
RenPar’18 / SympA’2008 / CFSE’6
Fribourg, Suisse, du 11 au 13 février 2008

Coupling Loop Transformations and High-Level Synthesis

Alexandru Plesco Tanguy Risset
LIP - ENS Lyon CITI - INSA Lyon
69364, Lyon cedex 7, France Bat 502, 20 avenue Albert Einstein
alexandru.plesco@ens-lyon.fr F-69621, Villeurbanne, France

Tanguy.Risset@insa-lyon.fr

Résumé

In this paper we present our study of adding an advanced preprocessing code transformation step
to high-level synthesis (HLS) tools. Our approach is to use advanced state-of-the-art compiler frontend
as an independent C-to-C preprocessing step before synthesis. By using this approach, recent state-of-
the-art compiler advances could be used directly in HLS, eliminating their reengineering into modern
HLS tools and the preprocessing effort can be reused by multiple HLS tools. We focus on efficient syn-
thesis of loop nests and therefore we use WRaPit loop transformation framework integrated in Open64
compiler. As HLS backend we rely on Spark framework. Important improvements are obtained in the
resulting RTL design thanks to the fact that WRaPit uses a polyhedral representation for nested loops
and provides a flexible framework for loop transformations. Improvements are shown in particular on
the synthesis of a part of the H263 decoder from MediaBench II benchmarks.

Mots-clés : outils EDA, HLS, compilation, pré-traitement

1. Introduction

Recent trends in embedded system design are platform-based design, network on chip, and higher le-
vel of specification formalisms. Intellectual property (IP) re-use is now widely considered as the main
way of improving design efficiency. Embedded software design takes now a major part of a system
on chip (SoC) design time. However, for widely sold products such as telecommunication devices, the
use of dedicated hardware accelerators is still mandatory because it provides better trade-offs between
performances (especially in terms of power consumption) and cost (chip area).

For many years, high-level synthesis (HLS) has been foreseen as the solution to accelerate dedicated
hardware design. Ideally, HLS should enable the automatic generation of efficient hardware designs from
functional specifications expressed in some high-level programming language. We think that HLS failed,
up to now, to integrate industrial design flow because it was not mature enough to solve important
technical problems :
– A huge design space to explore : potential parallelism and variety of target architecture technology

imply the use of multi-criteria optimization. Some choices must be made by the designer to reduce
the design space.

– The memory bottleneck : memory size and memory traffic has become a major component in chip
power consumption. Optimizing memory usage is even more difficult than optimizing parallelism
exploitation.

– Efficient synthesis of loop nests : while some high performance compilers have very efficient tech-
niques to compile loop nests down to assembly code, most HLS tools implement only a subset of
them.

We focus on this last problem. We show the usefulness of an independent loop transformation frame-
work, such as the ones available in modern compilers, as a front-end to a HLS tool.

Today, existing commercial HLS tools require the original functional code (usually in C-like syntax) to
be written in a very specific manner in order to get good synthesis results. Hence, a source-to-source
preprocessing step is mandatory to get the code from the designer specification to a specification suitable
to a particular HLS tool. Another important remark concerns the internal representation of loop nests.
After many years of research in automatic parallelization, a modeling technique was developed for loop
nests : the so-called polyhedral model [12, 17]. It provides an intermediate representation suitable for loop
transformations.

Our study focuses on the combination of two tools : the Spark HLS framework [14] and the WRaPIT loop
transformation tool [5], itself integrated in Open64 compiler. However, our study goes beyond these
two particular tools and demonstrates that HLS can be coupled with software compilation to achieve
even better results than HLS tools alone can obtain (even those that have already integrated some loop
transformations like Spark, PICO-NPA and other) and in mean time to eliminate the need of compiler
transformations integration internally in the HLS tool.

Section 2 briefly presents a review of HLS frameworks and recent compiler advances. Section 3 in-
troduces our synthesis flow, which uses Spark and WRaPIT. In Section 4, we present two synthesis
examples and analyze the performance improvements obtained using various loop transformations be-
fore synthesis. We conclude in Section 5.

