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ABSTRACT. This paper describes the conversion of nested loop programs into single assignment
forms. The nested loop programs may contain the integer operators:integer division, floor, ceil, and
modulo, in expressions and the stride, or step size, of for loops may be greater than one. The programs
may be parametrized but must have static control. The conversion is done completely automatical by
the toolHiPars. The output of HiPars is asingle assignment program(SAP) and a dependence
graph (DG). The description of the dependence graph is based on linearly bounded lattices. We will
show the relation between the integer division operators in the SAP and linearly bounded lattices in
the corresponding DG.
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1 INTRODUCTION

Many algorithms in the field of signal-processing are available in the form of sequential programs in
various programming languages such as Fortran and C.
To execute programs on dedicated parallel processor arrays [13][4], we need to know the data depen-
dencies between the operations of the program [1].
We restrict ourselves to programs that belong to the class of nested loop programs. In addition, we
require that the programs have static control and that the expressions inside the program are linear
expressions. For the data dependence analysis, a linear programming technique (PIP = parametric
integer programming) due to Feautrier can be used [5] [6]. We show that the class of nested loop pro-
grams which contains non-linear functionsinteger division, modulo, ceil andfloor in its expressions
can be converted to the previous. Based on the definition of integer division, we can express these op-
erators in terms of linear control statements, allowing us to use PIP for the analysis of these programs
too. The result of the dependence analysis is a single assignment program (SAP). Our goal is to write
this SAP in the form of a piecewise regular dependence graph. The description of the nodes and edges



of the dependence graph is based on linearly bounded lattices [12]. We pay special attention to the
problem of converting the integer division operators that occur in the SAP into lattice descriptions.

2 DEPENDENCE ANALYSIS OF NESTED LOOP PROGRAMS

We have implemented a tool, calledHiPars, which finds the data dependencies inside nested loop
programs (NLP) [7]. We allow these NLPs to contain two kinds of control statements. The for-loop
control statement and the conditional statement. In addition, the NLPs contain assignment statements,
which take the form of function calls. We restrict ourselves to the class ofaffine nested loop programs
[4]. Some properties of affine nested loop programs are, among others: (1) expressions of loop bounds,
conditionals, and indices of variables are affine; (2) the programs have static control; (3) the number of
iterations of the program is independent on the value of the variables of the program; (4) the programs
may be parametrized.

We will extend this class of programs to include nested loop programs containing the non-linear
functions: integer division, ceil, floor, andmodulo. The functions may appear in the expressions of
the program. In addition we allow that the stride, or step size, of a for-loop to be greater than one.

Let a be an affine expression of variables with integral coefficients andb an integral constant. We
denote integer division bydiv(a; b). We define the other operators in terms of thediv operator, with
a
b

standing for the division ofa andb:

� floor(a
b
) = div(a; b)

rounds the result ofa
b

to the greatest integer smaller than or equal toa
b
.

� ceil(a
b
) = �div(�a; b)

rounds the result ofa
b

to the smallest integer greater than or equal toa
b
.

� mod(a; b) = a� b � div(a; b)
returns the value of the remainder of the integer division.

With these definitions, we rewrite nested loop programs containing these functions in terms of the
div functions only.

Below we have listed program 2.1 containing two for-loops with stride two anddiv functions
inside the expressions of the conditional statements.

Two functionsA andB aredata-dependentif function A uses as argument a variable which value
is defined by the evaluation of functionB. To find the data dependencies, we represent the functions
evaluated by the nested loop program as sets of iterations. We call these sets of iterationsiteration-
domains.

