DIV, FLOOR, CEIL, MOD AND STEP FUNCTIONS IN NESTED LOOP PROGRAMS
AND LINEARLY BOUNDED LATTICES

P.C. HELD and A.C.J. KIENHUIS
Delft University of Technology
Mekelweg 4

2600 GA Delft

The Netherlands
held@dutentb.et.tudelft.nl

ABSTRACT. This paper describes the conversion of nested loop programs into single assignment
forms. The nested loop programs may contain the integer operatteger division floor, ceil, and

modulq in expressions and the stride, or step size, of for loops may be greater than one. The programs
may be parametrized but must have static control. The conversion is done completely automatical by
the tool HiPars. The output of HiPars is aingle assignment prograf8AP) and a dependence
graph (DG). The description of the dependence graph is based on linearly bounded lattices. We will
show the relation between the integer division operators in the SAP and linearly bounded lattices in
the corresponding DG.

KEYWORDS. Nested loop programs, data dependencies, single assignment programs, linearly bounded
lattices.

1 INTRODUCTION

Many algorithms in the field of signal-processing are available in the form of sequential programs in
various programming languages such as Fortran and C.

To execute programs on dedicated parallel processor arrays [13][4], we need to know the data depen-
dencies between the operations of the program [1].

We restrict ourselves to programs that belong to the class of nested loop programs. In addition, we
require that the programs have static control and that the expressions inside the program are linear
expressions. For the data dependence analysis, a linear programming technique (PIP = parametric
integer programming) due to Feautrier can be used [5] [6]. We show that the class of nested loop pro-
grams which contains non-linear functiomseger division modulg ceil andfloor in its expressions

can be converted to the previous. Based on the definition of integer division, we can express these op-
erators in terms of linear control statements, allowing us to use PIP for the analysis of these programs
too. The result of the dependence analysis is a single assignment program (SAP). Our goal is to write
this SAP in the form of a piecewise regular dependence graph. The description of the nodes and edges

of the dependence graph is based on linearly bounded lattices [12]. We pay special attention to the
problem of converting the integer division operators that occur in the SAP into lattice descriptions.

2 DEPENDENCE ANALYSIS OF NESTED LOOP PROGRAMS

We have implemented a tool, callédi Pars, which finds the data dependencies inside nested loop
programs (NLP) [7]. We allow these NLPs to contain two kinds of control statements. The for-loop
control statement and the conditional statement. In addition, the NLPs contain assignment statements,
which take the form of function calls. We restrict ourselves to the claaffioe nested loop programs

[4]. Some properties of affine nested loop programs are, among others: (1) expressions of loop bounds,
conditionals, and indices of variables are affine; (2) the programs have static control; (3) the number of
iterations of the program is independent on the value of the variables of the program; (4) the programs
may be parametrized.

We will extend this class of programs to include nested loop programs containing the non-linear
functions: integer division ceil, floor, andmodulo The functions may appear in the expressions of
the program. In addition we allow that the stride, or step size, of a for-loop to be greater than one.

Let a be an affine expression of variables with integral coefficientsbeandintegral constant. We
denote integer division byiv(a,b). We define the other operators in terms of tie operator, with
7 standing for the division of andb:

e floor(3) = div(a,b)
rounds the result of to the greatest integer smaller than or equd} to

e ceil(§) = —div(—a,b)
rounds the result of to the smallest integer greater than or equd to

e mod(a,b) = a—bx*div(a,b)
returns the value of the remainder of the integer division.

With these definitions, we rewrite nested loop programs containing these functions in terms of the
div functions only.

Below we have listed program 2.1 containing two for-loops with stride two @ndfunctions
inside the expressions of the conditional statements.

