
Virtual Machine for Software Defined Radio:
Evaluating the Software VM Approach

Riadh Ben Abdallah, Tanguy Risset and Antoine Fraboulet
Citi, Insa-Lyon

6, avenue des Arts
69621 Villeurbanne Cedex, France

Emails:{riadh.ben-abdallah, tanguy.risset, antoine.fraboulet}@insa-lyon.fr

Jérôme Martin
CEA-LETI, MINATEC,

17, rue des Martyrs,
38054 Grenoble Cedex, France
Email: jerome.martin@cea.fr

Abstract—We study the impact of using a virtual machine
for the configuration of radio physical layer protocols on a real
hardware platform: the Magali chip. The virtual machine is
programmed in software on the ARM processor present on the
platform. We evaluate the additional cost of the virtual machine
layer on the effective implementation of telecommunication
physical layer protocols. The results, obtained using the mixed
SystemC/VHDL cycle accurate simulator of the Magali platform,
show that, although the proof of concept is valid and functional,
extra optimizations, such as additionnal hardware mechanisms,
will be necessary to obtain real-time performance.

I. I NTRODUCTION

Software defined radio is now foreseen as the next tech-
nological shift that will drive commercial success for new
mobile embedded systems. Automatic and dynamic adaptation
to the strongest (or cheapest) radio protocol as well as global
minimization of energy consumption over a set of mobile
nodes may be reached only with the availability of software
reconfiguration of the protocol physical layer.

Following the pioneering work of Mitola [1], software
defined radio (SDR) has been “de facto” defined as the ability
to program the physical layer of the radio protocol used for
wireless communication. This does not mean, of course, that
the protocol is fully realized in software. High bandwidth
telecommunication protocols require hardware componentsfor
a real-time implementation. However, the same hardware com-
ponents (e.g., aFFT component) are used in several different
protocols with different parameters. What must be done in
software is theconfigurationand control of these hardware
components.

As soon as aSDR platform is programmable, its programs
(sometimes calledwaveform programs) should beeasy to
develop andreusable. The reasons for that are thati) pro-
grammability very quickly leads to intractable complexityand
time-consuming debugging process andii) the vast quantity
of hardware mobile platforms makes it impossible to develop
one waveform program per hardware platform. This is the
basic motivation for the use of a virtual machine forSDR: a
dedicated virtual machine available on each hardware platform
would be a solution to the “program once run everywhere”
ideal scheme for waveform programs.

This Radio Virtual Machine concept (RVM) has been pro-
posed in various works [2], [3], we have presented in [4] our
proposal that includes a specific mechanism for the virtual
machine to act on the signal processing data-stream. An
important question-mark remains over the overhead induced
by the use of a virtual machine for waveform configuration.
This overhead can be measured in terms of additional hardware
complexity and/or additional software complexity which itself
can be divided into run-time performance and compile time
issues (e.g., memory used). We propose in the paper to
evaluate the practical impact of the use of a virtual machine
on an existing platform: the Leti Magali chip [5].

In this work, we investigate a proof of concept to implement
a softwareRVM: we reuse an existingSDR platform without
any additional dedicated hardware. Given an existing hardware
platform able to execute different waveform programs, such
as Magali, we provide answers to the following questions:
how much does it cost to add a software virtual machine on
this platform? Will the obtainedRVM respect real timing con-
straints of 3G telecommunication protocols? Our experiments
have been done with a port of the Lua virtual machine on the
ARM processor present on Magali. These experiments show
that our softwareRVM implementation is approximately 2 to 6
times slower than native implementation which tends to prove
that the overhead introduced can be managed and that more
optimizedVM should be used and investigated.

The paper is organized as follows: an overview of existing
SDR platforms is presented in section II. OurRVM proposal
is then rapidly recalled in section III. Section IV introduces
the Magali platform. Implementation choices are then detailed
in section V, and section VI describes the experimental tests
realized in order to evaluate ourRVM implementation. Finally,
section VII presents our conclusions.

II. EXISTING SDR PLATFORMS

SDR offers faster time to market and shortens development
cycle of new products. Due to these economic issues,SDR

technologies have shown quick advancements during the last
few years. An important number ofSDR platforms with various
architectures have been proposed both by academic research
laboratories and by commercial companies. In the following,
we briefly present a representative sampling ofSDR platforms.