Program 2.1

Let M be a parameter.
Let funcA andfuncB be two functions.
Let a be a two dimensional variable array.

for i = 1 to M step 2,
for j = 1 to 2 M step 2,

if i - 3 * div(i,3) <= 0 then



[a(i,j)] = funcA( );
end
if j - 3* div(j,3) <= 0 then

funcB( a(i,j) );
end

end
end

2

The kernel of HiPars is formed by aparametric integer programmingroutine (PIP). PIP differs
from classical ILP in two ways. First the constant vector of the LP system may be parametrized
leading to parametrized output by symbolic evaluation. Secondly, the objective function is defined by
the lexicographical ordering of the feasible solutions.
In order to use PIP [5] for our dependence analysis we describe iteration domains bypolytopes. Let
Z be the set of integers. We define anintegral polytopeas a bounded set of points taking values in
Z
n specified by a system of linear inequalities. By definition, a polytope is a dense space. When a

program contains for-loops with stride other than one, the expressions of the lower and upper bounds
are not sufficient to describe the values that the iterator takes on. We have to add an additional
constraint specifying that the difference between values of the iterator is a multiple of the stride.

To model the stride, we introduce an integral variableq. Let lb be the lower- andub be the upper-
bound expression of the for-statement with iteratori and strides. We model the stride by the equation:

i = q � s+ lb (1)

with lb � i � ub.
It is easy to show, that this equation together with the inequalities of the bounds form a polytope in
the(i; q) space that define the values of iteratori. So we properly transformed the non-dense iteration
domain ini into a dense iteration domain in a higher dimensional space at the cost of an additional
variable in the domain description.

The outline of the sequel of the paper is as follows. In section 3, we will give the definition of
integer division and substitute these operators inside NLPs by new control variables such that the
resulting program contains only affine expressions. In section 4, we explain how a nested loop
program is converted into a single assignment program and show that the SAP will contain additional
control variables standing for integer divisions. Then our goal will be to write the SAP description as
a DG with linearly bounded lattices. We will define linearly bounded lattices in section 5. In section
6 and section 7 we will derive the lattice vectors and lattice offsets, respectively. The procedure will
be illustrated by an example.

3 INTEGER DIVISION

When expressions of bounds or conditionals contain aninteger divisionoperator, we have to do a
similar transformation as we did for the stride in order to obtain polytope descriptions of iteration
domains. For this purpose, we look at the definition ofinteger division.

Definition 3.1

Let a be an integer andb a positive integer. The result ofinteger divisionof a andb are integersq



andr, such that

a = b � q + r (2)

0 � r � (b� 1) (3)
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We call b the divisor and r the remainderof the division. The value ofq is equal todiv(a; b).
Observe thatdiv(5 + 3; 2) 6= div(5; 2) + div(3; 2), which shows that integer division is not a linear
operation.

Definition 3.1 gives us a way to define the integer division operatordiv(a; b) by two linear inequal-
ities [9]. We writer asa�b�q according to the equation and substitute it in the inequalities, resulting
in:

0 � a� b � q � (b� 1) (4)

In the expressions inside the nested loop programs, we substitute eachdiv operator by a control
variableq and add the two inequalities defining variableq in the form of conditional statements.

After substitution of thediv functions, the NLP contains only affine expressions. As a result, we
can define all iteration domains by polytopes.

Example 3.1

Program 2.1 contains the conditional statement:

if i - 3* div(i,3) <= 0 then

We introduce variableq which we substitute for the functiondiv(i; 3) in the expression. By definition
3.1 we definediv(i; 3) by the inequalities:

0 � i� 3q � 2 (5)

We add the inequalities as conditional statements before the original if-statement, resulting in the
following statements:

if 0 <= i -3*q then
if i - 3*q <= 2 then

if i - 3* q <= 0 then

Now all inequalities are linear expressions of the variablesi andq.

2

4 SINGLE ASSIGNMENT PROGRAM

After substitution ofdiv operators by inequalities inside the NLP, we find the data dependencies
between the variables of the program.HiPars presents the result of the dependence analysis in the
form of a single assignment program (SAP)[14] [3].

A complete dependence analysis of the program involves finding the dependencies for all right-
hand side (RHS) variables appearing in the function call statements. A RHS variable can only be
dependent on a left-hand side (LHS) variable of the same name. In case there are more LHS variables
of the same name, we find first the solution between the RHS variable with each of the LHS variables



separately. This is done by PIP, which returns the solution in the form of the index of the LHS variable
and the iteration-domain for which the solution is valid [5] [6]. The index may be undefined, which
means that the RHS variable does not depend on the LHS variable. After applying PIP for all the LHS
variables, we determine the lexicographical largest index among the indices, which is thedependency.
Dependencies are linear functions on the iterators, parameters and variables standing for the integer
divisions.