2. Related work

There are many tools that synthesize hardware from different languages with different abstraction le-
vels. In recent years, there is a trend in HLS frameworks to use languages with higher levels of abstrac-
tion. The higher is the abstraction, the lower are the requirements to the designer to get involved into
the hardware design of the system. However, designers are often disappointed by the resulting designs,
which do not correspond to what they would expect.

Considering commercial tools, after Synopsys behavioral compiler, there is a strong move to use C or C++
as input language. Many tools are using dedicated languages based on C-like syntax (Handel-C, Bach
C, HardwareC, SpecC, etc.), introducing strong guidelines in the syntax to drive the tool towards the
explicit description of the hardware. These languages are closer to hardware description languages. The
major commercial tools performing HLS are CatapultC (Mentor Graphics), Pico [24] (Synfora), Cynthesi-
zer (Forte Design System), Cascade (Critical Blue), C2H (Altera) [1]. The designer must be very familiar
with these tools to get really efficient designs. Most of the time, each of these tools is efficient at synthe-
sizing a particular type of algorithm : Pico for instance focuses on implementing efficiently perfect loop
nests, possibly pipelined.

Besides, many academic tools have emerged, most of them also focused on the efficient synthesis of
application-specific algorithms. Among these, the most important initiatives are : Spark [14], Com-
paan/Laura [27], Espam [21], MMAlpha [19], Gaut [25] , Ugh [3], Streamroller [16], xPilot [7]. Compaan,
Espam and MMAlpha have focused on the efficient compilation of loops, both using the polyhedral
model to perform loop analysis and/or transformations.

Compiler research is clearly imposing to be used in HLS in order to get better synthesis results. Compiler
technology has led to complex re-targetable compiler frameworks such as the Gnu Compiler Collection
(GCC) or the Open Research Compiler (ORC). These compilers integrate many complex optimizations,
usually tuned to get efficient assembly code, but which could also be used for HLS. Examples of such op-
timizations are common sub-expression elimination, dead code elimination, strength reduction, to quote
but a few [8, 20]. We are interested in a particular set of optimization : loop transformations [4]. Many
of these transformations are already implemented in recent state of the art HLS tools like PICO-NPA,
C2H and other. However, the transformations are performed mostly at a lower level of abstraction and
on complex internal data structures of these tools. Our goal is to facilitate the design cycle by adding a
higher level preprocessing step (human readable) that can be very easily controlled by the designer. The
preprocessed specification can be synthesized by most HLS tools that take as input the specification of
the system in ANSI-C.

Loop transformations were first implemented in parallelizing prototypes such as tiny [30], LooPo [13],
Suif [2] or Pips [15] as they were mandatory to provide efficient parallelization. Recently, dedicated loop
optimization modules have been integrated into more popular open source compilers [22], mainly be-
cause cache performances can be greatly improved by these transformations. Our goal is to use such
tools to provide a source-to-source front-end to HLS tools so as to widen the space of possible hard-
ware implementations given a particular initial sequential specification and thus eliminating the need
to reimplement all these transformations internally in the HLS tools.

For applying loop transformations, we use the polyhedral model, a modeling technique for loop nests
in programs. It abstracts a n-dimensional loop nest by a polyhedron on a n-dimensional space enclosing
all the integer vectors spanned by the vector of indices of the loop nest. It uses a classical internal re-

2

presentation for the instructions of the body of the loop nest. Performing loop transformations amounts
to performing algebraic transformations on these polyhedra. Recently this polyhedral representation
has been successfully used to model other objects such as the memory layout of a program [9, 6], the
communication volume between the IPs of a SoC [28], cache misses [18], etc.

The polyhedral representation has the advantage that its size is independent of the number of iterations
of the loop. It can also manipulate loops with a parameterized number of iterations (i.e., where the
number of iterations is not known at compile time). It has been used in research prototypes such as
MMAlpha, Compaan or LooPo. However, its use implies a shift towards an internal representation (IR)
quite different from the IR commonly used in compilers (abstract syntax trees or linear IR). Another
restriction is that the polyhedral model is efficient to model static control programs, i.e., programs where
the control flow is not dependent of the input data. As shown in [29], a major part of programs is
composed of static control parts, especially for computationally intensive programs present in signal
processing or multimedia applications. However, it is mandatory for a HLS tool to also handle the parts
of the program that do not have static control.

