Automatic Region-Based Memory
Management for Real-Time %
Embedded Systems .

erimaec - TWGrerem |
UNIVERSITE

Guillaume Salagnac JOSEPH FOURIER

. 'SCIENCES TECHNOLOGIE MEDECINE
Verimag - Grenoble - France
http://www-verimag.imag.frfPEOPLE/Guillaume.Salagnac/

/ Motivation : \ ﬁnemory management with regions\

« Java means automatic memory management
* Garbage Collector means problems in a real-time context
o Unpredictable pause times
o Fragmentation of the heap
¢ How can we provide automatic memory management without
using a GC ?

Our approach :

¢ Use region-based memory management
¢ Group data structures in regions
* Use a compile-time analyis to place objects in regions

CH

— N E—

526"

Java heap Memory regions

Program variables
m B m O

* Objects allocated side by side : no more fragmentation

. .. * Regions destroyed as a whole : predictable times
ﬁO"Tter Interfe rence Ana|yS|S . \ K » Drawback: each object must be placed when aIIocated/
vi=u

« Build a partition of local variables - > v~u
» v~v’'means they belong to the vi=uf

v.fi=u

same data structure 0

¢ Simple algorithm : m . . .
imple algorithm o = Vi Other kinds of pointer analysis :
Allocation Policy : ™0 ifp1~p2 Escape analysis :

) Does my object live longer than its method of origin ?

Simple allocation policy : . .
if two variables verify v~v’, I{ Points-to analy sis :

place their objects in the same region v.\ : Where do the objects of my variable come from ?

Data structures will be automatically Purity analysis :
vmuped by region / Does my method mutate the heap ?

Results : \
Memory occupancy for two programs using a Garbage Collector or using Regions

wiot |

900000 -

800000 |- 800000

700000 |- |

Heap Size (bytes)
Heap Size (bytes)

600000 - / 600000

L L L
a0 50107 o S010¢

15010 20107

1210
VMTime (cycles)

o 107 210 3110
VMTime (cycles)

¢ In this program, most regions are short-lived * This program uses a large mutating data structure
« The program runs in nearly constant space * Some of the generated garbage stays forever in the long-lived region
* No more need for a Garbage Collector * Running this program without a GC may cause a memory leak

How to predict the runtime behaviour ?

Achieved : Perspectives :

* We propose a simple static analysis and allocation policy that « This approach has a tendency to place too many objects in the

groups data structures in regions same region

« Automatic region-based memory management can allow * We need to find an algorithm to predict at compile time the

programs to run without a Garbage Collector behaviour of the region allocator

.
Rh 0 n G\I pes This work was partially supported by projects DYNAMO (Min.Research,France) and MADEJA (Rhéne-Alpes, France) 1echeig

EX