The complete solution of the dependence analysis of a single RHS variable may consists of multiple
dependencies defined on mutually exclusive iteration domains [8].

The procedure to construct the SAP of the NLP is straightforward [3]. First we substitute LHS-
variables by variables with unique names and with identity functions as indexing functions. Next
we replace each RHS variables by the corresponding LHS variable in which the dependency is used
as indexing function. If the dependency is undefined, we do not substitute the RHS variable. The
iteration domains belonging to the dependencies are inserted in the SAP in the form of conditional
statements.

Below we show the SAP of example 2.1 that is automatically generated byHiPars.

Example 4.1

Let Mbe a parameter.
Let funcA andfuncB be two functions.
Let a 1 be a two dimensional variable andin0 a temp variable.

% SAP Generated By HiPars Version 2.08

for i=1 to M step 2,
for j=1 to M step 2,

q1=div(i,3);
if -i+3*q1>=0 then

[ a_1( i,j ) ] = funcA( );

end

q2=div(j,3);
if -j+3*q2>=0,

q1=div(i+1,2);
if -i+2*q1-1>=0 then

q2=div(j+1,2);
if -j+2*q2-1>=0 then

q3=div(2*q1+2,3);
if -i+3*q3-3 >=0 then

q4 = div(q3,2);

in0 = a_1(i,j);



else
in0 = a(i,j);

end
else

in0 = a(i,j);
end

else
in0 = a(i,j);

end

funcB( in0 );

end
end

end
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Observe that the SAP contains additionaldiv operators. Thediv functions are introduced by PIP
during the process of finding a solution of the integer programming problem. To find an integral
solution, PIP adds extra inequalities, calledcut planes, to the polytope. The construction of the cut
plane involves integer division. If parameters are involved in the division, PIP introduces a new
parameter in order to linearize the cut plane [2] [5] [10]. These new parameters corresponds to the
div functions in the SAP.

5 LINEARLY BOUNDED LATTICE

The SAP is in fact an intermediate format in theHiFi design system [13]. Our goal is to represent
the NLP as a dependence graph (DG). Nodes of the DG represent functions of the DG and edges
data dependencies between the functions. We use domains to represent the elements of the graph in a
reduced way. We define domains aslinearly bounded lattices[12][4].

A domain is specified by a polytope and a lattice. LetI be an index vector of lengthn and letK be
a vector ofm integral variables. WithA 2 Z

m�n an integral matrix andB 2 Z
m a constant vector,

we define a polytope by [10]:

AK � B (6)

Now, withL ann�m integral matrix andO 2 Zn an integral vector, we define a lattice as:

I = LK +O (7)

We say, that the lattice ofI is generated by the columns ofL, with the variables ofK bounded by the
polytope. We callO theoffsetof the lattice and the columns ofL the lattice vectors.

An example of a two dimensional lattice is:

Example 5.1

 
i1
i2

!
=

 
6 0
0 2

! 
k1
k2

!
+

 
3
�1

!
(8)
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Below we will show how to write the SAP as linearly bounded lattices. We will focus on the lattice
specification defined by thediv functions inside the SAP.

6 INDEX DOMAINS WITH DIVS

In this section we will show the relation between lattices and the integer division functions.

To illustrate the subject, we take as example the piece of code of program 4.1 containing fourdiv

statements:

Example 6.1

q1 = div(i+ 1; 2)
if �i+ 2 � q1� 1 � 0

q2=div(j + 1; 2)
if �j + 2 � q2� 1 � 0

q3=div(2 � q1 + 2; 3)
if �i+ 3 � q3� 3 � 0

q4= div(q3; 2)
a1(3 � q3� 3; 2 � q2� 1)

2

The example shows thatdiv functions may be nested. Thediv functions and inequalities of the
example form a part of specification of the iteration domain of the dependency for variablea1. Our
goal is to describe iteration domains of variables as linearly bounded lattices. The method is based on
the so-calledhermite normal decomposition[10]. Other approaches can be found in [9] [11].