We have chosen the WRaPIT tool [5] because it explicitly implements a polyhedral internal representa-
tion, and it is integrated in the Open64 compiler. This allows us to rely on Open64 for the non-static
control parts of programs. Another important point is that WRaPIT is not a parallelization tool, it mani-
pulates sequential code. This is important because we think that parallelization should be handled by
the HLS tool as it is very dependent on the target design technology. Another useful property of WRaPIT
is its user interface for loop manipulation. The user can very easily specify loop transformations and can
provide new ones thanks to the uruk script language.

The work presented here could also have been done with a dedicated source-to-source tool such Nes-
tor [26] or Rose [23] instead of a complete compiler. We could also have used parallelizing tools such
as LooPo or Tiny. The important properties that the loop transformation tool must have are : i) it must
contain a complete loop transformation module to handle parameterized loops, ii) it must be able to in-
put and output the given source language from which the synthesis starts, in our case, the C language.

Independently of our work, an interesting study has been recently published [10] that uses WRaPIT as
loop transformation tool too. The HLS was done with an elementary (i.e., no complex back-end opti-
mizations) homemade synthesis tool (CloogVHDL) and its results were compared to those obtained by
ImpulseC, starting from the same initial specification. We have a different goal. There are many HLS

tools that have already included some compiler technologies and that have already proved their effi-
ciency. However, most of them implement a small subset of compiler transformations. Implementing
a new compiler transformation requires very good knowledge of the internals of these tools. Another
problem that we are trying to solve is the possibility of adding a new transformation to an existing HLS

tool. We pointed out earlier that it is not very easy to add one to a HLS tool when the source code is avai-
lable, in the mean time it is impossible to add one to a HLS tool provided in binary format (like Spark,
PICO-NPA and most of the proprietary HLS tools). Our design flow allows an easy, human readable
code preprocessing step to most of them.

As a backend, we prefer to rely on a HLS tool such as Spark for the following reasons. First, it is impor-
tant to take into account the possible interactions of high-level transformations with back-end optimi-
zations. Possible performance loss cannot be clearly seen with a basic HLS tool, so Spark was a better
choice. Second, we chose it because its main strength are control-intensive programs and thus we can
rely on the optimized FSM output since loop transformations will alter the complexity of the generated
FSM. Third, relying on independent tools for both parts (front-end and back-end) shows the feasibility
of our two-phases approach. Indeed, the fact that we use Spark as a black box, with no possible source
modification, shows that we could do the same with a commercial tool. Finally, using sophisticated
tools for the front-end and back-end brings the best of the two worlds. For example, we can consider
a full application, not just static-control programs, even if we perform loop transformations only on
static-control parts.

We point out that, unlike [10], our loop transformations are selected manually so far. However, we
can analyze the impact of every single transformation (or a series of transformations) on the resulting
hardware (size, latency, etc.).

3

Perf. eval.

for (k=2; k<=M; k++)

for (l=1; l<=N; l++)

S3

if (k==l)

S4

Front end Opt
Source C code

Open64+WrapIT

Whirl2C

WrapIT

Uruk script

Spark config.

Fusion(Enclose(S3),2)

........

[general info]

10 1 1 0
........

Spark

Instrument

DineroIV
Cache simul.

C codeVhdl

C code

Backtrack opt.

Mem. access
FSM estimation
of execution

FIG. 1 – Our VHDL design flow combining WRaPit and Spark.

3. Design flow with Spark and WRaPIT

In our design flow (Fig. 1), we used the WRaPIT framework [5], the Open64 compiler, the Spark HLS

framework [14], and the dineroIV cache simulator [11].

WRaPIT is currently plugged in the Open64 compiler and replaces its loop nests optimizer with a more
powerful one, as proved by benchmarks [5]. Spark is an academic HLS tool, provided in binary format,
that takes as input a subset of ANSI-C code and incorporates many code transformation techniques to
improve the quality of the synthesized circuit. Spark generates a synthesizable VHDL state machine,
produces performance statistics, and is able to generate C code that emulates the parallel execution
of the hardware generated. However, inputs and outputs are supposed to be wired, and no memory
controller is provided.

