
1

Hardware Implementation of the GPS authentication
Mickaël Dardaillon, Cédric Lauradoux, and Tanguy Risset

Université de Lyon, INRIA,
INSA-Lyon, CITI,

F-69621, Villeurbanne, France

Abstract—GPS is a reference in the domain of lightweight cryp-
tography. This public-key authentication protocol was selected
in the NESSIE competition and is mentioned in the standard
ISO/IEC 9798. Different trade-offs between the area and the
speed are explored in this paper. The fastest implementation is
40 times faster than the smallest but it is 5 times larger in term
of area. At the prover side, the authentication can be done in
1µs.

Index Terms—GPS, parallel/serial implementation, multiplica-
tion by a constant.

I. INTRODUCTION

Cryptographic primitives like block ciphers or hash func-
tions are often designed to satisfy two opposite constraints
of embedded systems: speed and area. The Girault, Poupard
and Stern authentication protocol (GPS) is a well-established
primitive in the cryptographic community: it has been proven
secure (NESSIE recommendation [1]) and it can be imple-
mented with a low budget. GPS is a reference in the domain
of lightweight authentication. However, it is unknown yet how
fast can be GPS. This question finds its answer here.

The core of GPS consists in implementing a multiplication
by a constant operator. Two strategies can be adopted to
implement this arithmetic unit: (a) a parallel approach based
on partial pre-computation, and (b) a serial approach based on
shift-and-add. The bounds for GPS are established in terms of
area and speed for these two approaches.

The parallel implementation of GPS with a 128-bit secret
takes 1µs against 42µs for the existing serial implementation
on Xilinx Virtex 4 at 8 Mhz. If the parallel approach is
affordable for a powerful FPGA (Virtex 4), lower resource
platforms are not yet ready to support such implementation.
Our full integration of GPS in the communication stack of the
PowWow platform support only the serial implementation. For
such a platform to benefit from the fastest GPS implementa-
tion, twice more area would be needed for 128-bit secret.

The rest of this paper is organized as follows. The GPS
protocol is reminded in Section II with its existing implemen-
tation. The Section III and IV describes the different trade-off
available for the implementation of GPS. The performances
are compared in Section V.

II. GPS PROTOCOL

The GPS authentication protocol [1] is an interactive zero-
knowledge authentication protocol initially proposed by Gi-
rault, Poupard, and Stern [2]. It provides provable security
based on the composite discrete logarithm problem. It also

combines short transmissions and minimal on-line computa-
tion, using precomputed “coupons”. This protocol has been
selected in the NESSIE portfolio [3] and it is mentioned in the
ISO/IEC 9798-5 Clause 8 [4] as a reference. Throughout the
paper, we implicitly refer GPS as this variant “with coupons”.

a) Description: The parameters used in this protocol are
the following:

• S, C, D are public integers, where |S| ≈ 180, |C| = 32
and |D| = |S|+ |C|+ 80,

• n = p × q is a public composite modulus, where p and
q are secret primes, |n| = 1024, |p| = |q| = 512,

• g is an element of Z∗n,
• Φ = (C − 1)× (S − 1),
• s ∈ [0, S[and I = g−s mod n,
• a coupon i is a couple (ri, xi = gri mod n), where
ri ∈ [0, D[is a random number.

At the beginning, the prover P has a unique identifier IdP ,
a unique pair of keys (the private s and the public I) and a set
of coupons c computed by a higher trusted entity. The verifier
V knows the prover’s identifier and public key.

Verifier V Prover P
IdV , I IdP , s, I, c

IdP , xi←−−−−−−−−−− (1)

(2) nV−−−−−−−−−−−→
(4)

y←−−−−−−−−−−− (3)

Fig. 1. The GPS protocol.

GPS, depicted in Fig. 1, works as follows.

(1) The prover P chooses a coupon (ri, xi), and sends its
identifier IdP and xi to the verifier R.

(2) The verifier answers a challenge nV randomly chosen
in the interval [0, C[.

(3) The prover computes y = ri + nV × s, and sends y to
the verifier.

(4) The verifier checks if:
• gy × InV mod n = xi
• y ∈ [0, D + Φ[

The arguments supporting the security of GPS can be found
in [1], [2]. They are not included because the security of GPS
is not affected by our results.

b) Existing implementation: GPS authentication has
been designed for constraint embedded systems such as smart-
card, RFID or sensors networks. The critical part for the

2

implementation is on the prover side assuming that the verifier
(RFID reader or a base station) suffers from less restriction.

Two steps are critical for the prover: the computation of xi
(Step (1)) and y (Step (3)). The computation of xi is the most
expensive one (exponentiation) but the prover has nothing
to do thanks to the coupons (pre-computation). Therefore,
the last remaining cost is the Step (3) which consists of the
multiplication by s and the addition of ri. The multiplication
by s is the most complex due to the size of the multiplicands.