Two functionsA and B aredata-dependeni function A uses as argument a variable which value
is defined by the evaluation of functidB. To find the data dependencies, we represent the functions
evaluated by the nested loop program as sets of iterations. We call these sets of itémtting-
domains

Program 2.1

Let M be a parameter.
LetfuncA andfuncB be two functions.
Let a be a two dimensional variable array.

fori=1to M step 2,
forj=1t0o 2 M step 2,
if i -3F% div(i,3) <= 0 then

[a@i,j)] = funcA();
end
if j - 3* div(j,3) <= 0 then
funcB(a(i,j));
end
end
end

|

The kernel of HiPars is formed by garametric integer programmingoutine (PIP). PIP differs
from classical ILP in two ways. First the constant vector of the LP system may be parametrized
leading to parametrized output by symbolic evaluation. Secondly, the objective function is defined by
the lexicographical ordering of the feasible solutions.
In order to use PIP [5] for our dependence analysis we describe iteration domain/tmpes Let
Z be the set of integers. We define iategral polytopeas a bounded set of points taking values in
Z"™ specified by a system of linear inequalities. By definition, a polytope is a dense space. When a
program contains for-loops with stride other than one, the expressions of the lower and upper bounds
are not sufficient to describe the values that the iterator takes on. We have to add an additional
constraint specifying that the difference between values of the iterator is a multiple of the stride.

To model the stride, we introduce an integral variapldé.et /b be the lower- andib be the upper-
bound expression of the for-statement with iteratand strides. We model the stride by the equation:

1=q*s+1b Q)

with [b < i < ub.

It is easy to show, that this equation together with the inequalities of the bounds form a polytope in
the (i, ¢) space that define the values of iteratoBo we properly transformed the non-dense iteration
domain inz into a dense iteration domain in a higher dimensional space at the cost of an additional
variable in the domain description.

The outline of the sequel of the paper is as follows. In section 3, we will give the definition of
integer division and substitute these operators inside NLPs by new control variables such that the
resulting program contains only affine expressions. In section 4, we explain how a nested loop
program is converted into a single assignment program and show that the SAP will contain additional
control variables standing for integer divisions. Then our goal will be to write the SAP description as
a DG with linearly bounded lattices. We will define linearly bounded lattices in section 5. In section
6 and section 7 we will derive the lattice vectors and lattice offsets, respectively. The procedure will
be illustrated by an example.

3 INTEGER DIVISION

When expressions of bounds or conditionals contairnggger divisionoperator, we have to do a
similar transformation as we did for the stride in order to obtain polytope descriptions of iteration
domains. For this purpose, we look at the definitiointéger division

Definition 3.1

Let a be an integer antl a positive integer. The result afteger divisionof ¢ andb are integerg

andr, such that
a = bxqg+r (2)
0 < r<(b-1))

|

We call b the divisor and r the remainderof the division. The value of is equal todiv(a,b).
Observe thatliv(5 + 3,2) # div(5,2) + div(3,2), which shows that integer division is not a linear
operation.

Definition 3.1 gives us a way to define the integer division operéiala, b) by two linear inequal-
ities [9]. We writer asa — b+ g according to the equation and substitute it in the inequalities, resulting
in:

0<a—-bxg<(b—1) (4)
In the expressions inside the nested loop programs, we substitute/#acherator by a control
variableq and add the two inequalities defining variable the form of conditional statements.

After substitution of theliv functions, the NLP contains only affine expressions. As a result, we
can define all iteration domains by polytopes.

Example 3.1
Program 2.1 contains the conditional statement:
if i - 3* div(i,3) <= 0 then

We introduce variable which we substitute for the functiafiv(7, 3) in the expression. By definition
3.1 we defineliv (i, 3) by the inequalities:

0<i—3¢g<2 (5)

We add the inequalities as conditional statements before the original if-statement, resulting in the
following statements:

if 0 <= i -3*q then
if i - 3*q <= 2 then
if i - 3* q <= 0 then
Now all inequalities are linear expressions of the variabkesdq.
O

4 SINGLE ASSIGNMENT PROGRAM

After substitution ofdiv operators by inequalities inside the NLP, we find the data dependencies
between the variables of the prograidi Pars presents the result of the dependence analysis in the
form of a single assignment program (SAP)[14] [3].