3.1. Target architecture

Processor
Special Purpose

cache

General Purpose

DRAM memory Other IPs

Processor

Bus

cache

FIG. 2 – Target architecture model

In order to compare HLS performances of different designs, a target system architecture class must be
described. Most high-level synthesis frameworks generate architectures for a co-processor that will run
together aside to a general-purpose processor. The target architecture we used is represented in Fig. 2,
our special-purpose processor synthesized by Spark is connected to the bus via a cache. Our work
focuses on the design of the special-purpose processor and its interaction with the external memory.
The cache memory may be external or integrated into the circuit.

We did not synthesize any memory controller but we simulated the effect, on the cache, of the IP gene-
rated by Spark, thanks to dineroIV, an open-source tool for cache trace-driven simulation of various

4

cache configurations. dineroIV was configured to a size of 8KB with a block size of 32B and associa-
tivity 4 for the first example and 32KB with a block size of 64B and associativity 8 for the second one
and for both with a LRU replacement policy, fetch demand policy, write allocation always, and write
back always. The write allocation policy was chosen because of the spatial locality of writes found in
multimedia applications as well as in our example. This improves dramatically the burst write modes
to the external memory. Synthesis results are obtained by instructing Spark with the following timing
constraints and resource constraints : 20ns clock cycle and 10 of each of the arithmetic operators available
(ALU 10ns, MUL 20ns, . . .).

3.2. Design flow

We start from an initial sequential C specification (Fig. 1). This code is fed to Open64. In the front-end
of the Open64 multiple code transformations are performed such as procedure inlining, dead func-
tion/variable elimination, constant propagation, etc. The use of procedure inlining is to transform a
code having multiple function calls to a code that is ready for synthesis (i.e., without function calls).
In the next step, loop transformations are performed by WRaPIT, guided by the user (the user indicates
which transformation to perform thanks to the uruk script language). The Whirl2C program, provided
with Open64, is used to generate C code. At this step, because of some bugs found in Whirl2C at the
generation, we needed to modify this code. Then, this modified C program is fed to Spark, which is
configured with resource constraints mentioned in Section 3.1. Spark outputs a VHDL file describing
the circuit and a C file describing the implementation. The performances of the resulting circuit are eva-
luated from these files. We instrumented the C file produced by Spark. This C file, when compiled and
executed, generates a trace of memory accesses, which is finally used by the cache simulator to analyze
memory access performances.

We point out that the VHDL designs generated by Spark cannot be synthesized directly. As previously
mentioned, Spark does not synthesize a memory controller for its inputs and outputs, instead the circuit
contains many I/O pins. Each I/O data bit generates a new I/O pin. Since it was conceived for control-
intensive programs it does not generate a real memory controller (we point out that we have chosen it
because of its state of the art internal optimizations). However, the schedule of the I/O operations made
by Spark is correct and the hardware generated for the computational kernel is valid, i.e., it respects
resource constraints. Nevertheless, our evaluation with the cache simulator is realistic.

4. Experiments

In this section, we first present an ad-hoc example to highlight the potential gains that loop transfor-
mations can bring to HLS designs, then we provide other performance results on a real H263 decoder
application.

4.1. An illustrative example

The initial example (Fig. 3) consists of a C code performing edge detection on a 100 by 100 pixels 16 bit
depth image : it first applies the Laplacian filter to an image, then applies horizontal and vertical Sobel
filters on the image. This code contains many temporary arrays, it is typically written by an application
designer who does not take into account memory access optimizations but would rather like to have a
readable code to tune up the algorithm. This code is synthesized by Spark. The cache size setup for this
example is 8KB with a block size of 32B.

The loop transformations applied to the example using WRaPIT are classical ones : code motion in order
to move the initialization of arrays next to their use, a sequence of loop fusion and temporary array
elimination. This code, once synthesized by Spark, is likely to have much better performances because
simultaneously i) many of the intermediate arrays are removed, hence memory traffic is reduced, ii) the
number of loops is reduced, reducing the control synthesized for each loop by Spark.

