adequate statistical parameters that should be
used to simulate traffic. Recently, the work presented in [33] studies a LRD on-chip traffic
model. To our knowledge, no NOC traffic study has introduced multi-phase modeling. A
complete traffic generation environment should integrate both deterministic and stochastic
traffic generation techniques. From the seminal work of Marculescu et al. [35], long range
dependence is used in on-chip traffic generators [12]. Marculescu et al. have isolated a
long-range-dependent behavior in the communications between different parts of a hardware

MPEG-2 decoder at the macro-block level.

Rapid NOC design is a major concern for next generation MPSOC design. In this field,
processor traffic emulation is a real bottleneck. This chapter has investigated many issues
related to the sizing of NOC. In particular it insists on the fact that a serious statistical

toolbox must be used to generate realistic traffic patterns on the network.
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PDF Description
Gaussian | The most widely used PDF, used for aggregated throughput for instance
Exponential | Fast decay PDF, used for delay sequence for instance

Gamma Gives intermediate PDF between exponential and Gaussian
Lognormal | Gives asymmetric PDF
Pareto Provides heavy-tailed PDF (slow decay)

Table 1.1: Some classical probability distribution functions (PDF)

Covariance Description
11D (independent identically distributed) | No memory
ARMA (auto-regressive moving average) | Short range dependence
FGN (fractional Gaussian noise) Long range dependence
FARIMA (fractional integrated ARMA) | Both short and long range dependence

Table 1.2: Some classical covariance functions

Number of processors 1 2 3 4
Mesh size 0x0 2x2 3x3 4x4
Time| S |[Time| S |[Time]| S Time S
Mips without VCD 36.1 1 249.5 1 [4775] 1 1261.3 ] 1
Mips with VCD 59.4 [ 0.61]279.9]0.89 | 559.8 | 0.85 | 1263.8 | 0.95
MPTG replay 159 1227 177214134451 1.39 ] 804.0 | I.57
MPTG 1 phase (sto.) | 19.9 | 1.82 | 177.4 | 1.41 | 337.1 | 1.42 | 790.8 | 1.59
MPTG 10 phase (sto.) | 19.9 [ 1.81 [ 177.2 | 1.41 | 337.6 | 1.41 | 790.0 | 1.60
MPTG 1 phase (Ird) 28.8 | 1.25 | 180.2 | 1.39 | 364.1 | 1.31 | 806.5 | 1.56
MPTG 10 phase (Ird) | 29.1 | 1.24 | 184.0 | 1.36 | 341.5 | 1.40 | 826.4 | 1.53

| Mahadevan [19] | - J215] - [264] - [260] - ]3.05]

Table 1.3: Speed up of the simulation: simulation time in seconds and speedup factor (S
columns) for various platforms and traffic generation schemes.
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Config. | Delay | Size | Cmd | Throughput | Latency
replay 1.153 0 0 0.197 0.117
random | 41.278 | 75.242 | 7.709 102.316 27.825
1 phase | 18.604 | 14.759 | 6.256 12.696 10.086
3 phases | 17.194 | 8.169 | 3.255 6.212 0.767
5 phases | 14.772 | 3.239 | 1.210 5.651 0.626

Table 1.4: Accuracy of MPTG: error (in percent) on various metrics with respect to the
reference MIPS simulation (NOC platform).

App. Input
MPEG-2 | 2 images from a clip (176x144 color pixels)
MP3 2 frames from a sound (44,1 kHz, 128 kbps)
JPEG2000 “Lena” picture (256x256)

Table 1.5: Inputs used in the simulations

L Sk) | | TSI | Stk+1) | |
———————P | |

REQUEST ‘ ‘ | ' DA | ‘ ‘ |
A®K),CK) ! e Ak+1),C(k+1) !

RESPONSE | 1 | | |

: L(k) | - :<ﬂ>_—>

Figure 1.1: Traffic modeling formalism: A(k) is the target address, C'(k) the command
(read or write), S(k) is size of transaction, D(k) is the delay between the completion of one
transaction and the beginning of the following one, and (k) is the inter-request time.

12

1 5 10 15
j

Figure 1.2: Example of log-scale diagram (LD), the Hurst parameter is estimated with the
slope of the dashed line (here, H = 0.83)
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Figure 1.3: MultiPhase traffic generation flow: An initial trace is collected by simulation with
ideal interconnection, The trace is then analyzed and segmented to generate a configuration
of the MPTG, then the real simulation can take place.
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Figure 1.4: Example of NOC interconnect interface: advanced VCI, defined by the OCP
consortium
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phase0{

time: // transaction temporal caracteristics
mode=IA; // selected precision is Delay
exponential (15) ;

// IID process following an exponential law of mean 15 flits
content: // transaction content caracteristics
random("ptable",exponential (10));
// random generation,
// the ptable file contains destination addresses probability table
// size is modeled with an exponential law of mean 10 flits
duration: // phase duration
constant (10000); // 10000 transactions
}

phasel{
time: // transaction temporal caracteristics
mode=TP; // selected precision is throughput
deterministic("fic");
// trace is replayed from a previously recorded one.
content: // transaction content caracteristics
cache("ptable",exponential (16)) ;
// cache type generation (non-blocking writes)
// size is modeled with an exponential law of parameter 16
duration: // phase duration
deterministic("fic"));
// phases duration are store in a file

}

sequencer{ // phase switch behavior
round(10); // round robin, repeated 10 times

}

Figure 1.5: MPTG configuration file example
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Figure 1.6: Simulation platforms for initial trace collection.
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Figure 1.7: Simulation platforms for MPTG validation including five memories, a terminal
type (TTY), a MIPS processor and a background traffic generator (BACK TG) used to intro-

duce contention in the network
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Figure 1.8: Phases discovered by our algorithm on the MP3 traffic trace using the delay, for
different phase numbers.
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Figure 1.9: LD of the traffic trace corresponding to the MPEG-2 and MP3 implementations.
H = 0.56.
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Figure 1.10: LD of the traffic trace corresponding to the MP3 implementation. H = 0.58
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Figure 1.11: LD of the traffic trace corresponding to the JPEG2000 implementation. H=0.89

33