1



A. DSP-centric platforms

SDR platforms allowing to implement full-software sig-
nal processing modules are highly flexible. Many companies
(Sandbridge[6], picoChip, Fujitsu, Icera, Infineon, NXP, etc.)
proposeDSP-centric integrated circuits forSDR. Some typical
examples are:

• picoArray [7] processor from picoChip: This chip has an
architecture which integrates hundreds of smallDSPs. Pi-
coArray can be programmed inANSI C within a dedicated
development environment. It offers a high performance of
200GIPS and 30GMAC/s at 160MHz. Associated with
some accelerator IPs (FFT, Turbocodes, etc.) it is capable
of implementing a complete software-defined WCDMA
modem.

• X-GOLDTMSDR 20 from Infineon technologies is a pro-
grammable baseband processor for Multi-Standard Cell
Phones. Infineon provides a hardware/software solution
that permits to support GSM, GPRS, EDGE, W-CDMA,
HSDPA, HSUPA, LTE, 802.11a/b/g/n, DVB-T/H proto-
cols. This platform also includes hardware accelerators
for resource consuming computations.

• EVP(Embedded Vector Processor) [8] from NXP (owned
by ST-Ericsson): this architecture is able to support multi-
mode LTE with full compliance to the current draft of
revision 8 of the 3GPP standard.

B. Heterogeneous Platforms

These platforms are mainly composed of dedicated hard-
ware processing units. At least one CPU is usually required
for the platform to control hardware operators. Experimental
platforms contain one or multiple FPGAs in order to make
possible the implementation of newly designed algorithms.To
a lesser extent, DSPs are used to implement standard specific
functionalities which doesn’t require high computationalper-
formance. Here are some example of heterogeneous platforms:

• Small Form Factor (SFF) SDR Development Platform
from Lyrtech: it embeds oneDSP and oneFPGA for
baseband processing, connected to a RF front-end. A
dedicated development environment is also provided.

• Universal Software Radio Peripheral (USRP): is a hard-
ware platform designed for theGNU Radio project [9].
This platform have to be connected to a PC platform
throughUSB interface (Control and I/Q samples transfer).

• Kansas University Agile Radio (KUAR) platform [10]: is
a low cost experimentalSDR platform including a 1.4GHz
Pentium M with 1GB RAM and a Xilinx Virtex2FPGA.
A gigabit Ethernet andPCI-express links are provided for
connection to host computer.

It is worth mentioning that an important number ofDSP-
centric platforms can be found in the literature. They offerhigh
flexibility but are limited in terms of performance (computa-
tion speed and energy consumption) compared to platforms
with dedicated hardware accelerators. We also notice that a
centralized CPU is always present for platform control.

III. R ADIO V IRTUAL MACHINE PROPOSAL

The execution model we propose for our virtual machine
implementation is meant to deal with configuration and control
of a SDR platform. This is an abstraction of the architecture on
which will run the streaming computation needed for theSDR

platform. This model has been previously described in [4],
and its adequacy with the description of telecommunication
waveforms has been shown. This section sums up its main
characteristics.

In our case, the execution model is a set of IPs intercon-
nected by an efficient communication mechanism. These IPs
can be software or hardware blocks (we detail this below),
they are reconfigurable and can accept runtime parameters.
On behalf of the processing IPs that will take part of the radio
protocol stream processing, one of these IPs must implement
a particular controller (in our case it is the virtual machine)
and can be a dedicated component or implemented as general
purpose processor as it is the case in the present prototype.

The platform reconfiguration management using a virtual
machine can preserve genericity of implantation until the last
moment: downloading the bytecode program on the device.
Once the bytecode is downloaded to the targetRVM several
runtime steps still need to be done.

• Allocation and resource sharing can and should be asso-
ciated with the virtual machine to increase the portability
of the code and go through the mechanism of operators
virtualization.

• Just in time compilation techniques can be used on the
configuration bytecode to increase the virtual machine
efficiency and make use of the the platform specific
optimization opportunities.

These steps are not discussed here. In this paper, we place
ourselves in the case where the allocation of resources may
be made by simple association between the blocks available
on the system composed of the hardware IP and the virtual
machine process.