The results obtained on this example are presented in Fig. 4 for three versions of the source C-code :
the initial C program, the initial program with an unrolling by 20 of the innermost loop (performed
by Spark), and the initial program optimized with WRaPIT. We point out that at the end of every
experiment we didn’t performed a cache flush, thus if required, the real memory bandwidth size can be
obtained by adding the cache size and the size of the write buffer. This figure presents the improvements
of the resulting hardware designs in terms of number of cache misses, total number of communications

5

for (i = 1; i < N-1; i++)

for (j = 1; j < N-1; j++)

L3: A1[i*N+j] = (-1) * A[(i-1)*N+j-1] +

(-1)*A[(i-1)*N+j] + (-1)*A[(i-1)*N+j+1] +

(-1)*A[i*N+j-1] + (8)*A[i*N+j] +

(-1)*A[i*N+j+1] + (-1)*A[(i+1)*N+j-1] +

(-1)*A[(i+1)*N+j] + (-1)*A[(i+1)*N+j+1];

// Horizontal Sobel filter stores the

// result in B1 array

for (i = 1; i < N-1; i++)

for (j = 1; j < N-1; j++)

L4: B1[i*N+j] = (-1) * A[(i-1)*N+j-1] +

(2)*A[(i-1)*N+j] + (-1)*A[(i-1)*N+j+1] +

(-1)*A[(i+1)*N+j-1] + (2)*A[(i+1)*N+j] +

(-1)*A[(i+1)*N+j+1];

// Vertical Sobel filter stores the

// result in B2 array

for (i = 1; i < N-1; i++)

for (j = 1; j < N-1; j++)

L5: B2[i*N+j] = (-1) * A[(i-1)*N+j-1] +

(-1)*A[(i-1)*N+j+1] + (2)*A[i*N+j-1] +

(2)*A[i*N+j+1] + (-1)*A[(i+1)*N+j-1] +

(-1)*A[(i+1)*N+j+1];

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

L6: C[i*N+j] = A1[i*N+j] + B1[i*N+j] +

B2[i*N+j];

motion_block(LBL2,LBL6)

fusion(enclose(LBL4,2))

fusion(enclose(LBL4))

fusion(enclose(LBL3,2))

fusion(enclose(LBL3))

fusion(enclose(LBL5,2))

fusion(enclose(LBL5))

fusion(enclose(LBL1,2))

fusion(enclose(LBL1))

(b) Uruk script

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

L6: if ((i == 0)||(i == N-1)||

(j == 0)||(j== N-1))

C[i*N + j] = A[i*N + j];

else

C[i*N + j] = (-3) * A[(i-1)*N + j-1] +

(-3)*A[(i-1)*N+j]+(-1)*A[(i-1)*N+j+1] +

(-3)*A[i*N+j-1]+(8)*A[i*N+j] +

(1)*A[i*N+j+1]+(-1)*A[(i+1)*N+j-1] +

(1)*A[(i+1)*N+j]+(1)*A[(i+1)*N+j+1];

(c) final code
(a) initial code

FIG. 3 – Source code before and after loop transformations with WrapIT

between the accelerator and the memory, and total number of execution clock cycles. The ideal number
of cycles is the number of cycles evaluated by Spark, which assumes no cache miss (i.e., 1 cycle response
for any data access), the simulated number of cycles is computed assuming a 40 cycles latency for each
cache miss. With unrolling, Spark can perform parallelization and loop pipelining more efficiently. This
explains the improvement in the number of clock cycles. However, the transformations performed with
WRaPIT (which does not include any unroll) still has better performance on each metric. This experiment
presents dramatic improvements : 5.57X speedup in the number of total cycles, 6.97 times better in the
number of cache misses. An analysis of the final code (Fig. 3(c)) for the reuse distances of the elements
of the array A can show that after the optimizations the synthesized architecture does not need a cache
at all but only a small internal buffer.