GPS was first designed for smartcards [2]. McLoone and
Robshaw proposed in [5], [6] the first hardware implemen-
tation of GPS. Their solution is based on the shift-and-add
algorithm for multiplication. It offers a very small hardware
footprint. This implementation is described in Section IV and
it serves as the reference in our comparison.

Girault and Lefranc [7] proposed a variant of GPS which
exploits low Hamming weight secret s. The multiplication
is transformed in an addition when the secret is chosen
properly. This variant can significantly reduced the cost of
GPS. However, this solution was subsequently attacked in [8],
and it is not considered in this work.

In the following sections, the different architectures for GPS
are explored. Two criteria are examined: the area and the
speed. Area and speed are two classical metrics to compare
hardware designs. A cryptographic design can be tuned for
a specific key or support any value for the key. Throughout
this paper, fixed-key and variable-key implementation are
considered.

III. PARALLEL IMPLEMENTATION

A parallel multiplier can be implemented using lookup table
(ROM). Let us consider two variable operands A and B, of
size |A| and |B|. The product A × B is on |A| + |B| bits.
A lookup table approach requires to store: 2|A|+|B| × (|A| +
|B|) bits. While being attractive for small values of A and B,
lookup tables are clearly not practicable for GPS, i.e. |A| ≥ 32.
This cost can be reduced to 2|A|×(|A|+ |B|) considering that
B is fixed, i.e. the key is fixed.

To further reduces the memory size, Chapman proposed
in [9] to decompose the computation into partial products. To
understand the principle of this decomposition, basic multipli-
cation method from elementary school is reminded in Fig. 2.

482
× 7

2× 7 → 14
8× 7× 10 → + 560
4× 7× 100 → + 2800

3374

Fig. 2. Elementary school multiplication

In order to compute multiplication efficiently, human de-
composes numbers into digits in decimal basis. Then, we learn
multiplication tables for all the digits. Multiplication is done as
shown in Fig. 2 using these tables, left-shift (×10,×100, · · ·)
and digits addition. If we have to compute fast multiplications
involving a specific constant, we only need the multiplication
table of this constant. We illustrate this on Fig. 3.

953
× 482

2× 953 → 1906
8× 953× 10 → + 76240
4× 953× 100 → + 381200

459346

Fig. 3. Constant multiplication by 953.

For an hardware design, the decomposition is done in the 2`

basis rather than the decimal basis. The choice of ` depends
on the trade-off between the cost (memory and adders) and the
technology characteristics. First, 2` values need to be stored
in each table. They represents |A|` tables of 2`× (|B|+`) bits.
The results obtained from these tables are combined by |A|` −1
adders of |B|+` bits. In most FPGA, the ROM are composed
of four binary inputs, which leads to a size ` = 4 bits. This
architecture is illustrated on Fig. 4 for |B| = 8, |A| = 12 and
` = 4. Each lookup tables take one part of A as an input. The
partials results are combined using 2 adders to produce the
final result. Note that the left shifts are done by positioning
the partial results and have no gate cost.

16× 4 bits rom

4

A0-A3

4 bits adder

A4-A7

A8-A11

44441

Fig. 4. Constant multiplier (adapted from [10]).

For GPS, we evaluate architectures with 128, 256 and
512 bits secrets and 32 bits challenges. The architectures
are generated automatically in our system, using the library
FloPoCo1. This library is an open source project for non-
standards operations and it provides in particular several
integer constant multipliers [11].

Q

constant

index

register

32 192 192

multiplier

ri
272

nV y272

Fig. 5. Parallel implementation of GPS (128 bits).

The Fig. 5 illustrates the parallel implementation of GPS
used in our design. The product is computed by the constant
multiplier generated core, with the private key s as a constant.
The result s× nV is added to ri. All the data is processed in
parallel.

This architecture offers the advantage of a full parallel
implementation in terms of speed, while using the constant
property of the key to reduce the size of the implementation.

1http://flopoco.gforge.inria.fr

3

IV. SERIAL IMPLEMENTATION

The serial implementation uses the McLoone and Robshaw
architecture to get very low hardware requirements [5]. This
architecture is based on the shift and add algorithm to compute
the product. This algorithm is similar to the elementary school
multiplication. For each digit of the multiplicand, we compute
the product between the digit and the second multiplicand. The
result is shifted to the left accordingly to the digit position.
The sum of the results is the multiplication result.