Calculations used in the computation stream can be instan-
tiated by hardware or software. The hardware blocks are seen
as hardware accelerators for the computations. The software
blocks can be instantiated on general purpose processors, DSP
or in our casewithin the virtual machine itself. This process
is an important component for a configurable virtual machine
for SDR platforms.

From a functional point of view, communication manage-
ment among IPs is achieved using First-In-First-Out (FIFO)
channels. These communications are either performed by the
hardware IPs themselves or, in case of software IPs, by
DMAs. In both cases, our model uses simple communication
patterns (point-to-point, with a known number of data). These
components configured by the virtual machine and interact
with it through interrupts in addition to data transferred to
and from memory blocks.

Our RVM does not make any strong assumptions about how
the platform should implement the communications. However,
data integrity during transfers between modules or blocks must

2



be guaranteed by the platform. The absence of communication
deadlocks among blocks must be ensured at compile time or
during bytecode validation into theVM . Once configured the
IPs should be able to receive their data without intervention
of the virtual machine.

IV. PROOF OFCONCEPTPLATFORM

This section gives an overview of the Magali chip, which
has been used as proof-of-concept platform to evaluate the
performances of our radio virtual machine. A synoptic diagram
of the chip is shown on figure 1.

Fig. 1. Magali system-on-chip

Magali is a system-on-chip which targets the physical
and MAC layer processing of advanced telecommunication
applications such as 3GPP-LTE or IEEE802.16e (WiMax) [5].
It is based on a 2D-mesh asynchronous network-on-chip
(NoC) [11] made of 5-port routers interconnected to each other
by bidirectional links. Each computing unit is connected to
one port of a router. There are several kinds of computing
units in Magali: IPs,DSP, DMA , etc. We review them in next
paragraph, in the rest of the paper we refer to a computing unit
as acomponent. A magalicomponentmight be a hardware IP
or (e.g.FFT) a software program on aDSP.

IP components are dedicated to a specific telecom compu-
tation (OFDM components which includeFFT/iFFT, LDPC and
Turbocodes coding/decoding blocks, bit processing blocks,
etc.). They offer a certain degree of configurability to address
the diversity of targeted applications (e.g.,FFT size, OFDM

frame format, etc.). The Smart Memory Engine (SME) [12]
and the Mephisto blocks are specialized programmable com-
ponents: theSME is a programmableDMA that is able to
select and reorder data, whereas the Mephisto is aVLIW DSP

used to address specific telecom functions that involve highly
flexible computations (channel estimation,MIMO decoding,
etc.). Finally an ARM1176JZFS processor core brings the
programmability needed for high-level control andMAC pro-
cessing. It is also responsible for configuring and controlling
all other computation units in Magali.

In the Magali chip, every functional unit is connected to its
router through a hardware block called Communication and

Configuration Controller (CCC) [13], called CC on figure 1.
The CCC is responsible for optimizing dataflow communi-
cation on the chip. Hence, programming an application on
Magali consists in configuring these controllers so that they
may start and control data input flows, core computation and
data output flows for each component of the platform. For
performances purpose, theCCC is able to manage complex
configuration sequences where the component receives and
sends data from/to several other components and processes
different computations. This complex configuration sequences
reduce the amount of work of theARM core and prevents
communication bottleneck at its NoC interface.

The choice of Magali as a test case for our radio vir-
tual machine relies on several criteria. Firstly, it is a chip
that addresses state-of-the-art telecommunication standards,
with dedicated optimized IPs, and therefore it has sufficient
computation performances and power efficiency to address
realistic SDR challenges. Secondly, using such a heteroge-
neous platform is a way to evaluate ourRVM programming
model against several families of computing components with
variable configurability and programmability features. Ifour
model is able to deal with this chip it is obviously able
to handle homogeneous platforms such asDSP-only ones.
Another advantage of the chip is that theARM processor makes
it possible to prototype software calculations that have not
been included in optimized IPs. This is useful to evaluate
the possibility for the platform to cope with new emerging
standards, which is a key concept ofSDR. Finally, the design
environment provided with Magali gathers all the necessary
tools to efficiently prototype theRVM: embeddedRTOS, ARM

ISS, high level model in SystemC for quick simulation, and
an evaluation board for experiments in real conditions.