cache mem. #cycles #cycles
miss (#bytes) ideal real

Spark alone 4 364 219 200 273 077 447 637

Spark unroll j 20 4 364 219 200 74 969 249 256

Spark+WRaPIT 626 30 048 55 302 80 342

FIG. 4 – Performance improvements on edge detection algorithm (cache size of 8 KB, bsize of 32)

4.2. H263 decoder

We now present the same performance improvements on a more realistic example taken from Media-
Bench II Benchmark1 : a H263 decoder. Profiling of the decoder shows that an important part of the
execution time (62.33%) is taken by the YUV to RGB conversion (vertical interpolation, horizontal inter-
polation and the YUV to RGB conversion). This color space conversion is present also on all the video
decoding codecs like mpeg4 and image decoding ones as jpeg. On a desktop computer, this conversion

1
http://euler.slu.edu/~fritts/mediabench/mb2/

6

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

(a) Cache Miss

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

(b) Memory R/W

 0

 200

 400

 600

 800

 1000

 1200

 1400

(c) FSM States

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07
Spark_Only
WRaPit0
WRaPit1
WRaPit2
WRaPit3
All_transf

(d) Execution cycles

FIG. 5 – Performance results of the synthesis

is done by the video card. Most of the embedded systems do not have one and this conversion is done
by the CPU, a VLIW processor, or a hardware accelerator. Inlining was used as a preprocessing step to
get all computations in a single function. The function performs, in a sequence of doubly-nested loops,
a series of transformations on two arrays : U and V.

The synthesis and simulation were done on a fixed 1000x1000 pixels image. The synthesis results pre-
sented in Fig. 5 are obtained by applying various loop transformations as summarized below :
– Spark_Only : no use of WRaPIT.
– WRaPIT0 : Passing through WRaPIT without loop transformations.
– WRaPIT1 : loop reversal on vertical interpolation (U).
– WRaPIT2 : WRaPIT1 plus loop reversal on vertical interpolation (V).
– WRaPIT3 : WRaPIT2 plus loop transformations (fusion, strip-mining and shifting) on horizontal and

vertical interpolations of U and V.
– All_transf : WRaPIT3 plus loop transformations (code motion, strip-mining, loop interchange)

on U and V and RGB loops and multiple loop fusions.

4.3. Results and discussions

We now present the performance results obtained from the Spark synthesis report (number of clock
cycles) and from the dineroIV cache simulator using the C code output by Spark. Fig. 5 illustrates the
results for cache behavior (cache misses and effective R/W in memory), total number of clock cycles,
and the FSM size of the generated hardware.

There is an improvement in the number of cycles between Spark_only and WRaPIT0 because, in the
original code, a lot of if statements are used to check border conditions. This can be simplified by CLooG
(the loop generator of WRaPIT). The WRaPIT1 transformation performs a reversal of the two loops of the
vertical interpolation on U. Because the original interpolation is done vertically and the array elements
are stored horizontally, the reversal improves cache miss ratio thanks to spatial locality. The WRaPIT2
transformation brings similar improvements.

The WRaPIT3 transformation improves the temporal locality between the vertical interpolation and the
horizontal one. Because of the data dependencies between them, a shift by 2 operation was performed
on a loop of the vertical interpolation. An important improvement of the number of execution cycles
can be observed after this transformation because most of loop control hardware is shared between the
two fused loops. There is also a sharing of the array access index calculations that are in the critical
path. This transformation is also used to increase the level of the parallelism inside the loops that Spark
can easily explore. However, this can also perturb smooth cache operations and thus may increase the

7

cache miss ratio. The last transformations (All_transf) improves the temporal locality of the writes
for the previously-obtained nested loops. The performance results of the cache misses are improved
even more. As it can be observed from Fig. 5(d), the number of execution cycles increases as compared
to WRaPIT3. In this case, the performance degradation of the strip-mine transformation can be very
clearly observed. Each strip-mine transformation is generating a new loop nested inside the original
loop nest. The cache locality improvement brought by the strip-mine transformation has to be balanced
with the improvement of the number of cycles.

As previously mentioned, the hardware generated by Spark can not be synthesized directly, however
one can have a rough idea of its area complexity : the hardware consists of an execution unit, the same
for each design, and a finite state machine controlling the execution unit. Fig. 5(c) gives the number of
states of the FSM. It increases for each new transformation, especially for WRaPIT3 and All_transf.
Here again, there is a tradeoff between cache performance and hardware complexity.