A complete dependence analysis of the program involves finding the dependencies for all right-
hand side (RHS) variables appearing in the function call statements. A RHS variable can only be
dependent on a left-hand side (LHS) variable of the same name. In case there are more LHS variables
of the same name, we find first the solution between the RHS variable with each of the LHS variables

separately. This is done by PIP, which returns the solution in the form of the index of the LHS variable
and the iteration-domain for which the solution is valid [5] [6]. The index may be undefined, which
means that the RHS variable does not depend on the LHS variable. After applying PIP for all the LHS
variables, we determine the lexicographical largest index among the indices, whichéptralency
Dependencies are linear functions on the iterators, parameters and variables standing for the integer
divisions.

The complete solution of the dependence analysis of a single RHS variable may consists of multiple
dependencies defined on mutually exclusive iteration domains [8].

The procedure to construct the SAP of the NLP is straightforward [3]. First we substitute LHS-
variables by variables with unique names and with identity functions as indexing functions. Next
we replace each RHS variables by the corresponding LHS variable in which the dependency is used
as indexing function. If the dependency is undefined, we do not substitute the RHS variable. The
iteration domains belonging to the dependencies are inserted in the SAP in the form of conditional
statements.

Below we show the SAP of example 2.1 that is automatically generatéfti By:rs.
Example 4.1

Let Mbe a parameter.
LetfuncA andfuncB be two functions.
Leta_1 be a two dimensional variable amD a temp variable.

% SAP Generated By HiPars Version 2.08

for i=1 to M step 2,
for j=1 to M step 2,

gl=div(i,3);
if -i+3*q1>=0 then

[@ 1(ij)] = funcA();
end

g2=div(j,3);
if -j+3*q2>=0,

gl=div(i+1,2);
if -i+2*ql1-1>=0 then
g2=div(j+1,2);
if -j+2*q2-1>=0 then
g3=div(2*q1+2,3);
if -i+3*q3-3 >=0 then
g4 = div(q3,2);

in0 = a_1(i,j);

else
in0 = a(i,j);
end
else
in0 = a(i,j);
end
else
in0 = a(i,j);
end

funcB(in0);

end
end
end

|

Observe that the SAP contains additiod&l operators. Theiv functions are introduced by PIP
during the process of finding a solution of the integer programming problem. To find an integral
solution, PIP adds extra inequalities, callad planesto the polytope. The construction of the cut
plane involves integer division. If parameters are involved in the division, PIP introduces a new
parameter in order to linearize the cut plane [2] [5] [10]. These new parameters corresponds to the
div functions in the SAP.

5 LINEARLY BOUNDED LATTICE

The SAP is in fact an intermediate format in tH&=i design system [13]. Our goal is to represent

the NLP as a dependence graph (DG). Nodes of the DG represent functions of the DG and edges
data dependencies between the functions. We use domains to represent the elements of the graph in a
reduced way. We define domainsliaarly bounded latticef12][4].

A domain is specified by a polytope and a lattice. Lée an index vector of length and letK be
a vector ofm integral variables. Wit € Z™*™ an integral matrix and3 € Z™ a constant vector,
we define a polytope by [10]:

AK > B (6)
Now, with L ann x m integral matrix and) € Z™ an integral vector, we define a lattice as:
I = LK+0 (7)

We say, that the lattice dfis generated by the columns bf with the variables oK bounded by the
polytope. We calD the offsetof the lattice and the columns @fthelattice vectors

An example of a two dimensional lattice is:

Example 5.1

()= 8)(8) (%) .

|

Below we will show how to write the SAP as linearly bounded lattices. We will focus on the lattice
specification defined by thé&v functions inside the SAP.

6 INDEX DOMAINS WITH DIVS

In this section we will show the relation between lattices and the integer division functions.

To illustrate the subject, we take as example the piece of code of program 4.1 containidéyfour
statements:

Example 6.1

gl =div@ + 1,2)
if —i+2%ql—1>0
g2=div(j + 1,2)
if —j+2%xg2—1>0
g3=div@ * g1 + 2, 3)
if —1+3%x¢g3—3>0
g4=div(g3, 2)
a1(3% g3 —3,2%xq2—1)

|

The example shows thatv functions may be nested. Thkv functions and inequalities of the
example form a part of specification of the iteration domain of the dependency for variab@ur
goal is to describe iteration domains of variables as linearly bounded lattices. The method is based on
the so-callechermite normal decompositidi0]. Other approaches can be found in [9] [11].