101001
× 110

0× 101001 → 000000
1× 101001× 10 → + 1010010
1× 101001× 100 → + 10100100

11110110

Fig. 6. Elementary school binary multiplication

The multiplication is illustrated on Fig. 6 for binary num-
bers. The product between a multiplicand and a binary digit
is either 0 or the multiplicand, depending on the binary digit.
Starting from the bottom of Fig. 6, each iteration reads a digit
of one operand. If this digit is 1, it adds the multiplicand to the
previous results, otherwise, it adds nothing (or 0). The result
of this sum is shifted one bit to the left.

Control
logic

Shifter registers (left)
0sr

15

nV

16

16

16

1

16

y

Fig. 7. GPS serial implementation (from [5]).

The architecture based on this shift and add algorithm is
presented on Fig. 7. The control logic block process the
challenge bitwise and drives the multiplexer. This multiplexer
select the key or 0, depending on the challenge bit. The adder
sums the multiplexer data with the previous results stored in
the shift register. On the last turn, ri is added to the result,
using the same hardware. The data is processed by blocks to
obtain a serial architecture. The balance between occupied area
and execution time is set by the data bus size. Doubling the
data bus size halve the required run cycles, while increasing
the adder and the multiplexer size.

Our implementation uses the same model as the McLoone
and Robshaw, and we get area results close to the original for
the different security parameters (see the appendix). However,
these results only takes into account the computing hardware.
For the rest of the article, we will give results for a complete
implementation. This implementation contains the McLoone
and Robshaw architecture, as well as memories for nV , xi
and y.

V. COMPARISON

From Section III and IV, two different approaches to
implement GPS have been described. One focuses on speed
at the expense of a large hardware footprint, while the other
focuses on the lowest footprint. The two designs are compared
and analyzed in terms of speed and area. In order to validate
our implementation, we use a setup similar to the one used
in [5]. The results matches as shown in the Appendix.

secret size 128 bits 256 bits 512 bits
parallel impl. slices 2213 4358 7115
serial impl. slices 493 784 1377
parallel/serial ratio 4.5 5.5 5.2

parallel impl. run cycles 8 12 20
serial impl. run cycles 339 603 1131

serial/parallel ratio 42.4 50.3 56.55

TABLE I
COMPARISON BETWEEN PARALLEL AND SERIAL IMPLEMENTATION.

Table I compares the serial and the parallel implementation
in terms of hardware footprint and run cycles at 8 MHz on
a Xilinx Virtex 4 XC4VSX35. The comparisons are made on
the overall architecture, including all the required memories.
The results shows that the serial implementation is 5 times
smaller than the parallel implementation. This is a significant
advantage in terms of hardware footprint. On the other hand,
the parallel implementation is more than 40 times faster
than the serial implementation. Knowing that the constant
multiplier is an off-the-shelf component, it is a very significant
advantage in terms of execution speed.

To continue further our study of GPS, we work on the
wireless sensor platform PowWow2. This platform is specifi-
cally designed to be energy efficient [12], and offers a more
constraint hardware platform in terms of area and time. It uses
a low power Actel Igloo AGL250 FPGA for control and a
Texas Instrument CC2420 chip for RF communications.

We integrate GPS authentication into the network stack of
the platform. Our demonstrator uses GPS to authenticate a
PowWow platform (Prover) to a base node (Verifier). The
experimental set-up is illustrated on Fig. 8.

During our experiments, we made two observations. First,
the parallel implementation of GPS is too large to fit in the
Igloo AGL250 FPGA. Second, the bus size impacts the serial
implementation of GPS. This effect is exposed in the Table II.

From these results, it can be seen that the 16-bit data bus
is offering a lower hardware footprint than the 8-bit data bus.
This is due to an additional overhead needed to address the

2http://powwow.gforge.inria.fr

4

Prover

Verifier

Fig. 8. PowWow running a wireless authentication.

core cells for different secrets size
bus width GPS 128 GPS 256 GPS 512

8 bits 1542 2270 3745
16 bits 1546 2253 3698
32 bits 1934 2632 4034

TABLE II
INFLUENCE OF THE DATA BUS SIZE ON THE HARDWARE FOOTPRINT.

memory for the 8-bit data bus, which is not balanced by the
shift and add architecture size reduction.

VI. CONCLUSION

Two architectures to implement the GPS cryptosystem have
been presented. The first one is the parallel architecture based
on a constant multiplier. The second one is the McLoone
and Robshaw architecture [5]. Our results are conformed to
the existing implementation (see the Appendix). Up to our
knowledge, this is the first time that the parallel architecture
is explored. Moreover, our experimentations include a full
integration of GPS into the PowWow platform and validate
its applicability in a realistic set-up.