The goal of these experiments was to show that important improvements can be obtained by using
loop transformations as a front-end to HLS, especially if these loop transformations are guided by the
user (automatic loop optimization is still not applicable to HLS). Similar improvements were obtained
in [10]. The main benefit of our approach is that it provides the flexibility of adding a powerful loop
transformation front-end to existing HLS frameworks, even if the HLS framework is provided in binary
format. Of course, this applies only if the synthesis framework accepts ANSI-C as input.

5. Conclusions and future works

In this paper, we show that an independent compiler optimization step should be used as front-end to
HLS tools. There are already many HLS tools that perform some compiler optimizations, however the
implementation of additional loop transformation steps is not an easy task : it requires an additional
engineering effort and in some cases it is even impossible (for binary available ones). The novelty of
our approach is that it demonstrates the feasibility of coupling an independent preprocessing step by
using a modern state-of-the-art compiler performing loop transformations to a HLS tool. This approach
facilitate the use of recent state-of-the art compiler advances in HLS, eliminates the reengineering effort
and enables the reuse of preprocessing effort by multiple HLS tools. We demonstrate the potential gains
of this approach by using the Open64 compiler, coupled with the WRaPIT tool, as a front-end to the
Spark HLS tool that can also perform internally some basic loop transformations. As a result, additio-
nal loop transformations could be applied before synthesis increasing dramatically the performances.
Since the result of the preprocessing step is human readable (C code) it can be analyzed in a very short
time (compared to the time of actual hardware synthesis). This work was based on academic tools but
similar combinations are possible with most of the HLS tools accepting ANSI-C as input. Indeed, HLS

is currently more and more used in industrial systems for chip design and WRaPIT is currently being
integrated in GCC, with the name Graphite [22].

Preparing the code for HLS tools, with high-level transformations, is not new, but it is done by hand.
Indeed, users of commercial tools have to perform this tedious task by hand, not necessarily for per-
formance but also just to make the C code syntactically acceptable for the tool. Our study shows that,
instead of doing it by hand, it can be done efficiently, faster and error free in a semi-automatic way by
selecting high-level transformations provided by a front-end compiler. The next step of this research is
to build a complete toolbox that will include all useful transformations for HLS back-end tools.

Bibliographie

1. Automated Generation of Hardware Accelerators With Direct Memory Access From ANSI / ISO
Standard C Functions, 2006. Altera.

2. S. Amarasinghe et al. Suif : An infrastructure for research on parallelizing and optimizing compilers.
Technical report, Stanford University, May 1994.

3. I. Augé, F. Pétrot, F. Donnet, and P. Gomez. Platform-based design from parallel C specifications.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(12) :1811–1826, 2005.

4. David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-
performance computing. ACM Computing Surveys, 26(4) :345–420, 1994.

8

5. Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier Temam. Putting poly-
hedral loop transformations to work. In LCPC, pages 209–225, 2003.

6. F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle. Custom
Memory Management Methodology. Kluwer Academic Publishers, 1998.

7. J. Cong, Yiping Fan, Guoling Han, Wei Jiang, and Zhiru Zhang. Platform-based behavior-level and
system-level synthesis. In International SOC Conference, pages 199–202. IEEE, 2006.

8. Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan-Kaufmann, 2003.
9. Alain Darte, Robert Schreiber, and Gilles Villard. Lattice-based memory allocation. IEEE Transac-

tions on Computers, 54(10) :1242–1257, 2005.
10. Harald Devos, Kristof Beyls, Mark Christiaens, Jan Van Campenhout, Erik H. D‘Hollander, and Dirk

Stroobandt. Finding and applying loop transformations for generating optimized fpga implemen-
tations. Transactions on High Performance Embedded Architectures and Compilers I, 4050 :159–178, 2007.