To find the lattice defined by the integer divisions and inequalities involving theq’s, we start by
writing thediv’s as equations by setting the remaindersr to zero.

Let N be a matrix of which the rows are the normals of these equations. LetQ = (q1; ::; qm) be
the vector of variables of them divisions and letI be the vector of the iterators. We write the system
of equations defined by thediv’s as:

N

 
I

Q

!
= 0

Example 6.2

With I = (i; j)t andQ = (q1; q2; q3; q4)
t, the system of equations of example 6.1 is:

i� 2q1 = 0

j � 2 � q2 = 0

2q2 � 3q3 = 0

q3 � 2q4 = 0

Thus matrixN is



N =

0
BBB@

1 0 �2 0 0 0
0 1 0 �2 0 0
0 0 2 0 �3 0
0 0 0 0 1 �2

1
CCCA
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We assume that the system has a solution. Otherwise, we would have removed this piece of code
from the program by dead code elimination procedures.

The system hasm equations inn + m variables. Because each rowk introduces variableqk it
follows that the rows ofN are independent. The nullspace of the system is thusn-dimensional, equal
to the dimension of the iteration-space. We will call the variables corresponding to the nullspace the
free variablesof the system.

To find the solution, we use thehermite normal decomposition[10]. This procedure gives us two
matricesC1 andC2 such that:

N [C1C2] = [H0]

in which matrixH is called the hermite normal form ofN . Matrix H has an inverse because the
rows ofN are linearly independent. Observe that matrixC2 consists of the vectors of then nullspace
vectors ofN asNC2 = 0. So any linear combination of the vectors ofC2 added to a given solutions
will also be a solution of the system. Because we are only interested in the values ofI, we decompose
matrix C1 into C11, sizen by n, andC12 and decompose matrixC2 into matricesC21 andC22 as
follows:

C =
h
C1 C2

i
=

"
C11 C21

C12 C22

#

Now, the columns of matrixC21 are the lattice vectors. So the hermite normal form gives us directly
lattice matrixL defined by thedivs.

Example 6.3

Hermite normal decomposition of matrixN gives:

C1 =

0
BBBBBBB@

1 0 �2 0
0 1 0 0
0 0 �1 0
0 0 0 0
0 0 �1 0
0 0 0 �1

1
CCCCCCCA

and matrixC2:

C2 =

0
BBBBBBB@

6 0
0 2
3 0
0 1
2 0
1 0

1
CCCCCCCA



The iteratorsi and j are defined by matrixC21. Let Kf be the vector of free variables. We write
I = (i; j)t, with offsetO still to be determined, as:

I =

 
6 0
0 2

!
Kf +O

2

7 LATTICE OFFSET

Next we have to find the lattice offsets. LetB = (b1; ::; bm)t be the vector of the divisors of the
integer divisions, with remainderrk between0 � rk � bk. An offsetO must first of all be an integral
solution of the system:

0 � N

 
O

Q

!
� B (9)

Apart from these inequalities there may be others in the program that restrict the value of the variables
standing for the integer divisions. We disregard inequalities not involvingQ as they do not affect the
lattice offset.

Let < Nq; Bq > be the system of all inequalities involvingQ. We assume thatNqC2 = 0. When
this assumption is satisfied, we may use the vectors ofC21 as lattice vectors because the variables
corresponding toC21 are free.

LetKb be the vector of variables corresponding to matrixC1 and letKf be the vector of variables
corresponding to matrixC2.