To find the lattice defined by the integer divisions and inequalities involving/theve start by
writing the div’s as equations by setting the remaindets zero.

Let N be a matrix of which the rows are the normals of these equationsQ et (g1, .., ¢,) be
the vector of variables of the: divisions and letl be the vector of the iterators. We write the system
of equations defined by th&v’s as:

I
N =0
Example 6.2
With T = (4,5)! andQ = (q1, g2, g3, q4)", the system of equations of example 6.1 is:

i — 2 =0
J—2%q2=0
299 —3q3 =0
g3 —2q4 =0

Thus matrixXV is

10 -2 0 0 0
01 0 -2 0 O
N= 00 2 0 -3 0
00 0 O 1 -2

|

We assume that the system has a solution. Otherwise, we would have removed this piece of code
from the program by dead code elimination procedures.

The system has equations inn + m variables. Because each rawintroduces variabley, it
follows that the rows ofV are independent. The nullspace of the system issthdisnensional, equal
to the dimension of the iteration-space. We will call the variables corresponding to the nullspace the
free variablesof the system.

To find the solution, we use thHeermite normal decompositigi0]. This procedure gives us two
matricesC; andCs such that:

N[C1Cy] = [HO]

in which matrix H is called the hermite normal form df. Matrix H has an inverse because the
rows of N are linearly independent. Observe that mafrixconsists of the vectors of thenullspace
vectors ofN asN(Cs = 0. So any linear combination of the vectors@f added to a given solution
will also be a solution of the system. Because we are only interested in the valliegeflecompose
matrix C; into C1, sizen by n, andC15 and decompose matriks, into matricesCy; and Cy, as
follows:

c=|c Cg]zlcﬂ 021]

Cia Co

Now, the columns of matri’s; are the lattice vectors. So the hermite normal form gives us directly
lattice matrixL defined by thelivs.

Example 6.3
Hermite normal decomposition of matriX gives:
10 -2 0
01 0 O
00 -1 0
“=100 0 o
00 -1 0
00 0 -1

and matrixCs:

Cy =

_— N O W oS
OO = O NN O

The iteratorsi andj are defined by matrixCy;. Let Ky be the vector of free variables. We write
I = (i,5)t, with offsetO still to be determined, as:

6 0
I_<0 2>Kf+0

|

7 LATTICE OFFSET

Next we have to find the lattice offsets. LBt = (b, ..,b,,)" be the vector of the divisors of the
integer divisions, with remaindey, betweerd < r;, < bg. An offsetO must first of all be an integral
solution of the system:

o< (Q)<n o

Apart from these inequalities there may be others in the program that restrict the value of the variables
standing for the integer divisions. We disregard inequalities not involgras they do not affect the
lattice offset.

Let < N,, B, > be the system of all inequalities involvir@. We assume thav,C> = 0. When
this assumption is satisfied, we may use the vectorS,gfas lattice vectors because the variables
corresponding t@’y; are free.

Let K, be the vector of variables corresponding to maf¥ixand letK ; be the vector of variables
corresponding to matrig’s,.

We define(O, Q)! as

@) K
(0 > = [C10)] (K;) (10)

and substitute it in the polytope:

Nq<8> > By (11)

after which we obtain the polytope:

N,Ci1K, > B, (12)

This polytope defines all offset8 = 4, K, of the lattice and we call it thiattice offset domain
The number of offsets depend on the value of the divisoT$e lattices corresponding to the polytope
in ¢ are defined by:

I=CnKy+0 (13)
O =CnkK, (24)
N,CiK, > B, (15)

The lattices are bounded by remaining inequalities of the nested loop program. These inequalities
together with a lattice define an iteration-domain.

A special case is when the offset domain contains a single point. Then the lattice descriptions reduces
toI = Cy Ky + O, and we do not have to enumerate the lattice offset domain.