V. I MPLEMENTATION CHOICES

The RVM concept is essentially a domain specific virtual
machine. In order to have rapidly aRVM prototype we chose
to not start from scratch. Instead, we have conducted a
preliminary study on the existingVMs taking into account a
set of considerations. Then we selected one suitableVM and
extended it with aRVM API implementation on the Magali
chip. In the following paragraphs we summarize our technical
implementation choices.

A. Choice of a Virtual Machine

We consider that a relevant candidate virtual machine for
our experiment should meet a set of criteria:

• Open source and available for a large set of classical
embedded processors (or at least easy to port using a
classical C compiler). For our tests anARM11 version
was needed.

• Small memory footprint and high performance
(“lightweight”).

• Well documented, and possibly with an active develop-
ment community, in case of needs for important modifi-
cations of theVM core.

3



• Easily extensible, at least through interfacing with li-
braries developed in nativeCPU bytecode.

After a comparative study of a large list ofVMs we identified
a short list of candidateVMs to be extended toRVM (see
table I).

TABLE I
RVM CANDIDATES

L
ua

N
ek

o

P
yt

ho
nV

M

S
qu

aw
k

K
af

fe

L
eJ

O
S

T
in

yV
M

N
an

oV
M

W
ab

a

small memory x x x x x x x x
performance x x x x x x x
extensible x x x
lightweight x x x x x x x x
documented x x x x x

Squawk or other tiny JavaVMs (implementing a little part
of Java libraries) are good candidates to be extended intoRVM:
especially when currentCPUs could incorporate dedicated
coprocessors for the native execution of Java bytecode (e.g.
Jazelle feature inARM processors).

However, we have selected the LuaVM mainly because of
its design principles: it is built to be fast, lightweight and easily
extensible (could define a domain specific language). More-
over, we are experienced in development with Lua language
and its internal functionalities.

B. RVM programming model

On each platform, theRVM also requires a platform spe-
cific software layer to access the hardware. Thus,RVM has
a role of mapping the bytecode (functional view) on the
hosting platform (system view). In this section, we show
how telecom components are controlled by theVM . This
control is done with four basicRVM primitives explained here-
after: RVM ALLOCATE, RVM CONFIGURE, RVM CONNECT,
and RVM WAIT .

In addition to the hardware components, we defined a way
to program a telecom algorithm in software, we refer to it
as software component. software components give the ability
to program new telecom components if they are not avail-
able on the platform. In our implementation, these software
components will be executed by theRVM, in a specific thread,
with best effort performance. Instantiating this type of software
component consists in a POSIX thread creation. To realize
this feature we needed operating system scheduling services.
In our implementation, we have builtRVM upon theECOS

highly configurable real-time operating system intended for
embedded systems [14].

The RVM ALLOCATE primitive instantiates a telecom com-
ponent and returns aHANDLE required for the management
of the component. After that, theRVM is able to configure
the component in order to make it ready for processing
(e.g., loading software code intoDSP memory, IP registers
setting,...).

As mentionned before, components are reconfigurable (pa-
rameterizable) in order to be used by different protocols.
The RVM CONFIGURE primitive is applied on a component
HANDLE. it sends a configuration to dedicated memory slots
available on the Magali components. In the case of a software
component, we implemented this primitive by loading the
module bytecode into theVM memory.

SDR requires fast dynamic reconfigurations of the in-
terconnections between the platform units. Connecting two
components, generally requires to configure communication
controllers present in the hardware processing units or setting
DSP/CPU registers to get/put data from/to a particular memory
address (e.g. when using shared memory). We implemented
theRVM CONNECTprimitive using communication configura-
tion driver functionalities. In the case of HW blocks, it consists
in configuring both source and destination componentsCCC

controllers (described in section IV).
Finally, RVM is able to configure a computing unit to send an

interrupt when it finishes its processing. To synchronize plat-
form IPs configurations,RVM executes aRVM WAIT primitive
and waits until it receives a notification from the configured
unit. In our case, this mechanism has been implemented using
ECOS interrupt management low level primitives.

VI. EXPERIMENTS AND RESULTS

In this section we present the experiments we have realized
in orderi) to functionally validate theRVM concept andii) to
study the real time behaviour of our specific implementation
on the Magali chip. We deduce from experimental results
which part of aRVM implementation are the most limiting
in terms of flexibility and computation efficiency. Finally,we
discuss different possibilities to cope with these hard points
and propose further improvements to ourRVM.