11. Dinero IV Trace-Driven Uniproc. Cache Simulator. http://www.cs.wisc.edu/~markhill/

DineroIV/.
12. Paul Feautrier. Automatic parallelization in the polytope model. In G.-R. Perrin and A. Darte,

editors, The Data Parallel Programming Model, volume 1132 of LNCS Tutorial, pages 79–103. Springer
Verlag, 1996.

13. M. Griebl and C. Lengauer. The loop parallelizer LooPo. In Michael Gerndt, editor, Proc. 6th Work-
shop on Compilers for Parallel Computers, volume 21 of Konferenzen des Forschungszentrums Jülich, pages
311–320. 1996.

14. S. Gupta, R. Gupta, N. Dutt, and A. Nicolau. SPARK : A Parallelizing Approach to the High-Level
Synthesis of Digital Circuits. Kluwer Academic, 2004.

15. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization : An overview of the
PIPS project. In ACM Intern. Conf. on Supercomputing, ICS’91, 1991.

16. Manjunath Kudlur, Kevin Fan, and Scott Mahlke. Streamroller : Automatic synthesis of prescribed
throughput accelerator pipelines. In CODES+ISSS’06 : Proc. of the 4th International Conference on
Hardware/Software Codesign and System Synthesis, pages 270–275, New York, NY, USA, 2006. ACM
Press.

17. C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor, CONCUR’93, Lecture
Notes in Computer Science 715, pages 398–416. Springer-Verlag, 1993.

18. Vincent Loechner, Benoît Meister, and Philippe Clauss. Precise data locality optimization of nested
loops. The Journal of Supercomputing, 21(1) :37–76, 2002.

19. A. Mozipo, D. Massicotte, P. Quinton, and T. Risset. Automatic synthesis of a parallel architecture
for Kalman filtering using MMAlpha. In International Conference on Parallel Computing in Electrical
Engineering (PARELEC 98), pages 201–206, Bialystok, Poland, September 1998.

20. Steven S. Muchnick. Compiler Design Implementation. Morgan-Kaufmann, 1997.
21. Hristo Nikolov, Todor Stefanov, and Ed Deprettere. Efficient automated synthesis, programming,

and implementation of multi-processor platforms on FPGA chips. In 16th Int. Conference on Field
Programmable Logic and Applications (FPL’06), pages 323–328, Madrid, Spain, August 2006.

22. S. Pop, G.-A. Silber, A. Cohen, C. Bastoul, S. Girbal, and N. Vasilache. GRAPHITE : Polyhedral
analyses and optimizations for GCC. Technical Report A/378/CRI, CRI, ENSMP, Fontainebleau,
France, 2006.

23. Daniel J. Quinlan. ROSE : Compiler support for object-oriented frameworks. Parallel Proc. Letters,
10(2/3) :215–226, 2000.

24. Robert Schreiber, Shail Aditya, B. Ramakrishna Rau, Vinod Kathail, Scott Mahlke, Santosh Abraham,
and Greg Snider. High-level synthesis of nonprogrammable hardware accelerators. In ASAP’00,
page 113, Washington, DC, USA, 2000. IEEE Computer Society.

25. O. Sentieys, J.P. Diguet, and J.L. Philippe. Gaut : A high level synthesis tool dedicated to real time
signal processing application. In European Design Automation Conference, September 2000. University
booth stand.

26. Georges-André Silber and Alain Darte. The NESTOR library : A tool for implementing FORTRAN
source transformations. In High-Performance Computing and Networking Europe, pages 653–662, 1999.

27. Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. System
design using Kahn process networks : The Compaan/Laura approach. In DATE’04 : Proc. of Design,

9

Automation and Test in Europe, pages 340–345, Washington, DC, USA, 2004. IEEE Computer Society.
28. Alexandru Turjan, Bart Kienhuis, and Ed F. Deprettere. Translating affine nested-loop programs to

process networks. In International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pages 220–229, 2004.

29. Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhedral code generation in the real world.
In Proceedings of the International Conference on Compiler Construction (ETAPS CC’06), LNCS, pages
185–201, Vienna, Austria, March 2006. Springer-Verlag.

30. M. Wolfe. A loop restructuring research tool. Technical Report CSE 90-014, Oregon Graduate Insti-
tute, August 1990.

10