Example 7.1

In example 6.1 there are three if-statements defining inequalitig¢s in

—i+2%xql—1>0 (16)

—j+2%q2-1>0 (17)

—i+3*%xq3—-3>0 (18)
(19)

After the substitutionl = C11 K, and@ = C12 K, we get inequalities in variables &fy:

—k1 >1

—ky >1

—ky — k3 >3

By the same substitution we get for the inequalities of the remainders:

1<k <0

—1<k <0

—2<k3<0

—1<-k3+2ks <1

After some computation we find th#, = (—1,—1,—2, —1)! is the only solution. So that the
offset

O=CnKy,=(3,-1)

8 CONCLUSION

This paper shows the relation between several forms of describing the data dependencies of nested
loop programs. In particular we have explained the relation between integer divisions inside the
Single Assignment Programs generatedibyPars and linearly bounded lattices in descriptions of
Dependence Graphs.

We have extended the class of nested loop BhaPars can take as input to programs containing
non-linear integer division functions inside the expressions. This extension is based on the definition
of integer division by which we can linearize the expressions in the program at the cost of additional
variables.

The conversion of SAP witdiv functions to linearly bounded lattice descriptions is achieved by
taking the hermite normal form of the matri¥X defined by integer divisions. This decomposition
leads to matrice€’; andC», with corresponding variable vectok§, and Ky, respectively. MatrixCy
defines the lattice vectors with the variablestof as free variables. The domain of lattice offsets is
formed by a polytope in variables &f;,. The polytope is characterized by maté% and inequalities

of the variables standing for the integer divisions.

As a result, we have transformed the polytopes defined by a SAP into linearly bounded lattices to
be used in the description of the corresponding DG.

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

U. Banerjee.Dependence Analysis for Supercomputikguwer Academic Publishers, 1988.

L. Brickman. Mathematical Introduction to Linear Programming and Game The@pringer-
Verlag, 1989.

Jichun Bu. Systematic Design of Regular VLSI Processor ArrdBisD thesis, Delft University
of Technology, Delft, The Netherlands, May 1990.

Ed Deprettere, Peter Held, and Paul Wielage. Model and methods for regular array tddsign.
of High Speed Electronics and systed(®):Special issue on Massively Parallel Computing—Part
I, 1993.

P. Feautrier. Parametric integer programmiigcherche Ogrationelle; Operations Research
22(3):243-268, 1988.

P. Feautrier. Dataflow analysis of array and scalar referenti@s.J. Parallel Programming
20(1):23-51, 1991.

Peter Held. Hipars’ reference guide. Technical report, Dept. Electrical Engineering, Delft Uni-
versity of Technology, 1993.

Peter Held and Ed F. Deprettere. Hifi: From parallel algorithm to fixed-size vlsi processor ar-
ray. In Francky Catthoor and Lars Svensson, edit@pglication-Driven Architecture Synthesis
pages 71-92. Kluwer Academic Publishers, Dordrecht, 1993.

F.Balasa F.Franssen F.Catthoor H.De Man. Transformation of nested loops with modulo index-
ing to affine recurrences. In C.Lengauer P.Quinton Y.Robert L.Thiele, e@ipatial issue of
Parallel Processing Letteon Parallelization techniques for uniform algorithms. World Scien-
tific Pub., 1994.

G.L. Nemhauser and L.A. Wolseyinteger and Combinatorial OptimizationJohn Wiley &
Sons, Inc., 1988.

W. Pugh. A practical algorithm for exact array dependence analy@snmunications of the
ACM, 35(8):102-114, 1992.

L. Thiele and U. Arzt. On the synthesis of massively parallel architectimesl. of High Speed
Electronics and Systen¥(2):99-131, 1993.

Alfred van der Hoeven.Concepts and Implementation of a Design System for Digital Signal
Processing PhD thesis, Delft University of Technology, Delft, The Netherlands, October 1992.

Kung S. Y. VLSI Array ProcessorsPrentice Hall, 1988.