A. Experimental Setup

We used two different test benches for our experiments.
The first test bench, presented in section VI-A1, highlights
the cost of component reconfiguration with and withoutRVM.
The second test bench (section VI-A2) shows the performances
of the system when theRVM is used to access and do
computations on the stream of data. This latter case is used
to evaluate the overhead of the proposedRVM abstraction and
discuss its adequacy to a realSDR application.

1) First test bench: single operator application:The first
test bench (figure 2) performsFFT operations on a variable
number of data with three different configurations of ourSDR

platform:

1) in a native mode (fully optimized using Magali specific
mechanisms),

2) using the previously describedRVM programming model
without the VM interpretation layer(i.e. simply using
RVM primitives), and

3) using the full RVM concept (VM and programming
model).

Fast Fourier Transform (FFT) is a common operation in
signal processing. It is the central element of theTRX-OFDM

4



FFT

ARM

FFT

ARM

FFT

ARM

VM

Config Control IT Data flow

i/ Native implementation ii/ With RVM programming model iii/ Full RVM concept

Fig. 2. Applying FFT on a variable number of data: the three configurations
of test bench 1

units of the Magali chip. To realize anFFT, the MagaliTRX-
OFDM core must be supplied with a corresponding binary
configuration. In the native programming model of Magali
(configuration 1) theCCC is used to sequentially execute the
same configuration in order to execute severalFFTs. In this
case the CPU only needs configuring theTRX-OFDM once,
independently of the total number of computations. On the
other hand with the proposedRVM programming model the
main controller (the CPU software in configuration 2, the
VM in configuration 3) has to start computation and wait for
an end-of-computation IT from theTRX-OFDM at eachFFT

iteration (see figure 2).
2) Second test bench:IEEE802.11a CFO estimation and

correction: In telecommunication systems, Carrier Frequency
Offset (CFO) refers to the carrier frequency mismatch between
a transmitter and a receiver, due to hardware imperfections.
This well-known phenomenon is usually dealt with usingCFO

estimation and correction algorithms involvingsin(), cos()
andarctan() functions. Hardware implementations often use
CORDIC IPs to efficiently handle these trigonometrical opera-
tions.

Our second test bench implementsCFO estimation and
correction for theIEEE802.11a protocol in pure software. In
this standard, a known sequence made of a short and a long
preamble is sent by the transmitter. The receiver first estimates
the CFO coarsely by comparing the received short preamble to
its theoretical values, then corrects data of the long preamble
and proceeds with a second, more precise, estimation of the
remainingCFO error.

Native implementation of this algorithm on Magali relies on
a complexSME micro-code that enables synchronization with
the ARM processor. TheSME sends an IT when data is ready
to be used by theCPU for computation. The latter “wakes
up” the SME when data has been properly processed (see
figure 3). Implementations with theRVM programming model
use theRVM WAIT primitive to synchronize the controller
with the dataflow. A second cpu thread is responsible for the
computation, either in a nativeARM format (configuration 2)
or using a secondVM instance that executes Lua bytecode
(configuration 3).

B. Results

The experiments described in the following paragraphs have
been realized on the Magali chip simulation platform with a

Config Microcode IT Data flow

Native implementation

SME

ARM

(1) Only one
Microcode

(2) Notification
of data availablity

(4) Continue
data transfer

request

ROTOR FFT

(3) configure
with

phase drift

Fig. 3. CFO estimation implementation: native implementation (configuration
1)

cycle-accurateARM1176JZFS core VHDL model. CPU clock
is configured to run at 362.31MHz.

1) results of test bench 1:First, we measured the total
execution time for each implementation described in VI-A1.
Figure 4 shows that the total execution time linearly depends
on the number of processed data.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1024 16384 32768 65536 131072

S
im

ul
at

ed
 to

ta
l e

xe
cu

tio
n 

tim
e 

(m
s)

NB data flit

FFT operator total execution time

Native
RVM API
Full RVM

Fig. 4. Simulated total execution time

Using linear regression algorithm we can model the three
curves by the linear functiony = ax+b wherex is the number
of data flit to be processed andy the simulated execution time.
Couples of parameters(a, b) are listed in the following table:

TABLE II
OVERHEAD REGRESSION PARAMETERS

Implementation mode a(ms.data
−1) b(ms)