We define(O;Q)t as 
O

Q

!
= [C1C2]

 
Kb

Kf

!
(10)

and substitute it in the polytope:

Nq

 
O

Q

!
� Bq (11)

after which we obtain the polytope:

NqC1Kb � Bq (12)

This polytope defines all offsetsO = C11Kb of the lattice and we call it thelattice offset domain.
The number of offsets depend on the value of the divisorsb. The lattices corresponding to the polytope
in q are defined by:

I = C21Kf +O (13)

O = C11Kb (14)

NqC1Kb � Bq (15)

The lattices are bounded by remaining inequalities of the nested loop program. These inequalities
together with a lattice define an iteration-domain.



A special case is when the offset domain contains a single point. Then the lattice descriptions reduces
to I = C21Kf +O, and we do not have to enumerate the lattice offset domain.

Example 7.1

In example 6.1 there are three if-statements defining inequalities inq:

�i+ 2 � q1� 1 � 0 (16)

�j + 2 � q2� 1 � 0 (17)

�i+ 3 � q3� 3 � 0 (18)

(19)

After the substitutionI = C11Kb andQ = C12Kb, we get inequalities in variables ofKb:

�k1 � 1

�k2 � 1

�k1 � k3 � 3

By the same substitution we get for the inequalities of the remainders:

�1 � k1 � 0

�1 � k2 � 0

�2 � k3 � 0

�1 � �k3 + 2k4 � 1

After some computation we find thatKb = (�1;�1;�2;�1)t is the only solution. So that the
offset

O = C11Kb = (3;�1)t

2

8 CONCLUSION

This paper shows the relation between several forms of describing the data dependencies of nested
loop programs. In particular we have explained the relation between integer divisions inside the
Single Assignment Programs generated byHiPars and linearly bounded lattices in descriptions of
Dependence Graphs.

We have extended the class of nested loop thatHiPars can take as input to programs containing
non-linear integer division functions inside the expressions. This extension is based on the definition
of integer division by which we can linearize the expressions in the program at the cost of additional
variables.

The conversion of SAP withdiv functions to linearly bounded lattice descriptions is achieved by
taking the hermite normal form of the matrixN defined by integer divisions. This decomposition
leads to matricesC1 andC2, with corresponding variable vectorsKb andKf , respectively. MatrixC2

defines the lattice vectors with the variables ofKf as free variables. The domain of lattice offsets is
formed by a polytope in variables ofKb. The polytope is characterized by matrixC1 and inequalities



of the variables standing for the integer divisions.

As a result, we have transformed the polytopes defined by a SAP into linearly bounded lattices to
be used in the description of the corresponding DG.
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22(3):243–268, 1988.

[6] P. Feautrier. Dataflow analysis of array and scalar references.Int. J. Parallel Programming,
20(1):23–51, 1991.

[7] Peter Held. Hipars’ reference guide. Technical report, Dept. Electrical Engineering, Delft Uni-
versity of Technology, 1993.

[8] Peter Held and Ed F. Deprettere. Hifi: From parallel algorithm to fixed-size vlsi processor ar-
ray. In Francky Catthoor and Lars Svensson, editors,Application-Driven Architecture Synthesis,
pages 71–92. Kluwer Academic Publishers, Dordrecht, 1993.

[9] F.Balasa F.Franssen F.Catthoor H.De Man. Transformation of nested loops with modulo index-
ing to affine recurrences. In C.Lengauer P.Quinton Y.Robert L.Thiele, editor,Special issue of
Parallel Processing Letterson Parallelization techniques for uniform algorithms. World Scien-
tific Pub., 1994.

[10] G.L. Nemhauser and L.A. Wolsey.Integer and Combinatorial Optimization. John Wiley &
Sons, Inc., 1988.

[11] W. Pugh. A practical algorithm for exact array dependence analysis.Communications of the
ACM, 35(8):102–114, 1992.

[12] L. Thiele and U. Arzt. On the synthesis of massively parallel architectures.Int. J. of High Speed
Electronics and Systems, 4(2):99–131, 1993.

[13] Alfred van der Hoeven.Concepts and Implementation of a Design System for Digital Signal
Processing. PhD thesis, Delft University of Technology, Delft, The Netherlands, October 1992.

[14] Kung S. Y. VLSI Array Processors. Prentice Hall, 1988.