Our work gives an insight on the gap between the serial
and the parallel implementation in terms of area and timing.
Analysing the results from our experiments, we saw that a
smaller data bus does not always imply a smaller hardware
footprint. A possible leverage to improve the hardware foot-
print of the parallel implementation could be the exploration of
dedicated hardware optimisations for the constant multiplier.
It will be explored in further works.

ACKNOWLEDGEMENTS

The authors wants to thank Florent de Dinechin from ENS
Lyon for his help on constant multiplication and Romain
Fontaine from the CAIRN INRIA team for his help on the
RF-communication of PowWow platform.

REFERENCES

[1] O. Baudron, F. Boudot, P. Bourel, E. Bresson, J. Corbel, L. Frisch,
H. Gilbert, M. Girault, L. Goubin, J.-F. Misarsky, P. Nguyen, J. Patarin,
D. Pointcheval, G. Poupard, J. Stern, and J. Traor, “GPS - An Asym-
metric Identification Scheme for on the Fly Authentication of Low
Cost Smart Cards,” A proposal to NESSIE, 2001, https://www.cosic.
esat.kuleuven.be/nessie/updatedPhase2Specs/gps/GPS-Bv2.pdf.

[2] M. Girault, G. Poupard, and J. Stern, “On the Fly Authentication and
Signature Schemes Based on Groups of Unknown Order,” Journal of
Cryptology, vol. 19, no. 4, pp. 463–487, 2006.

[3] NESSIE consortium, “Portfolio of recommended cryptographic prim-
itives,” Tech. Rep., 2003, https://www.cosic.esat.kuleuven.be/nessie/
deliverables/decision-final.pdf.

[4] International Organization for Standardization, “ISO/IEC 9798 – Infor-
mation technology – Security techniques – Entity authentication,” ISO,
1997 – 2008, http://www.iso.org.

[5] M. McLoone and M. J. Robshaw, “Public Key Cryptography and RFID
Tags,” in The Cryptographers’ Track at the RSA Conference – CT-RSA,
ser. Lecture Notes in Computer Science 4377. San Francisco, CA,
USA: Springer-Verlag, February 2007, pp. 372–384.

[6] M. McLoone and M. J. B. Robshaw, “New Architectures for Low-Cost
Public Key Cryptography on RFID Tags,” in International Symposium
on Circuits and Systems - ISCAS 2007. New Orleans, LO, USA: IEEE,
May 2007, pp. 1827–1830.

[7] M. Girault and D. Lefranc, “Public Key Authentication with One
(Online) Single Addition,” in Cryptographic Hardware and Embedded
Systems - CHES 2004, ser. Lecture Notes in Computer Science 3156.
Cambridge, MA, USA: Springer, August 2004, pp. 413–427.

[8] J.-S. Coron, D. Lefranc, and G. Poupard, “A New Baby-Step Giant-Step
Algorithm and Some Applications to Cryptanalysis,” in Cryptographic
Hardware and Embedded Systems - CHES 2005, ser. Lecture Notes in
Computer Science 3659. Edinburgh, UK: Springer, August 2005, pp.
47–60.

[9] K. D. Chapman, “Constant Coefficient Multipliers for the XC4000E,”
Tech. Rep., 1996.

[10] M. J. Wirthlin, “Constant Coefficient Multiplication Using Look-Up
Tables,” The Journal of VLSI Signal Processing, vol. 36, no. 1, pp.
7–15, Jan. 2004.

[11] N. Brisebarre, F. de Dinechin, and J.-M. Muller, “Integer and floating-
point constant multipliers for FPGAs.” Leuven, Belgium: IEEE
Computer Society, July 2008, pp. 239–244.

[12] O. Berder and O. Sentieys, “PowWow : Power Optimized Hard-
ware/Software Framework for Wireless Motes,” in International Con-
ference on Architecture of Computing Systems - ARCS ’10. Hannover,
Germany: VDE Verlag, February 2010, pp. 229–234.

APPENDIX

Table III compares the results obtained from our serial
implementation with the result obtained in [5]. The synthesis
was done on the Cadence ATL Compiler and normalized to a
NAND size. Our results are less than 10 % different from the
article, which means that our implementation is close to the
article, and can be used as a benchmark.

Key Challenge Area (NAND) Difference
(bits) (bits) [5] this letter

8 bits adders
160 32 1541 1505 2.31%
128 32 1327 1320 0,54%
160 20 1486 1413 4,89%
128 20 1286 1231 4,28%
160 8 1371 1341 2,21%
128 8 1167 1163 0,37%

16 bits adders
160 32 1642 1594 2,90%
128 32 1411 1403 0,54%
160 20 1642 1502 8,53%
128 20 1411 1314 6,90%
160 8 1511 1395 7,65%
128 8 1298 1205 7,16%

TABLE III
PERFORMANCES COMPARISON BETWEEN THIS LETTER AND [5].