Native 2.50e
−5 1.11

RVM prog model 4.92e−5 1.63
Full RVM 6.98e−5 4.87

Although the behaviour of the three configuration are quite
similar, they correspond to very different repartitions ofthe
time spent. To explain that we have represented in figure 5
the chronograms of work load of theCPU and of theFFT IP
for each configuration

• For configuration 1 (native mode, (a) in figure 5), the
complex Magali configuration sequences mentioned in

5



Fig. 5. Chronograms for theCPU and theFFT IP for the three configuration:
native (a),RVMAPI (b), full RVM (c).

section IV are used. This permits to have a single IT
signal, no matter how many data are processed. This also
permit to overlap communication and computation in the
FFT IP. Once, initialization of theCPU is done, the time
is spent in theFFT computation, hence we have:

anative≈ aFFT,

where aFFT is the time to process one data flit. (see
Fig. 5(a)).

• For configuration 2 (RVM API, (b) in figure 5), the IT has
to be sent at the end of eachFFT computation, hence
computation and communication cannot be overlapped
which lead to a a total computation time ofTrvm model =
N ∗ (tload + tFFT + tsend+ trestart) for N FFT. wheretload,
resp.tsend, is the necessary time for data to enter, resp.
leave, theTRX-OFDM, and trestart is the time needed to
restart a computation when an IT is received by theCPU

or, equivalently:

arvm api ≈
tload + tsend+ trestart

sizeFFT
+ aFFT,

• For configuration 3 (fullRVM, (c) in figure 5), the time
spent inRVM primitive is more important than the time
spent for executing theFFT on the IP. Hence the slope
afull rvm of the line on figure 4 is only dependent of the
time spent in theVM .

afull rvm ≈
twait IT + trestart

sizeFFT
,

wheretwait IT is the time needed by theVM to switch to
IT-waiting state This case clearly illustrates the cost of
interpretation in the context of aVM .

Figure 6 shows the time spent by theCPU in the different
program phases (initialisation, configuration of the IP, idle
state, etc.) for the three configuration. This figure confirm
our analysis: in the fullRVM configuration, theCPU is never
idle, which clearly shows that, in our implementation, the
performance of theVM itself is a limiting factor for the
performance of the global system.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1024
2048

4096
8192

16384

32768

65536

131072

1024
2048

4096
8192

16384

32768

65536

131072

1024
2048

4096
8192

16384

32768

65536

131072

S
im

ul
at

ed
 to

ta
l e

xe
cu

tio
n 

tim
e 

(m
s)

Nb data flit

CPU-Init
CPU-Ctrl
CPU-Idle

CPU-Init
CPU-Ctrl
CPU-Idle

CPU-Init
RVM-Init
RVM-Ctrl

Full RVMRVM APINative

Fig. 6. Decomposition of the time spent in test bench 1 for thethree
configurations

2) IEEE802.11a CFO estimation: Figure 7 shows the total
execution times for the three implementations. We notice an
increasing overhead in processing time with each added layer.

 0
 1
 2
 3
 4

 5
 6
 7
 8
 9

 10
 11
 12
 13

 14
 15
 16
 17
 18

NATIVE

PRG-M
ODEL

FULL-RVM

S
im

ul
at

ed
 to

ta
l e

xe
cu

tio
n 

tim
e 

(m
s)

Implementation modes

Simulated total execution time for different implementations

INIT
CFO-computation

CPU-CTRL

Fig. 7. CFO application execution phases

If we do not take into account the time spent in theCPU ini-
tializations (program load, boot, OS initialization, etc.) we find
thatRVM programming model implementation has approxima-
tively 25% overhead compared to the native implementation,
whereas fullRVM implementation is approximatively 6.5 times
slower thanRVM programming model version.

The program size for each implementation case are detailed
in the table III.

TABLE III
PROGRAMS SIZES

Implementation mode Memory(Kb)
Native 55

RVM prog model 58
Full RVM 208

6



C. Discussion

It is interesting to study preciselywhere the computation
time overhead comes from. We distinguish two types of
overhead which results in an increase in processing time and
in memory required by theSDR program to be executed. The
interpretation cost for our LuaVM consists ini) function calls:
the name of the called function, hashed at compile time, is used
to retrieve its native address, andii) transcoding native-format
data from the dataflow into Lua format when theRVM has to
handle computations on the dataflow.

Figure 8(a) shows that theRVM version ofCFO estimation
algorithm is a particularly bad case in terms of interpretation
overhead, sincei) RVM performs repetitive calls to trigono-
metric functions implemented in native code, andii) data to
be processed comes from the dataflow and requires to be
transcoded into Lua format before and after each function
call. Table IV gives a tentative decomposition of the overhead
induced by the softwareRVM implemented here.

TABLE IV
RVM CONCEPT OVERHEAD COMPARED TO NATIVE IMPLEMENTATIONje
ne comprend pas ce que veut dire Interpret. call et

Interpret. comput.de plus le 200Kb ne colle pas avec
les chiffres donnés plus haut

Overhead type memory cpu time
Adaptation +1 Kb ∼2 times slower
Interpret. call +200 Kb ∼3 times slower
Interpret. comput. ∼7 times slower

This overhead could be reduced using advanced on the
fly compilation techniques (Just-In-Time compilation,JIT). In
these classicalVM techniques the bytecode is compiled into
native bytecode just when its execution is requested for thefirst
time. It is claimed in [15] that withJIT on x86 architectures,
a Lua program runs 5 times faster. We can expect roughly
similar improvements on aARM CPU. This “conventional”JIT

techniques could be adapted to specificRVM context, as shown
in Fig. 8(b): by using an ahead of time binary translation
step. A binary translation step requires a static analysis of the
code prior to its execution to generate native binary programs
that can be made independent of theRVM execution loop.
Translating data access code and data transcoding from native
to VM format and vice-versa may be avoided and the sequence
of calls may be natively realized.

On top of the arithmetical code execution time performance
hit, our specific implementation of theRVM on the Magali
chip does not take advantage of the hardware mechanisms
provided by theCCC. These configuration registers can be
used to sequence the configurations locally within a computing
unit and minimize the control overhead from theRVM. The
availability of these configuration registers cannot be taken
for granted in a portable bytecode and are not included in
the language. An ahead of time preprocessing of the bytecode
using static analysis and an optimization framework including
resource allocation and configuration patterns could be a
solution to enhance performance. The preprocessor should

Fig. 8. Binary translation applied to a radio program

extract the sequencing of configurations to be mapped on each
unit and generateCCC configurations.

Although this ahead of time binary translation or recompi-
lation adds an extra cost for theRVM architecture, it really
enables download time optimization and specialization of the
portable bytecode. This step is mandatory to take advantage
of specific hardware features provided by platform designers.
We strongly expect from such optimisations to highly reduce
the cost of the adaptation layer.

In all cases memory required by programs implementing
the RVM will be higher than a native implementation. this is
due to the extra code of theVM engine and the additive pro-
gramming model libraries. Nevertheless, solutions like code
dynamic loading (import required libraries on demand) could
be experimented to reduce the amount of required memory.

Fig. 9. RVM use case

7



VII. C ONCLUSION

The different experiments introduced in this paper allows to
evaluate the overheads due to theRVM concept. The first one
is the necessary adaptation layer between theRVM abstract
model, which intends to be generic, and the native execution
model of the platform, which often targets performance. As
a consequence a naiveVM runtime cannot benefit from any
optimized hardware mechanism specific to the model of ex-
ecution of the platform.VM optimizations to take advantage
of such platform accelerators may reduce this overhead, at
the expanse of possibly intricated specific development (e.g.,
bytecode preprocessing), but that only needs to be done once.

The second limitation of theRVM compared to native
development is a costly interpretation overhead, as shown in
section VI-B2. This is particularly true when theVM has
to proceed with computations on the flow of data. Classical
VM techniques, such as “Just In Time” compilation, possibly
adapted to the specific context ofRVM, would greatly reduce
this overhead, as would also a dedicated hardware bytecode
interpretor.

As a conclusion, even if our implemented softwareRVM

does not meet the hard real time constraints of 3/4G as it is, its
adequacy to describe advanced telecommunication standards
is proven and several optimizations, starting withJIT, are
still to be developed to check wether sufficient performances
can be achieved. Also a 3GPP-LTE waveform is currently
being ported toRVM in order to set it against more complex
telecommunication standard.

REFERENCES

[1] I. Mitola, J., “Software radios: Survey, critical evaluation and future
directions,” Aerospace and Electronic Systems Magazine, IEEE, vol. 8,
no. 4, pp. 25–36, Apr 1993.

[2] C. Grassmann, M. Sauermann, H.-M. Bluethgen, and U. Ramacher,
“System level hardware abstraction for software defined radios.” SDR-
Forum, 2004.

[3] R. Hossain, M. Wesseling, and C. Leopold, “Application description
concept with system level hardware abstraction,” inSignal Processing
Systems Design and Implementation, 2005. IEEE Workshop on, Nov.
2005, pp. 36–41.

[4] R. B. Abdallah, T. Risset, A. Fraboulet, and Y. Durand, “The radio
virtual machine: A solution for sdr portability and platform reconfigura-
bility,” Parallel and Distributed Processing Symposium, International,
vol. 0, pp. 1–4, 2009.

[5] F. Clermidy, R. Lemaire, Y. Thonnart, X. Popon, and D. Knetas, “An
open and reconfigurable platform for 4g telecommunication:concepts
and application,” in12th Euromicro Conference on Digital System
Design, Architectures, Methods and Tools (DSD’2009), 2009, pp. 449–
456.

[6] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar, S. Stan-
ley, and M. Schulte, “The sandbridge sb3011 platform,”EURASIP J.
Embedded Syst., vol. 2007, no. 1, pp. 16–16, 2007.

[7] A. Duller, D. Towner, G. Panesar, A. Gray, and W. Robbins,“picoarray
technology: the tool’s story,” inDesign, Automation and Test in Europe,
2005. Proceedings, March 2005, pp. 106–111 Vol. 3.

[8] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman, and
M. Weiss, “Vector processing as an enabler for software-defined radio
in handheld devices,”EURASIP J. Appl. Signal Process., vol. 2005, pp.
2613–2625, 2005.

[9] D. Tucker and G. Tagliarini, “Prototyping with gnu radioand the usrp -
where to begin,” inSoutheastcon, 2009. SOUTHEASTCON ’09. IEEE,
March 2009, pp. 50–54.

[10] G. Minden, J. Evans, L. Searl, D. DePardo, V. Petty, R. Rajbanshi,
T. Newman, Q. Chen, F. Weidling, J. Guffey, D. Datla, B. Barker,
M. Peck, B. Cordill, A. Wyglinski, and A. Agah, “Kuar: A flexible
software-defined radio development platform,” inNew Frontiers in
Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE
International Symposium on, April 2007, pp. 428–439.

[11] D. Lattard, E. Beigne, F. Clermidy, Y. Durand, R. Lemaire, P. Vivet,
and F. Berens, “A reconfigurable baseband platform based on an
asynchornous network-on-chip,”IEEE Journal of Solid-State Circuits,
vol. 43, no. 1, pp. 223–235, 2008.

[12] J. Martin, C. Bernard, F. Clermidy, and Y. Durand, “A micropro-
grammable memory controller for high-performance dataflowapplica-
tion,” in 35th European Solid-State Circuit Conference (ESSIRC’2009),
2009, pp. 348–351.

[13] F. Clermidy, Y. Thonnart, R. Lemaire, and P. Vivet, “A communication
and configuration controller for noc based reconfigurable data flow
architecture,” in3rd IEEE International Symposium on Networks-on-
Chip (NoCs’2009), May 2009, pp. 153–162.

[14] A. Massa,Embedded Software Development with eCos. Prentice Hall
Professional Technical Reference, 2002.

[15] W. C. Luiz Henrique de Figueiredo and R. Ierusalimschy,Lua Program-
ming Gems. Lua.org, December 2008.

[16] Y. Durand, C. Bernard, and D. Lattard, “FAUST: On-chip distributed
architecture for a 4g baseband modem SoC,” inDesign & Reuse IP-
SoC, Grenoble, France. Grenoble, France: IEEE Computer Society,
Dec. 2005.

8


	Introduction
	Existing sdr Platforms
	dsp-centric platforms
	Heterogeneous Platforms

	Radio Virtual Machine Proposal
	Proof of Concept Platform
	Implementation Choices
	Choice of a Virtual Machine
	RVM programming model

	Experiments and Results
	Experimental Setup
	First test bench: single operator application
	Second test bench: ieee802.11a cfo estimation and correction

	Results
	results of test bench 1
	ieee802.11a cfo estimation

	Discussion

	Conclusion
	References

